# | Line 1 | Line 1 | |
---|---|---|
1 | #include <iostream> | |
2 | < | #include <cstdlib> |
3 | < | #include <cmath> |
2 | > | #include <stdlib.h> |
3 | > | #include <math.h> |
4 | ||
5 | #ifdef IS_MPI | |
6 | #include "mpiSimulation.hpp" | |
7 | #include <unistd.h> | |
8 | #endif //is_mpi | |
9 | ||
10 | + | #ifdef PROFILE |
11 | + | #include "mdProfile.hpp" |
12 | + | #endif // profile |
13 | + | |
14 | #include "Integrator.hpp" | |
15 | #include "simError.h" | |
16 | ||
17 | ||
18 | < | template<typename T> Integrator<T>::Integrator( SimInfo *theInfo, ForceFields* the_ff ) { |
19 | < | |
18 | > | template<typename T> Integrator<T>::Integrator(SimInfo* theInfo, |
19 | > | ForceFields* the_ff){ |
20 | info = theInfo; | |
21 | myFF = the_ff; | |
22 | isFirst = 1; | |
# | Line 21 | Line 25 | template<typename T> Integrator<T>::Integrator( SimInf | |
25 | nMols = info->n_mol; | |
26 | ||
27 | // give a little love back to the SimInfo object | |
24 | – | |
25 | – | if( info->the_integrator != NULL ) delete info->the_integrator; |
26 | – | info->the_integrator = this; |
28 | ||
29 | + | if (info->the_integrator != NULL){ |
30 | + | delete info->the_integrator; |
31 | + | } |
32 | + | |
33 | nAtoms = info->n_atoms; | |
34 | ||
35 | // check for constraints | |
36 | < | |
37 | < | constrainedA = NULL; |
38 | < | constrainedB = NULL; |
36 | > | |
37 | > | constrainedA = NULL; |
38 | > | constrainedB = NULL; |
39 | constrainedDsqr = NULL; | |
40 | < | moving = NULL; |
41 | < | moved = NULL; |
42 | < | oldPos = NULL; |
43 | < | |
40 | > | moving = NULL; |
41 | > | moved = NULL; |
42 | > | oldPos = NULL; |
43 | > | |
44 | nConstrained = 0; | |
45 | ||
46 | checkConstraints(); | |
47 | } | |
48 | ||
49 | < | template<typename T> Integrator<T>::~Integrator() { |
50 | < | |
46 | < | if( nConstrained ){ |
49 | > | template<typename T> Integrator<T>::~Integrator(){ |
50 | > | if (nConstrained){ |
51 | delete[] constrainedA; | |
52 | delete[] constrainedB; | |
53 | delete[] constrainedDsqr; | |
# | Line 51 | Line 55 | template<typename T> Integrator<T>::~Integrator() { | |
55 | delete[] moved; | |
56 | delete[] oldPos; | |
57 | } | |
54 | – | |
58 | } | |
59 | ||
60 | < | template<typename T> void Integrator<T>::checkConstraints( void ){ |
58 | < | |
59 | < | |
60 | > | template<typename T> void Integrator<T>::checkConstraints(void){ |
61 | isConstrained = 0; | |
62 | ||
63 | < | Constraint *temp_con; |
64 | < | Constraint *dummy_plug; |
63 | > | Constraint* temp_con; |
64 | > | Constraint* dummy_plug; |
65 | temp_con = new Constraint[info->n_SRI]; | |
66 | nConstrained = 0; | |
67 | int constrained = 0; | |
68 | < | |
68 | > | |
69 | SRI** theArray; | |
70 | < | for(int i = 0; i < nMols; i++){ |
71 | < | |
72 | < | theArray = (SRI**) molecules[i].getMyBonds(); |
72 | < | for(int j=0; j<molecules[i].getNBonds(); j++){ |
73 | < | |
70 | > | for (int i = 0; i < nMols; i++){ |
71 | > | theArray = (SRI * *) molecules[i].getMyBonds(); |
72 | > | for (int j = 0; j < molecules[i].getNBonds(); j++){ |
73 | constrained = theArray[j]->is_constrained(); | |
74 | ||
75 | < | if(constrained){ |
75 | > | if (constrained){ |
76 | > | dummy_plug = theArray[j]->get_constraint(); |
77 | > | temp_con[nConstrained].set_a(dummy_plug->get_a()); |
78 | > | temp_con[nConstrained].set_b(dummy_plug->get_b()); |
79 | > | temp_con[nConstrained].set_dsqr(dummy_plug->get_dsqr()); |
80 | ||
81 | < | dummy_plug = theArray[j]->get_constraint(); |
82 | < | temp_con[nConstrained].set_a( dummy_plug->get_a() ); |
83 | < | temp_con[nConstrained].set_b( dummy_plug->get_b() ); |
81 | < | temp_con[nConstrained].set_dsqr( dummy_plug->get_dsqr() ); |
82 | < | |
83 | < | nConstrained++; |
84 | < | constrained = 0; |
85 | < | } |
81 | > | nConstrained++; |
82 | > | constrained = 0; |
83 | > | } |
84 | } | |
85 | ||
86 | < | theArray = (SRI**) molecules[i].getMyBends(); |
87 | < | for(int j=0; j<molecules[i].getNBends(); j++){ |
90 | < | |
86 | > | theArray = (SRI * *) molecules[i].getMyBends(); |
87 | > | for (int j = 0; j < molecules[i].getNBends(); j++){ |
88 | constrained = theArray[j]->is_constrained(); | |
89 | < | |
90 | < | if(constrained){ |
91 | < | |
92 | < | dummy_plug = theArray[j]->get_constraint(); |
93 | < | temp_con[nConstrained].set_a( dummy_plug->get_a() ); |
94 | < | temp_con[nConstrained].set_b( dummy_plug->get_b() ); |
95 | < | temp_con[nConstrained].set_dsqr( dummy_plug->get_dsqr() ); |
96 | < | |
97 | < | nConstrained++; |
101 | < | constrained = 0; |
89 | > | |
90 | > | if (constrained){ |
91 | > | dummy_plug = theArray[j]->get_constraint(); |
92 | > | temp_con[nConstrained].set_a(dummy_plug->get_a()); |
93 | > | temp_con[nConstrained].set_b(dummy_plug->get_b()); |
94 | > | temp_con[nConstrained].set_dsqr(dummy_plug->get_dsqr()); |
95 | > | |
96 | > | nConstrained++; |
97 | > | constrained = 0; |
98 | } | |
99 | } | |
100 | ||
101 | < | theArray = (SRI**) molecules[i].getMyTorsions(); |
102 | < | for(int j=0; j<molecules[i].getNTorsions(); j++){ |
107 | < | |
101 | > | theArray = (SRI * *) molecules[i].getMyTorsions(); |
102 | > | for (int j = 0; j < molecules[i].getNTorsions(); j++){ |
103 | constrained = theArray[j]->is_constrained(); | |
104 | < | |
105 | < | if(constrained){ |
106 | < | |
107 | < | dummy_plug = theArray[j]->get_constraint(); |
108 | < | temp_con[nConstrained].set_a( dummy_plug->get_a() ); |
109 | < | temp_con[nConstrained].set_b( dummy_plug->get_b() ); |
110 | < | temp_con[nConstrained].set_dsqr( dummy_plug->get_dsqr() ); |
111 | < | |
112 | < | nConstrained++; |
118 | < | constrained = 0; |
104 | > | |
105 | > | if (constrained){ |
106 | > | dummy_plug = theArray[j]->get_constraint(); |
107 | > | temp_con[nConstrained].set_a(dummy_plug->get_a()); |
108 | > | temp_con[nConstrained].set_b(dummy_plug->get_b()); |
109 | > | temp_con[nConstrained].set_dsqr(dummy_plug->get_dsqr()); |
110 | > | |
111 | > | nConstrained++; |
112 | > | constrained = 0; |
113 | } | |
114 | } | |
115 | } | |
116 | ||
117 | < | if(nConstrained > 0){ |
124 | < | |
117 | > | if (nConstrained > 0){ |
118 | isConstrained = 1; | |
119 | ||
120 | < | if(constrainedA != NULL ) delete[] constrainedA; |
121 | < | if(constrainedB != NULL ) delete[] constrainedB; |
122 | < | if(constrainedDsqr != NULL ) delete[] constrainedDsqr; |
120 | > | if (constrainedA != NULL) |
121 | > | delete[] constrainedA; |
122 | > | if (constrainedB != NULL) |
123 | > | delete[] constrainedB; |
124 | > | if (constrainedDsqr != NULL) |
125 | > | delete[] constrainedDsqr; |
126 | ||
127 | < | constrainedA = new int[nConstrained]; |
128 | < | constrainedB = new int[nConstrained]; |
127 | > | constrainedA = new int[nConstrained]; |
128 | > | constrainedB = new int[nConstrained]; |
129 | constrainedDsqr = new double[nConstrained]; | |
130 | < | |
131 | < | for( int i = 0; i < nConstrained; i++){ |
136 | < | |
130 | > | |
131 | > | for (int i = 0; i < nConstrained; i++){ |
132 | constrainedA[i] = temp_con[i].get_a(); | |
133 | constrainedB[i] = temp_con[i].get_b(); | |
134 | constrainedDsqr[i] = temp_con[i].get_dsqr(); | |
140 | – | |
135 | } | |
136 | ||
137 | < | |
137 | > | |
138 | // save oldAtoms to check for lode balanceing later on. | |
139 | < | |
139 | > | |
140 | oldAtoms = nAtoms; | |
141 | < | |
141 | > | |
142 | moving = new int[nAtoms]; | |
143 | < | moved = new int[nAtoms]; |
143 | > | moved = new int[nAtoms]; |
144 | ||
145 | < | oldPos = new double[nAtoms*3]; |
145 | > | oldPos = new double[nAtoms * 3]; |
146 | } | |
147 | < | |
147 | > | |
148 | delete[] temp_con; | |
149 | } | |
150 | ||
151 | ||
152 | < | template<typename T> void Integrator<T>::integrate( void ){ |
152 | > | template<typename T> void Integrator<T>::integrate(void){ |
153 | ||
154 | < | int i, j; // loop counters |
155 | < | |
156 | < | double runTime = info->run_time; |
163 | < | double sampleTime = info->sampleTime; |
164 | < | double statusTime = info->statusTime; |
154 | > | double runTime = info->run_time; |
155 | > | double sampleTime = info->sampleTime; |
156 | > | double statusTime = info->statusTime; |
157 | double thermalTime = info->thermalTime; | |
158 | + | double resetTime = info->resetTime; |
159 | ||
160 | + | |
161 | double currSample; | |
162 | double currThermal; | |
163 | double currStatus; | |
164 | + | double currReset; |
165 | ||
166 | int calcPot, calcStress; | |
172 | – | int isError; |
167 | ||
168 | < | tStats = new Thermo( info ); |
169 | < | statOut = new StatWriter( info ); |
170 | < | dumpOut = new DumpWriter( info ); |
168 | > | tStats = new Thermo(info); |
169 | > | statOut = new StatWriter(info); |
170 | > | dumpOut = new DumpWriter(info); |
171 | ||
172 | atoms = info->atoms; | |
179 | – | DirectionalAtom* dAtom; |
173 | ||
174 | dt = info->dt; | |
175 | dt2 = 0.5 * dt; | |
176 | ||
177 | + | readyCheck(); |
178 | + | |
179 | // initialize the forces before the first step | |
180 | ||
181 | calcForce(1, 1); | |
182 | < | // myFF->doForces(1,1); |
183 | < | |
184 | < | if( info->setTemp ){ |
185 | < | |
186 | < | thermalize(); |
182 | > | |
183 | > | if (nConstrained){ |
184 | > | preMove(); |
185 | > | constrainA(); |
186 | > | calcForce(1, 1); |
187 | > | constrainB(); |
188 | } | |
189 | ||
190 | + | if (info->setTemp){ |
191 | + | thermalize(); |
192 | + | } |
193 | + | |
194 | calcPot = 0; | |
195 | calcStress = 0; | |
196 | < | currSample = sampleTime; |
197 | < | currThermal = thermalTime; |
198 | < | currStatus = statusTime; |
196 | > | currSample = sampleTime + info->getTime(); |
197 | > | currThermal = thermalTime+ info->getTime(); |
198 | > | currStatus = statusTime + info->getTime(); |
199 | > | currReset = resetTime + info->getTime(); |
200 | ||
201 | < | dumpOut->writeDump( info->getTime() ); |
202 | < | statOut->writeStat( info->getTime() ); |
201 | > | dumpOut->writeDump(info->getTime()); |
202 | > | statOut->writeStat(info->getTime()); |
203 | ||
203 | – | readyCheck(); |
204 | ||
205 | #ifdef IS_MPI | |
206 | < | strcpy( checkPointMsg, |
207 | < | "The integrator is ready to go." ); |
206 | > | strcpy(checkPointMsg, "The integrator is ready to go."); |
207 | MPIcheckPoint(); | |
208 | #endif // is_mpi | |
209 | ||
210 | < | while( info->getTime() < runTime ){ |
211 | < | |
213 | < | if( (info->getTime()+dt) >= currStatus ){ |
210 | > | while (info->getTime() < runTime){ |
211 | > | if ((info->getTime() + dt) >= currStatus){ |
212 | calcPot = 1; | |
213 | calcStress = 1; | |
214 | } | |
215 | ||
216 | < | integrateStep( calcPot, calcStress ); |
217 | < | |
216 | > | #ifdef PROFILE |
217 | > | startProfile( pro1 ); |
218 | > | #endif |
219 | > | |
220 | > | integrateStep(calcPot, calcStress); |
221 | > | |
222 | > | #ifdef PROFILE |
223 | > | endProfile( pro1 ); |
224 | > | |
225 | > | startProfile( pro2 ); |
226 | > | #endif // profile |
227 | > | |
228 | info->incrTime(dt); | |
229 | ||
230 | < | if( info->setTemp ){ |
231 | < | if( info->getTime() >= currThermal ){ |
232 | < | thermalize(); |
233 | < | currThermal += thermalTime; |
230 | > | if (info->setTemp){ |
231 | > | if (info->getTime() >= currThermal){ |
232 | > | thermalize(); |
233 | > | currThermal += thermalTime; |
234 | } | |
235 | } | |
236 | ||
237 | < | if( info->getTime() >= currSample ){ |
238 | < | dumpOut->writeDump( info->getTime() ); |
237 | > | if (info->getTime() >= currSample){ |
238 | > | dumpOut->writeDump(info->getTime()); |
239 | currSample += sampleTime; | |
240 | } | |
241 | ||
242 | < | if( info->getTime() >= currStatus ){ |
243 | < | statOut->writeStat( info->getTime() ); |
244 | < | calcPot = 0; |
242 | > | if (info->getTime() >= currStatus){ |
243 | > | statOut->writeStat(info->getTime()); |
244 | > | calcPot = 0; |
245 | calcStress = 0; | |
246 | currStatus += statusTime; | |
247 | < | } |
247 | > | } |
248 | ||
249 | + | if (info->resetIntegrator){ |
250 | + | if (info->getTime() >= currReset){ |
251 | + | this->resetIntegrator(); |
252 | + | currReset += resetTime; |
253 | + | } |
254 | + | } |
255 | + | |
256 | + | #ifdef PROFILE |
257 | + | endProfile( pro2 ); |
258 | + | #endif //profile |
259 | + | |
260 | #ifdef IS_MPI | |
261 | < | strcpy( checkPointMsg, |
243 | < | "successfully took a time step." ); |
261 | > | strcpy(checkPointMsg, "successfully took a time step."); |
262 | MPIcheckPoint(); | |
263 | #endif // is_mpi | |
246 | – | |
264 | } | |
265 | ||
249 | – | dumpOut->writeFinal(info->getTime()); |
266 | ||
267 | + | // write the last frame |
268 | + | dumpOut->writeDump(info->getTime()); |
269 | + | |
270 | delete dumpOut; | |
271 | delete statOut; | |
272 | } | |
273 | ||
274 | < | template<typename T> void Integrator<T>::integrateStep( int calcPot, int calcStress ){ |
275 | < | |
257 | < | |
258 | < | |
274 | > | template<typename T> void Integrator<T>::integrateStep(int calcPot, |
275 | > | int calcStress){ |
276 | // Position full step, and velocity half step | |
277 | ||
278 | + | #ifdef PROFILE |
279 | + | startProfile(pro3); |
280 | + | #endif //profile |
281 | + | |
282 | preMove(); | |
283 | + | |
284 | + | #ifdef PROFILE |
285 | + | endProfile(pro3); |
286 | + | |
287 | + | startProfile(pro4); |
288 | + | #endif // profile |
289 | + | |
290 | moveA(); | |
263 | – | if( nConstrained ) constrainA(); |
291 | ||
292 | + | #ifdef PROFILE |
293 | + | endProfile(pro4); |
294 | ||
295 | + | startProfile(pro5); |
296 | + | #endif//profile |
297 | + | |
298 | + | |
299 | #ifdef IS_MPI | |
300 | < | strcpy( checkPointMsg, "Succesful moveA\n" ); |
300 | > | strcpy(checkPointMsg, "Succesful moveA\n"); |
301 | MPIcheckPoint(); | |
302 | #endif // is_mpi | |
270 | – | |
303 | ||
304 | + | |
305 | // calc forces | |
306 | ||
307 | < | calcForce(calcPot,calcStress); |
307 | > | calcForce(calcPot, calcStress); |
308 | ||
309 | #ifdef IS_MPI | |
310 | < | strcpy( checkPointMsg, "Succesful doForces\n" ); |
310 | > | strcpy(checkPointMsg, "Succesful doForces\n"); |
311 | MPIcheckPoint(); | |
312 | #endif // is_mpi | |
280 | – | |
313 | ||
314 | + | #ifdef PROFILE |
315 | + | endProfile( pro5 ); |
316 | + | |
317 | + | startProfile( pro6 ); |
318 | + | #endif //profile |
319 | + | |
320 | // finish the velocity half step | |
321 | < | |
321 | > | |
322 | moveB(); | |
323 | < | if( nConstrained ) constrainB(); |
324 | < | |
323 | > | |
324 | > | #ifdef PROFILE |
325 | > | endProfile(pro6); |
326 | > | #endif // profile |
327 | > | |
328 | #ifdef IS_MPI | |
329 | < | strcpy( checkPointMsg, "Succesful moveB\n" ); |
329 | > | strcpy(checkPointMsg, "Succesful moveB\n"); |
330 | MPIcheckPoint(); | |
331 | #endif // is_mpi | |
291 | – | |
292 | – | |
332 | } | |
333 | ||
334 | ||
335 | < | template<typename T> void Integrator<T>::moveA( void ){ |
297 | < | |
335 | > | template<typename T> void Integrator<T>::moveA(void){ |
336 | int i, j; | |
337 | DirectionalAtom* dAtom; | |
338 | double Tb[3], ji[3]; | |
301 | – | double A[3][3], I[3][3]; |
302 | – | double angle; |
339 | double vel[3], pos[3], frc[3]; | |
340 | double mass; | |
341 | ||
342 | < | for( i=0; i<nAtoms; i++ ){ |
342 | > | for (i = 0; i < nAtoms; i++){ |
343 | > | atoms[i]->getVel(vel); |
344 | > | atoms[i]->getPos(pos); |
345 | > | atoms[i]->getFrc(frc); |
346 | ||
308 | – | atoms[i]->getVel( vel ); |
309 | – | atoms[i]->getPos( pos ); |
310 | – | atoms[i]->getFrc( frc ); |
311 | – | |
347 | mass = atoms[i]->getMass(); | |
348 | ||
349 | < | for (j=0; j < 3; j++) { |
349 | > | for (j = 0; j < 3; j++){ |
350 | // velocity half step | |
351 | < | vel[j] += ( dt2 * frc[j] / mass ) * eConvert; |
351 | > | vel[j] += (dt2 * frc[j] / mass) * eConvert; |
352 | // position whole step | |
353 | pos[j] += dt * vel[j]; | |
354 | } | |
355 | ||
356 | < | atoms[i]->setVel( vel ); |
357 | < | atoms[i]->setPos( pos ); |
356 | > | atoms[i]->setVel(vel); |
357 | > | atoms[i]->setPos(pos); |
358 | ||
359 | < | if( atoms[i]->isDirectional() ){ |
359 | > | if (atoms[i]->isDirectional()){ |
360 | > | dAtom = (DirectionalAtom *) atoms[i]; |
361 | ||
326 | – | dAtom = (DirectionalAtom *)atoms[i]; |
327 | – | |
362 | // get and convert the torque to body frame | |
329 | – | |
330 | – | dAtom->getTrq( Tb ); |
331 | – | dAtom->lab2Body( Tb ); |
363 | ||
364 | + | dAtom->getTrq(Tb); |
365 | + | dAtom->lab2Body(Tb); |
366 | + | |
367 | // get the angular momentum, and propagate a half step | |
368 | ||
369 | < | dAtom->getJ( ji ); |
369 | > | dAtom->getJ(ji); |
370 | ||
371 | < | for (j=0; j < 3; j++) |
371 | > | for (j = 0; j < 3; j++) |
372 | ji[j] += (dt2 * Tb[j]) * eConvert; | |
339 | – | |
340 | – | // use the angular velocities to propagate the rotation matrix a |
341 | – | // full time step |
373 | ||
374 | < | dAtom->getA(A); |
344 | < | dAtom->getI(I); |
345 | < | |
346 | < | // rotate about the x-axis |
347 | < | angle = dt2 * ji[0] / I[0][0]; |
348 | < | this->rotate( 1, 2, angle, ji, A ); |
374 | > | this->rotationPropagation( dAtom, ji ); |
375 | ||
376 | < | // rotate about the y-axis |
377 | < | angle = dt2 * ji[1] / I[1][1]; |
378 | < | this->rotate( 2, 0, angle, ji, A ); |
353 | < | |
354 | < | // rotate about the z-axis |
355 | < | angle = dt * ji[2] / I[2][2]; |
356 | < | this->rotate( 0, 1, angle, ji, A); |
357 | < | |
358 | < | // rotate about the y-axis |
359 | < | angle = dt2 * ji[1] / I[1][1]; |
360 | < | this->rotate( 2, 0, angle, ji, A ); |
361 | < | |
362 | < | // rotate about the x-axis |
363 | < | angle = dt2 * ji[0] / I[0][0]; |
364 | < | this->rotate( 1, 2, angle, ji, A ); |
365 | < | |
376 | > | dAtom->setJ(ji); |
377 | > | } |
378 | > | } |
379 | ||
380 | < | dAtom->setJ( ji ); |
381 | < | dAtom->setA( A ); |
369 | < | |
370 | < | } |
380 | > | if (nConstrained){ |
381 | > | constrainA(); |
382 | } | |
383 | } | |
384 | ||
385 | ||
386 | < | template<typename T> void Integrator<T>::moveB( void ){ |
386 | > | template<typename T> void Integrator<T>::moveB(void){ |
387 | int i, j; | |
388 | DirectionalAtom* dAtom; | |
389 | double Tb[3], ji[3]; | |
390 | double vel[3], frc[3]; | |
391 | double mass; | |
392 | ||
393 | < | for( i=0; i<nAtoms; i++ ){ |
394 | < | |
395 | < | atoms[i]->getVel( vel ); |
385 | < | atoms[i]->getFrc( frc ); |
393 | > | for (i = 0; i < nAtoms; i++){ |
394 | > | atoms[i]->getVel(vel); |
395 | > | atoms[i]->getFrc(frc); |
396 | ||
397 | mass = atoms[i]->getMass(); | |
398 | ||
399 | // velocity half step | |
400 | < | for (j=0; j < 3; j++) |
401 | < | vel[j] += ( dt2 * frc[j] / mass ) * eConvert; |
392 | < | |
393 | < | atoms[i]->setVel( vel ); |
394 | < | |
395 | < | if( atoms[i]->isDirectional() ){ |
400 | > | for (j = 0; j < 3; j++) |
401 | > | vel[j] += (dt2 * frc[j] / mass) * eConvert; |
402 | ||
403 | < | dAtom = (DirectionalAtom *)atoms[i]; |
403 | > | atoms[i]->setVel(vel); |
404 | ||
405 | < | // get and convert the torque to body frame |
405 | > | if (atoms[i]->isDirectional()){ |
406 | > | dAtom = (DirectionalAtom *) atoms[i]; |
407 | ||
408 | < | dAtom->getTrq( Tb ); |
402 | < | dAtom->lab2Body( Tb ); |
408 | > | // get and convert the torque to body frame |
409 | ||
410 | + | dAtom->getTrq(Tb); |
411 | + | dAtom->lab2Body(Tb); |
412 | + | |
413 | // get the angular momentum, and propagate a half step | |
414 | ||
415 | < | dAtom->getJ( ji ); |
415 | > | dAtom->getJ(ji); |
416 | ||
417 | < | for (j=0; j < 3; j++) |
417 | > | for (j = 0; j < 3; j++) |
418 | ji[j] += (dt2 * Tb[j]) * eConvert; | |
410 | – | |
419 | ||
420 | < | dAtom->setJ( ji ); |
420 | > | |
421 | > | dAtom->setJ(ji); |
422 | } | |
423 | } | |
424 | + | |
425 | + | if (nConstrained){ |
426 | + | constrainB(); |
427 | + | } |
428 | } | |
429 | ||
430 | < | template<typename T> void Integrator<T>::preMove( void ){ |
430 | > | template<typename T> void Integrator<T>::preMove(void){ |
431 | int i, j; | |
432 | double pos[3]; | |
433 | ||
434 | < | if( nConstrained ){ |
434 | > | if (nConstrained){ |
435 | > | for (i = 0; i < nAtoms; i++){ |
436 | > | atoms[i]->getPos(pos); |
437 | ||
438 | < | for(i=0; i < nAtoms; i++) { |
439 | < | |
425 | < | atoms[i]->getPos( pos ); |
426 | < | |
427 | < | for (j = 0; j < 3; j++) { |
428 | < | oldPos[3*i + j] = pos[j]; |
438 | > | for (j = 0; j < 3; j++){ |
439 | > | oldPos[3 * i + j] = pos[j]; |
440 | } | |
430 | – | |
441 | } | |
442 | < | } |
442 | > | } |
443 | } | |
444 | ||
445 | template<typename T> void Integrator<T>::constrainA(){ | |
446 | < | |
437 | < | int i,j,k; |
446 | > | int i, j; |
447 | int done; | |
448 | double posA[3], posB[3]; | |
449 | double velA[3], velB[3]; | |
# | Line 449 | Line 458 | template<typename T> void Integrator<T>::constrainA(){ | |
458 | double gab; | |
459 | int iteration; | |
460 | ||
461 | < | for( i=0; i<nAtoms; i++){ |
461 | > | for (i = 0; i < nAtoms; i++){ |
462 | moving[i] = 0; | |
463 | < | moved[i] = 1; |
463 | > | moved[i] = 1; |
464 | } | |
465 | ||
466 | iteration = 0; | |
467 | done = 0; | |
468 | < | while( !done && (iteration < maxIteration )){ |
460 | < | |
468 | > | while (!done && (iteration < maxIteration)){ |
469 | done = 1; | |
470 | < | for(i=0; i<nConstrained; i++){ |
463 | < | |
470 | > | for (i = 0; i < nConstrained; i++){ |
471 | a = constrainedA[i]; | |
472 | b = constrainedB[i]; | |
466 | – | |
467 | – | ax = (a*3) + 0; |
468 | – | ay = (a*3) + 1; |
469 | – | az = (a*3) + 2; |
473 | ||
474 | < | bx = (b*3) + 0; |
475 | < | by = (b*3) + 1; |
476 | < | bz = (b*3) + 2; |
474 | > | ax = (a * 3) + 0; |
475 | > | ay = (a * 3) + 1; |
476 | > | az = (a * 3) + 2; |
477 | ||
478 | < | if( moved[a] || moved[b] ){ |
479 | < | |
480 | < | atoms[a]->getPos( posA ); |
481 | < | atoms[b]->getPos( posB ); |
482 | < | |
483 | < | for (j = 0; j < 3; j++ ) |
478 | > | bx = (b * 3) + 0; |
479 | > | by = (b * 3) + 1; |
480 | > | bz = (b * 3) + 2; |
481 | > | |
482 | > | if (moved[a] || moved[b]){ |
483 | > | atoms[a]->getPos(posA); |
484 | > | atoms[b]->getPos(posB); |
485 | > | |
486 | > | for (j = 0; j < 3; j++) |
487 | pab[j] = posA[j] - posB[j]; | |
482 | – | |
483 | – | //periodic boundary condition |
488 | ||
489 | < | info->wrapVector( pab ); |
489 | > | //periodic boundary condition |
490 | ||
491 | < | pabsq = pab[0] * pab[0] + pab[1] * pab[1] + pab[2] * pab[2]; |
491 | > | info->wrapVector(pab); |
492 | ||
493 | < | rabsq = constrainedDsqr[i]; |
490 | < | diffsq = rabsq - pabsq; |
493 | > | pabsq = pab[0] * pab[0] + pab[1] * pab[1] + pab[2] * pab[2]; |
494 | ||
495 | < | // the original rattle code from alan tidesley |
496 | < | if (fabs(diffsq) > (tol*rabsq*2)) { |
494 | < | rab[0] = oldPos[ax] - oldPos[bx]; |
495 | < | rab[1] = oldPos[ay] - oldPos[by]; |
496 | < | rab[2] = oldPos[az] - oldPos[bz]; |
495 | > | rabsq = constrainedDsqr[i]; |
496 | > | diffsq = rabsq - pabsq; |
497 | ||
498 | < | info->wrapVector( rab ); |
498 | > | // the original rattle code from alan tidesley |
499 | > | if (fabs(diffsq) > (tol * rabsq * 2)){ |
500 | > | rab[0] = oldPos[ax] - oldPos[bx]; |
501 | > | rab[1] = oldPos[ay] - oldPos[by]; |
502 | > | rab[2] = oldPos[az] - oldPos[bz]; |
503 | ||
504 | < | rpab = rab[0] * pab[0] + rab[1] * pab[1] + rab[2] * pab[2]; |
504 | > | info->wrapVector(rab); |
505 | ||
506 | < | rpabsq = rpab * rpab; |
506 | > | rpab = rab[0] * pab[0] + rab[1] * pab[1] + rab[2] * pab[2]; |
507 | ||
508 | + | rpabsq = rpab * rpab; |
509 | ||
505 | – | if (rpabsq < (rabsq * -diffsq)){ |
510 | ||
511 | + | if (rpabsq < (rabsq * -diffsq)){ |
512 | #ifdef IS_MPI | |
513 | < | a = atoms[a]->getGlobalIndex(); |
514 | < | b = atoms[b]->getGlobalIndex(); |
513 | > | a = atoms[a]->getGlobalIndex(); |
514 | > | b = atoms[b]->getGlobalIndex(); |
515 | #endif //is_mpi | |
516 | < | sprintf( painCave.errMsg, |
517 | < | "Constraint failure in constrainA at atom %d and %d.\n", |
518 | < | a, b ); |
519 | < | painCave.isFatal = 1; |
520 | < | simError(); |
521 | < | } |
516 | > | sprintf(painCave.errMsg, |
517 | > | "Constraint failure in constrainA at atom %d and %d.\n", a, |
518 | > | b); |
519 | > | painCave.isFatal = 1; |
520 | > | simError(); |
521 | > | } |
522 | ||
523 | < | rma = 1.0 / atoms[a]->getMass(); |
524 | < | rmb = 1.0 / atoms[b]->getMass(); |
523 | > | rma = 1.0 / atoms[a]->getMass(); |
524 | > | rmb = 1.0 / atoms[b]->getMass(); |
525 | ||
526 | < | gab = diffsq / ( 2.0 * ( rma + rmb ) * rpab ); |
526 | > | gab = diffsq / (2.0 * (rma + rmb) * rpab); |
527 | ||
528 | dx = rab[0] * gab; | |
529 | dy = rab[1] * gab; | |
530 | dz = rab[2] * gab; | |
531 | ||
532 | < | posA[0] += rma * dx; |
533 | < | posA[1] += rma * dy; |
534 | < | posA[2] += rma * dz; |
532 | > | posA[0] += rma * dx; |
533 | > | posA[1] += rma * dy; |
534 | > | posA[2] += rma * dz; |
535 | ||
536 | < | atoms[a]->setPos( posA ); |
536 | > | atoms[a]->setPos(posA); |
537 | ||
538 | < | posB[0] -= rmb * dx; |
539 | < | posB[1] -= rmb * dy; |
540 | < | posB[2] -= rmb * dz; |
538 | > | posB[0] -= rmb * dx; |
539 | > | posB[1] -= rmb * dy; |
540 | > | posB[2] -= rmb * dz; |
541 | ||
542 | < | atoms[b]->setPos( posB ); |
542 | > | atoms[b]->setPos(posB); |
543 | ||
544 | dx = dx / dt; | |
545 | dy = dy / dt; | |
546 | dz = dz / dt; | |
547 | ||
548 | < | atoms[a]->getVel( velA ); |
548 | > | atoms[a]->getVel(velA); |
549 | ||
550 | < | velA[0] += rma * dx; |
551 | < | velA[1] += rma * dy; |
552 | < | velA[2] += rma * dz; |
550 | > | velA[0] += rma * dx; |
551 | > | velA[1] += rma * dy; |
552 | > | velA[2] += rma * dz; |
553 | ||
554 | < | atoms[a]->setVel( velA ); |
554 | > | atoms[a]->setVel(velA); |
555 | ||
556 | < | atoms[b]->getVel( velB ); |
556 | > | atoms[b]->getVel(velB); |
557 | ||
558 | < | velB[0] -= rmb * dx; |
559 | < | velB[1] -= rmb * dy; |
560 | < | velB[2] -= rmb * dz; |
558 | > | velB[0] -= rmb * dx; |
559 | > | velB[1] -= rmb * dy; |
560 | > | velB[2] -= rmb * dz; |
561 | ||
562 | < | atoms[b]->setVel( velB ); |
562 | > | atoms[b]->setVel(velB); |
563 | ||
564 | < | moving[a] = 1; |
565 | < | moving[b] = 1; |
566 | < | done = 0; |
567 | < | } |
564 | > | moving[a] = 1; |
565 | > | moving[b] = 1; |
566 | > | done = 0; |
567 | > | } |
568 | } | |
569 | } | |
570 | < | |
571 | < | for(i=0; i<nAtoms; i++){ |
567 | < | |
570 | > | |
571 | > | for (i = 0; i < nAtoms; i++){ |
572 | moved[i] = moving[i]; | |
573 | moving[i] = 0; | |
574 | } | |
# | Line 572 | Line 576 | template<typename T> void Integrator<T>::constrainA(){ | |
576 | iteration++; | |
577 | } | |
578 | ||
579 | < | if( !done ){ |
580 | < | |
581 | < | sprintf( painCave.errMsg, |
582 | < | "Constraint failure in constrainA, too many iterations: %d\n", |
579 | < | iteration ); |
579 | > | if (!done){ |
580 | > | sprintf(painCave.errMsg, |
581 | > | "Constraint failure in constrainA, too many iterations: %d\n", |
582 | > | iteration); |
583 | painCave.isFatal = 1; | |
584 | simError(); | |
585 | } | |
586 | ||
587 | } | |
588 | ||
589 | < | template<typename T> void Integrator<T>::constrainB( void ){ |
590 | < | |
588 | < | int i,j,k; |
589 | > | template<typename T> void Integrator<T>::constrainB(void){ |
590 | > | int i, j; |
591 | int done; | |
592 | double posA[3], posB[3]; | |
593 | double velA[3], velB[3]; | |
# | Line 594 | Line 596 | template<typename T> void Integrator<T>::constrainB( v | |
596 | int a, b, ax, ay, az, bx, by, bz; | |
597 | double rma, rmb; | |
598 | double dx, dy, dz; | |
599 | < | double rabsq, pabsq, rvab; |
598 | < | double diffsq; |
599 | > | double rvab; |
600 | double gab; | |
601 | int iteration; | |
602 | ||
603 | < | for(i=0; i<nAtoms; i++){ |
603 | > | for (i = 0; i < nAtoms; i++){ |
604 | moving[i] = 0; | |
605 | moved[i] = 1; | |
606 | } | |
607 | ||
608 | done = 0; | |
609 | iteration = 0; | |
610 | < | while( !done && (iteration < maxIteration ) ){ |
610 | < | |
610 | > | while (!done && (iteration < maxIteration)){ |
611 | done = 1; | |
612 | ||
613 | < | for(i=0; i<nConstrained; i++){ |
614 | < | |
613 | > | for (i = 0; i < nConstrained; i++){ |
614 | a = constrainedA[i]; | |
615 | b = constrainedB[i]; | |
616 | ||
617 | < | ax = (a*3) + 0; |
618 | < | ay = (a*3) + 1; |
619 | < | az = (a*3) + 2; |
617 | > | ax = (a * 3) + 0; |
618 | > | ay = (a * 3) + 1; |
619 | > | az = (a * 3) + 2; |
620 | ||
621 | < | bx = (b*3) + 0; |
622 | < | by = (b*3) + 1; |
623 | < | bz = (b*3) + 2; |
621 | > | bx = (b * 3) + 0; |
622 | > | by = (b * 3) + 1; |
623 | > | bz = (b * 3) + 2; |
624 | ||
625 | < | if( moved[a] || moved[b] ){ |
625 | > | if (moved[a] || moved[b]){ |
626 | > | atoms[a]->getVel(velA); |
627 | > | atoms[b]->getVel(velB); |
628 | ||
629 | < | atoms[a]->getVel( velA ); |
630 | < | atoms[b]->getVel( velB ); |
631 | < | |
631 | < | vxab = velA[0] - velB[0]; |
632 | < | vyab = velA[1] - velB[1]; |
633 | < | vzab = velA[2] - velB[2]; |
629 | > | vxab = velA[0] - velB[0]; |
630 | > | vyab = velA[1] - velB[1]; |
631 | > | vzab = velA[2] - velB[2]; |
632 | ||
633 | < | atoms[a]->getPos( posA ); |
634 | < | atoms[b]->getPos( posB ); |
633 | > | atoms[a]->getPos(posA); |
634 | > | atoms[b]->getPos(posB); |
635 | ||
636 | < | for (j = 0; j < 3; j++) |
636 | > | for (j = 0; j < 3; j++) |
637 | rab[j] = posA[j] - posB[j]; | |
640 | – | |
641 | – | info->wrapVector( rab ); |
642 | – | |
643 | – | rma = 1.0 / atoms[a]->getMass(); |
644 | – | rmb = 1.0 / atoms[b]->getMass(); |
638 | ||
639 | < | rvab = rab[0] * vxab + rab[1] * vyab + rab[2] * vzab; |
647 | < | |
648 | < | gab = -rvab / ( ( rma + rmb ) * constrainedDsqr[i] ); |
639 | > | info->wrapVector(rab); |
640 | ||
641 | < | if (fabs(gab) > tol) { |
642 | < | |
652 | < | dx = rab[0] * gab; |
653 | < | dy = rab[1] * gab; |
654 | < | dz = rab[2] * gab; |
655 | < | |
656 | < | velA[0] += rma * dx; |
657 | < | velA[1] += rma * dy; |
658 | < | velA[2] += rma * dz; |
641 | > | rma = 1.0 / atoms[a]->getMass(); |
642 | > | rmb = 1.0 / atoms[b]->getMass(); |
643 | ||
644 | < | atoms[a]->setVel( velA ); |
644 | > | rvab = rab[0] * vxab + rab[1] * vyab + rab[2] * vzab; |
645 | ||
646 | < | velB[0] -= rmb * dx; |
663 | < | velB[1] -= rmb * dy; |
664 | < | velB[2] -= rmb * dz; |
646 | > | gab = -rvab / ((rma + rmb) * constrainedDsqr[i]); |
647 | ||
648 | < | atoms[b]->setVel( velB ); |
649 | < | |
650 | < | moving[a] = 1; |
651 | < | moving[b] = 1; |
652 | < | done = 0; |
653 | < | } |
648 | > | if (fabs(gab) > tol){ |
649 | > | dx = rab[0] * gab; |
650 | > | dy = rab[1] * gab; |
651 | > | dz = rab[2] * gab; |
652 | > | |
653 | > | velA[0] += rma * dx; |
654 | > | velA[1] += rma * dy; |
655 | > | velA[2] += rma * dz; |
656 | > | |
657 | > | atoms[a]->setVel(velA); |
658 | > | |
659 | > | velB[0] -= rmb * dx; |
660 | > | velB[1] -= rmb * dy; |
661 | > | velB[2] -= rmb * dz; |
662 | > | |
663 | > | atoms[b]->setVel(velB); |
664 | > | |
665 | > | moving[a] = 1; |
666 | > | moving[b] = 1; |
667 | > | done = 0; |
668 | > | } |
669 | } | |
670 | } | |
671 | ||
672 | < | for(i=0; i<nAtoms; i++){ |
672 | > | for (i = 0; i < nAtoms; i++){ |
673 | moved[i] = moving[i]; | |
674 | moving[i] = 0; | |
675 | } | |
676 | < | |
676 | > | |
677 | iteration++; | |
678 | } | |
682 | – | |
683 | – | if( !done ){ |
679 | ||
680 | < | |
681 | < | sprintf( painCave.errMsg, |
682 | < | "Constraint failure in constrainB, too many iterations: %d\n", |
683 | < | iteration ); |
680 | > | if (!done){ |
681 | > | sprintf(painCave.errMsg, |
682 | > | "Constraint failure in constrainB, too many iterations: %d\n", |
683 | > | iteration); |
684 | painCave.isFatal = 1; | |
685 | simError(); | |
686 | < | } |
692 | < | |
686 | > | } |
687 | } | |
688 | ||
689 | < | template<typename T> void Integrator<T>::rotate( int axes1, int axes2, double angle, double ji[3], |
690 | < | double A[3][3] ){ |
689 | > | template<typename T> void Integrator<T>::rotationPropagation |
690 | > | ( DirectionalAtom* dAtom, double ji[3] ){ |
691 | ||
692 | < | int i,j,k; |
692 | > | double angle; |
693 | > | double A[3][3], I[3][3]; |
694 | > | |
695 | > | // use the angular velocities to propagate the rotation matrix a |
696 | > | // full time step |
697 | > | |
698 | > | dAtom->getA(A); |
699 | > | dAtom->getI(I); |
700 | > | |
701 | > | // rotate about the x-axis |
702 | > | angle = dt2 * ji[0] / I[0][0]; |
703 | > | this->rotate( 1, 2, angle, ji, A ); |
704 | > | |
705 | > | // rotate about the y-axis |
706 | > | angle = dt2 * ji[1] / I[1][1]; |
707 | > | this->rotate( 2, 0, angle, ji, A ); |
708 | > | |
709 | > | // rotate about the z-axis |
710 | > | angle = dt * ji[2] / I[2][2]; |
711 | > | this->rotate( 0, 1, angle, ji, A); |
712 | > | |
713 | > | // rotate about the y-axis |
714 | > | angle = dt2 * ji[1] / I[1][1]; |
715 | > | this->rotate( 2, 0, angle, ji, A ); |
716 | > | |
717 | > | // rotate about the x-axis |
718 | > | angle = dt2 * ji[0] / I[0][0]; |
719 | > | this->rotate( 1, 2, angle, ji, A ); |
720 | > | |
721 | > | dAtom->setA( A ); |
722 | > | } |
723 | > | |
724 | > | template<typename T> void Integrator<T>::rotate(int axes1, int axes2, |
725 | > | double angle, double ji[3], |
726 | > | double A[3][3]){ |
727 | > | int i, j, k; |
728 | double sinAngle; | |
729 | double cosAngle; | |
730 | double angleSqr; | |
# | Line 707 | Line 736 | template<typename T> void Integrator<T>::rotate( int a | |
736 | ||
737 | // initialize the tempA | |
738 | ||
739 | < | for(i=0; i<3; i++){ |
740 | < | for(j=0; j<3; j++){ |
739 | > | for (i = 0; i < 3; i++){ |
740 | > | for (j = 0; j < 3; j++){ |
741 | tempA[j][i] = A[i][j]; | |
742 | } | |
743 | } | |
744 | ||
745 | // initialize the tempJ | |
746 | ||
747 | < | for( i=0; i<3; i++) tempJ[i] = ji[i]; |
748 | < | |
747 | > | for (i = 0; i < 3; i++) |
748 | > | tempJ[i] = ji[i]; |
749 | > | |
750 | // initalize rot as a unit matrix | |
751 | ||
752 | rot[0][0] = 1.0; | |
# | Line 726 | Line 756 | template<typename T> void Integrator<T>::rotate( int a | |
756 | rot[1][0] = 0.0; | |
757 | rot[1][1] = 1.0; | |
758 | rot[1][2] = 0.0; | |
759 | < | |
759 | > | |
760 | rot[2][0] = 0.0; | |
761 | rot[2][1] = 0.0; | |
762 | rot[2][2] = 1.0; | |
763 | < | |
763 | > | |
764 | // use a small angle aproximation for sin and cosine | |
765 | ||
766 | < | angleSqr = angle * angle; |
766 | > | angleSqr = angle * angle; |
767 | angleSqrOver4 = angleSqr / 4.0; | |
768 | top = 1.0 - angleSqrOver4; | |
769 | bottom = 1.0 + angleSqrOver4; | |
# | Line 746 | Line 776 | template<typename T> void Integrator<T>::rotate( int a | |
776 | ||
777 | rot[axes1][axes2] = sinAngle; | |
778 | rot[axes2][axes1] = -sinAngle; | |
779 | < | |
779 | > | |
780 | // rotate the momentum acoording to: ji[] = rot[][] * ji[] | |
781 | < | |
782 | < | for(i=0; i<3; i++){ |
781 | > | |
782 | > | for (i = 0; i < 3; i++){ |
783 | ji[i] = 0.0; | |
784 | < | for(k=0; k<3; k++){ |
784 | > | for (k = 0; k < 3; k++){ |
785 | ji[i] += rot[i][k] * tempJ[k]; | |
786 | } | |
787 | } | |
788 | ||
789 | < | // rotate the Rotation matrix acording to: |
789 | > | // rotate the Rotation matrix acording to: |
790 | // A[][] = A[][] * transpose(rot[][]) | |
791 | ||
792 | ||
# | Line 764 | Line 794 | template<typename T> void Integrator<T>::rotate( int a | |
794 | // calculation as: | |
795 | // transpose(A[][]) = transpose(A[][]) * transpose(rot[][]) | |
796 | ||
797 | < | for(i=0; i<3; i++){ |
798 | < | for(j=0; j<3; j++){ |
797 | > | for (i = 0; i < 3; i++){ |
798 | > | for (j = 0; j < 3; j++){ |
799 | A[j][i] = 0.0; | |
800 | < | for(k=0; k<3; k++){ |
801 | < | A[j][i] += tempA[i][k] * rot[j][k]; |
800 | > | for (k = 0; k < 3; k++){ |
801 | > | A[j][i] += tempA[i][k] * rot[j][k]; |
802 | } | |
803 | } | |
804 | } | |
805 | } | |
806 | ||
807 | < | template<typename T> void Integrator<T>::calcForce( int calcPot, int calcStress ){ |
808 | < | myFF->doForces(calcPot,calcStress); |
779 | < | |
807 | > | template<typename T> void Integrator<T>::calcForce(int calcPot, int calcStress){ |
808 | > | myFF->doForces(calcPot, calcStress); |
809 | } | |
810 | ||
811 | template<typename T> void Integrator<T>::thermalize(){ | |
812 | < | tStats->velocitize(); |
812 | > | tStats->velocitize(); |
813 | } | |
814 | + | |
815 | + | template<typename T> double Integrator<T>::getConservedQuantity(void){ |
816 | + | return tStats->getTotalE(); |
817 | + | } |
818 | + | template<typename T> string Integrator<T>::getAdditionalParameters(void){ |
819 | + | //By default, return a null string |
820 | + | //The reason we use string instead of char* is that if we use char*, we will |
821 | + | //return a pointer point to local variable which might cause problem |
822 | + | return string(); |
823 | + | } |
– | Removed lines |
+ | Added lines |
< | Changed lines |
> | Changed lines |