# | Line 1 | Line 1 | |
---|---|---|
1 | #include <iostream> | |
2 | #include <stdlib.h> | |
3 | #include <math.h> | |
4 | < | |
4 | > | #include "Rattle.hpp" |
5 | > | #include "Roll.hpp" |
6 | #ifdef IS_MPI | |
7 | #include "mpiSimulation.hpp" | |
8 | #include <unistd.h> | |
# | Line 31 | Line 32 | template<typename T> Integrator<T>::Integrator(SimInfo | |
32 | } | |
33 | ||
34 | nAtoms = info->n_atoms; | |
35 | + | integrableObjects = info->integrableObjects; |
36 | ||
37 | + | consFramework = new RattleFramework(info); |
38 | + | |
39 | + | if(consFramework == NULL){ |
40 | + | sprintf(painCave.errMsg, |
41 | + | "Integrator::Intergrator() Error: Memory allocation error for RattleFramework" ); |
42 | + | painCave.isFatal = 1; |
43 | + | simError(); |
44 | + | } |
45 | + | |
46 | + | /* |
47 | // check for constraints | |
48 | ||
49 | constrainedA = NULL; | |
# | Line 44 | Line 56 | template<typename T> Integrator<T>::Integrator(SimInfo | |
56 | nConstrained = 0; | |
57 | ||
58 | checkConstraints(); | |
59 | + | */ |
60 | } | |
61 | ||
62 | template<typename T> Integrator<T>::~Integrator(){ | |
63 | + | if (consFramework != NULL) |
64 | + | delete consFramework; |
65 | + | /* |
66 | if (nConstrained){ | |
67 | delete[] constrainedA; | |
68 | delete[] constrainedB; | |
# | Line 55 | Line 71 | template<typename T> Integrator<T>::~Integrator(){ | |
71 | delete[] moved; | |
72 | delete[] oldPos; | |
73 | } | |
74 | + | */ |
75 | } | |
76 | ||
77 | + | /* |
78 | template<typename T> void Integrator<T>::checkConstraints(void){ | |
79 | isConstrained = 0; | |
80 | ||
# | Line 68 | Line 86 | template<typename T> void Integrator<T>::checkConstrai | |
86 | ||
87 | SRI** theArray; | |
88 | for (int i = 0; i < nMols; i++){ | |
89 | < | theArray = (SRI * *) molecules[i].getMyBonds(); |
89 | > | |
90 | > | theArray = (SRI * *) molecules[i].getMyBonds(); |
91 | for (int j = 0; j < molecules[i].getNBonds(); j++){ | |
92 | constrained = theArray[j]->is_constrained(); | |
93 | ||
# | Line 90 | Line 109 | template<typename T> void Integrator<T>::checkConstrai | |
109 | if (constrained){ | |
110 | dummy_plug = theArray[j]->get_constraint(); | |
111 | temp_con[nConstrained].set_a(dummy_plug->get_a()); | |
112 | < | temp_con[nConstrained].set_b(dummy_plug->get_b()); |
112 | > | temp_con[nConstrained].set_b(Dummy_plug->get_b()); |
113 | temp_con[nConstrained].set_dsqr(dummy_plug->get_dsqr()); | |
114 | ||
115 | nConstrained++; | |
# | Line 114 | Line 133 | template<typename T> void Integrator<T>::checkConstrai | |
133 | } | |
134 | } | |
135 | ||
136 | + | |
137 | if (nConstrained > 0){ | |
138 | isConstrained = 1; | |
139 | ||
# | Line 135 | Line 155 | template<typename T> void Integrator<T>::checkConstrai | |
155 | } | |
156 | ||
157 | ||
158 | < | // save oldAtoms to check for lode balanceing later on. |
158 | > | // save oldAtoms to check for lode balancing later on. |
159 | ||
160 | oldAtoms = nAtoms; | |
161 | ||
# | Line 147 | Line 167 | template<typename T> void Integrator<T>::checkConstrai | |
167 | ||
168 | delete[] temp_con; | |
169 | } | |
170 | + | */ |
171 | ||
151 | – | |
172 | template<typename T> void Integrator<T>::integrate(void){ | |
173 | ||
174 | double runTime = info->run_time; | |
# | Line 157 | Line 177 | template<typename T> void Integrator<T>::integrate(voi | |
177 | double thermalTime = info->thermalTime; | |
178 | double resetTime = info->resetTime; | |
179 | ||
180 | < | |
180 | > | double difference; |
181 | double currSample; | |
182 | double currThermal; | |
183 | double currStatus; | |
# | Line 176 | Line 196 | template<typename T> void Integrator<T>::integrate(voi | |
196 | ||
197 | readyCheck(); | |
198 | ||
199 | + | // remove center of mass drift velocity (in case we passed in a configuration |
200 | + | // that was drifting |
201 | + | tStats->removeCOMdrift(); |
202 | + | |
203 | + | // initialize the retraints if necessary |
204 | + | if (info->useSolidThermInt && !info->useLiquidThermInt) { |
205 | + | myFF->initRestraints(); |
206 | + | } |
207 | + | |
208 | // initialize the forces before the first step | |
209 | ||
210 | calcForce(1, 1); | |
211 | ||
212 | < | if (nConstrained){ |
213 | < | preMove(); |
214 | < | constrainA(); |
215 | < | calcForce(1, 1); |
216 | < | constrainB(); |
188 | < | } |
212 | > | //execute constraint algorithm to make sure at the very beginning the system is constrained |
213 | > | consFramework->doPreConstraint(); |
214 | > | consFramework->doConstrainA(); |
215 | > | calcForce(1, 1); |
216 | > | consFramework->doConstrainB(); |
217 | ||
218 | if (info->setTemp){ | |
219 | thermalize(); | |
# | Line 207 | Line 235 | template<typename T> void Integrator<T>::integrate(voi | |
235 | MPIcheckPoint(); | |
236 | #endif // is_mpi | |
237 | ||
238 | < | while (info->getTime() < runTime){ |
239 | < | if ((info->getTime() + dt) >= currStatus){ |
238 | > | while (info->getTime() < runTime && !stopIntegrator()){ |
239 | > | difference = info->getTime() + dt - currStatus; |
240 | > | if (difference > 0 || fabs(difference) < 1e-4 ){ |
241 | calcPot = 1; | |
242 | calcStress = 1; | |
243 | } | |
# | Line 263 | Line 292 | template<typename T> void Integrator<T>::integrate(voi | |
292 | #endif // is_mpi | |
293 | } | |
294 | ||
295 | + | // dump out a file containing the omega values for the final configuration |
296 | + | if (info->useSolidThermInt && !info->useLiquidThermInt) |
297 | + | myFF->dumpzAngle(); |
298 | + | |
299 | ||
267 | – | // write the last frame |
268 | – | dumpOut->writeDump(info->getTime()); |
269 | – | |
300 | delete dumpOut; | |
301 | delete statOut; | |
302 | } | |
# | Line 279 | Line 309 | template<typename T> void Integrator<T>::integrateStep | |
309 | startProfile(pro3); | |
310 | #endif //profile | |
311 | ||
312 | < | preMove(); |
312 | > | //save old state (position, velocity etc) |
313 | > | consFramework->doPreConstraint(); |
314 | ||
315 | #ifdef PROFILE | |
316 | endProfile(pro3); | |
# | Line 301 | Line 332 | template<typename T> void Integrator<T>::integrateStep | |
332 | MPIcheckPoint(); | |
333 | #endif // is_mpi | |
334 | ||
304 | – | |
335 | // calc forces | |
306 | – | |
336 | calcForce(calcPot, calcStress); | |
337 | ||
338 | #ifdef IS_MPI | |
# | Line 333 | Line 362 | template<typename T> void Integrator<T>::moveA(void){ | |
362 | ||
363 | ||
364 | template<typename T> void Integrator<T>::moveA(void){ | |
365 | < | int i, j; |
365 | > | size_t i, j; |
366 | DirectionalAtom* dAtom; | |
367 | double Tb[3], ji[3]; | |
368 | double vel[3], pos[3], frc[3]; | |
369 | double mass; | |
370 | + | double omega; |
371 | + | |
372 | + | for (i = 0; i < integrableObjects.size() ; i++){ |
373 | + | integrableObjects[i]->getVel(vel); |
374 | + | integrableObjects[i]->getPos(pos); |
375 | + | integrableObjects[i]->getFrc(frc); |
376 | + | |
377 | + | mass = integrableObjects[i]->getMass(); |
378 | ||
342 | – | for (i = 0; i < nAtoms; i++){ |
343 | – | atoms[i]->getVel(vel); |
344 | – | atoms[i]->getPos(pos); |
345 | – | atoms[i]->getFrc(frc); |
346 | – | |
347 | – | mass = atoms[i]->getMass(); |
348 | – | |
379 | for (j = 0; j < 3; j++){ | |
380 | // velocity half step | |
381 | vel[j] += (dt2 * frc[j] / mass) * eConvert; | |
# | Line 353 | Line 383 | template<typename T> void Integrator<T>::moveA(void){ | |
383 | pos[j] += dt * vel[j]; | |
384 | } | |
385 | ||
386 | < | atoms[i]->setVel(vel); |
387 | < | atoms[i]->setPos(pos); |
386 | > | integrableObjects[i]->setVel(vel); |
387 | > | integrableObjects[i]->setPos(pos); |
388 | ||
389 | < | if (atoms[i]->isDirectional()){ |
360 | < | dAtom = (DirectionalAtom *) atoms[i]; |
389 | > | if (integrableObjects[i]->isDirectional()){ |
390 | ||
391 | // get and convert the torque to body frame | |
392 | ||
393 | < | dAtom->getTrq(Tb); |
394 | < | dAtom->lab2Body(Tb); |
393 | > | integrableObjects[i]->getTrq(Tb); |
394 | > | integrableObjects[i]->lab2Body(Tb); |
395 | ||
396 | // get the angular momentum, and propagate a half step | |
397 | ||
398 | < | dAtom->getJ(ji); |
398 | > | integrableObjects[i]->getJ(ji); |
399 | ||
400 | for (j = 0; j < 3; j++) | |
401 | ji[j] += (dt2 * Tb[j]) * eConvert; | |
402 | ||
403 | < | this->rotationPropagation( dAtom, ji ); |
403 | > | this->rotationPropagation( integrableObjects[i], ji ); |
404 | ||
405 | < | dAtom->setJ(ji); |
405 | > | integrableObjects[i]->setJ(ji); |
406 | } | |
407 | } | |
408 | ||
409 | < | if (nConstrained){ |
381 | < | constrainA(); |
382 | < | } |
409 | > | consFramework->doConstrainA(); |
410 | } | |
411 | ||
412 | ||
413 | template<typename T> void Integrator<T>::moveB(void){ | |
414 | int i, j; | |
388 | – | DirectionalAtom* dAtom; |
415 | double Tb[3], ji[3]; | |
416 | double vel[3], frc[3]; | |
417 | double mass; | |
418 | ||
419 | < | for (i = 0; i < nAtoms; i++){ |
420 | < | atoms[i]->getVel(vel); |
421 | < | atoms[i]->getFrc(frc); |
419 | > | for (i = 0; i < integrableObjects.size(); i++){ |
420 | > | integrableObjects[i]->getVel(vel); |
421 | > | integrableObjects[i]->getFrc(frc); |
422 | ||
423 | < | mass = atoms[i]->getMass(); |
423 | > | mass = integrableObjects[i]->getMass(); |
424 | ||
425 | // velocity half step | |
426 | for (j = 0; j < 3; j++) | |
427 | vel[j] += (dt2 * frc[j] / mass) * eConvert; | |
428 | ||
429 | < | atoms[i]->setVel(vel); |
429 | > | integrableObjects[i]->setVel(vel); |
430 | ||
431 | < | if (atoms[i]->isDirectional()){ |
406 | < | dAtom = (DirectionalAtom *) atoms[i]; |
431 | > | if (integrableObjects[i]->isDirectional()){ |
432 | ||
433 | // get and convert the torque to body frame | |
434 | ||
435 | < | dAtom->getTrq(Tb); |
436 | < | dAtom->lab2Body(Tb); |
435 | > | integrableObjects[i]->getTrq(Tb); |
436 | > | integrableObjects[i]->lab2Body(Tb); |
437 | ||
438 | // get the angular momentum, and propagate a half step | |
439 | ||
440 | < | dAtom->getJ(ji); |
440 | > | integrableObjects[i]->getJ(ji); |
441 | ||
442 | for (j = 0; j < 3; j++) | |
443 | ji[j] += (dt2 * Tb[j]) * eConvert; | |
444 | ||
445 | ||
446 | < | dAtom->setJ(ji); |
446 | > | integrableObjects[i]->setJ(ji); |
447 | } | |
448 | } | |
449 | ||
450 | < | if (nConstrained){ |
426 | < | constrainB(); |
427 | < | } |
450 | > | consFramework->doConstrainB(); |
451 | } | |
452 | ||
453 | + | /* |
454 | template<typename T> void Integrator<T>::preMove(void){ | |
455 | int i, j; | |
456 | double pos[3]; | |
# | Line 685 | Line 709 | template<typename T> void Integrator<T>::constrainB(vo | |
709 | simError(); | |
710 | } | |
711 | } | |
712 | < | |
712 | > | */ |
713 | template<typename T> void Integrator<T>::rotationPropagation | |
714 | < | ( DirectionalAtom* dAtom, double ji[3] ){ |
714 | > | ( StuntDouble* sd, double ji[3] ){ |
715 | ||
716 | double angle; | |
717 | double A[3][3], I[3][3]; | |
718 | + | int i, j, k; |
719 | ||
720 | // use the angular velocities to propagate the rotation matrix a | |
721 | // full time step | |
722 | ||
723 | < | dAtom->getA(A); |
724 | < | dAtom->getI(I); |
723 | > | sd->getA(A); |
724 | > | sd->getI(I); |
725 | ||
726 | < | // rotate about the x-axis |
727 | < | angle = dt2 * ji[0] / I[0][0]; |
728 | < | this->rotate( 1, 2, angle, ji, A ); |
729 | < | |
730 | < | // rotate about the y-axis |
731 | < | angle = dt2 * ji[1] / I[1][1]; |
732 | < | this->rotate( 2, 0, angle, ji, A ); |
726 | > | if (sd->isLinear()) { |
727 | > | i = sd->linearAxis(); |
728 | > | j = (i+1)%3; |
729 | > | k = (i+2)%3; |
730 | > | |
731 | > | angle = dt2 * ji[j] / I[j][j]; |
732 | > | this->rotate( k, i, angle, ji, A ); |
733 | ||
734 | < | // rotate about the z-axis |
735 | < | angle = dt * ji[2] / I[2][2]; |
711 | < | this->rotate( 0, 1, angle, ji, A); |
734 | > | angle = dt * ji[k] / I[k][k]; |
735 | > | this->rotate( i, j, angle, ji, A); |
736 | ||
737 | < | // rotate about the y-axis |
738 | < | angle = dt2 * ji[1] / I[1][1]; |
715 | < | this->rotate( 2, 0, angle, ji, A ); |
737 | > | angle = dt2 * ji[j] / I[j][j]; |
738 | > | this->rotate( k, i, angle, ji, A ); |
739 | ||
740 | < | // rotate about the x-axis |
741 | < | angle = dt2 * ji[0] / I[0][0]; |
742 | < | this->rotate( 1, 2, angle, ji, A ); |
743 | < | |
744 | < | dAtom->setA( A ); |
740 | > | } else { |
741 | > | // rotate about the x-axis |
742 | > | angle = dt2 * ji[0] / I[0][0]; |
743 | > | this->rotate( 1, 2, angle, ji, A ); |
744 | > | |
745 | > | // rotate about the y-axis |
746 | > | angle = dt2 * ji[1] / I[1][1]; |
747 | > | this->rotate( 2, 0, angle, ji, A ); |
748 | > | |
749 | > | // rotate about the z-axis |
750 | > | angle = dt * ji[2] / I[2][2]; |
751 | > | sd->addZangle(angle); |
752 | > | this->rotate( 0, 1, angle, ji, A); |
753 | > | |
754 | > | // rotate about the y-axis |
755 | > | angle = dt2 * ji[1] / I[1][1]; |
756 | > | this->rotate( 2, 0, angle, ji, A ); |
757 | > | |
758 | > | // rotate about the x-axis |
759 | > | angle = dt2 * ji[0] / I[0][0]; |
760 | > | this->rotate( 1, 2, angle, ji, A ); |
761 | > | |
762 | > | } |
763 | > | sd->setA( A ); |
764 | } | |
765 | ||
766 | template<typename T> void Integrator<T>::rotate(int axes1, int axes2, |
– | Removed lines |
+ | Added lines |
< | Changed lines |
> | Changed lines |