# | Line 1 | Line 1 | |
---|---|---|
1 | #include <iostream> | |
2 | #include <cstdlib> | |
3 | + | #include <cmath> |
4 | ||
5 | #ifdef IS_MPI | |
6 | #include "mpiSimulation.hpp" | |
# | Line 10 | Line 11 | |
11 | #include "simError.h" | |
12 | ||
13 | ||
14 | < | Integrator::Integrator( SimInfo* theInfo, ForceFields* the_ff ){ |
14 | > | Integrator::Integrator( SimInfo *theInfo, ForceFields* the_ff ){ |
15 | ||
16 | info = theInfo; | |
17 | myFF = the_ff; | |
# | Line 26 | Line 27 | Integrator::Integrator( SimInfo* theInfo, ForceFields* | |
27 | ||
28 | nAtoms = info->n_atoms; | |
29 | ||
30 | + | std::cerr << "integ nAtoms = " << nAtoms << "\n"; |
31 | + | |
32 | // check for constraints | |
33 | ||
34 | constrainedA = NULL; | |
# | Line 33 | Line 36 | Integrator::Integrator( SimInfo* theInfo, ForceFields* | |
36 | constrainedDsqr = NULL; | |
37 | moving = NULL; | |
38 | moved = NULL; | |
39 | < | prePos = NULL; |
39 | > | oldPos = NULL; |
40 | ||
41 | nConstrained = 0; | |
42 | ||
# | Line 48 | Line 51 | Integrator::~Integrator() { | |
51 | delete[] constrainedDsqr; | |
52 | delete[] moving; | |
53 | delete[] moved; | |
54 | < | delete[] prePos; |
52 | < | k |
54 | > | delete[] oldPos; |
55 | } | |
56 | ||
57 | } | |
# | Line 72 | Line 74 | void Integrator::checkConstraints( void ){ | |
74 | for(int j=0; j<molecules[i].getNBonds(); j++){ | |
75 | ||
76 | constrained = theArray[j]->is_constrained(); | |
77 | + | |
78 | + | std::cerr << "Is the folowing bond constrained \n"; |
79 | + | theArray[j]->printMe(); |
80 | ||
81 | if(constrained){ | |
82 | ||
83 | + | std::cerr << "Yes\n"; |
84 | + | |
85 | dummy_plug = theArray[j]->get_constraint(); | |
86 | temp_con[nConstrained].set_a( dummy_plug->get_a() ); | |
87 | temp_con[nConstrained].set_b( dummy_plug->get_b() ); | |
# | Line 82 | Line 89 | void Integrator::checkConstraints( void ){ | |
89 | ||
90 | nConstrained++; | |
91 | constrained = 0; | |
92 | < | } |
92 | > | } |
93 | > | else std::cerr << "No.\n"; |
94 | } | |
95 | ||
96 | theArray = (SRI**) molecules[i].getMyBends(); | |
# | Line 137 | Line 145 | void Integrator::checkConstraints( void ){ | |
145 | constrainedA[i] = temp_con[i].get_a(); | |
146 | constrainedB[i] = temp_con[i].get_b(); | |
147 | constrainedDsqr[i] = temp_con[i].get_dsqr(); | |
148 | + | |
149 | } | |
150 | ||
151 | ||
# | Line 147 | Line 156 | void Integrator::checkConstraints( void ){ | |
156 | moving = new int[nAtoms]; | |
157 | moved = new int[nAtoms]; | |
158 | ||
159 | < | prePos = new double[nAtoms*3]; |
159 | > | oldPos = new double[nAtoms*3]; |
160 | } | |
161 | ||
162 | delete[] temp_con; | |
# | Line 157 | Line 166 | void Integrator::integrate( void ){ | |
166 | void Integrator::integrate( void ){ | |
167 | ||
168 | int i, j; // loop counters | |
160 | – | double kE = 0.0; // the kinetic energy |
161 | – | double rot_kE; |
162 | – | double trans_kE; |
163 | – | int tl; // the time loop conter |
164 | – | double dt2; // half the dt |
169 | ||
166 | – | double vx, vy, vz; // the velocities |
167 | – | double vx2, vy2, vz2; // the square of the velocities |
168 | – | double rx, ry, rz; // the postitions |
169 | – | |
170 | – | double ji[3]; // the body frame angular momentum |
171 | – | double jx2, jy2, jz2; // the square of the angular momentums |
172 | – | double Tb[3]; // torque in the body frame |
173 | – | double angle; // the angle through which to rotate the rotation matrix |
174 | – | double A[3][3]; // the rotation matrix |
175 | – | double press[9]; |
176 | – | |
177 | – | double dt = info->dt; |
170 | double runTime = info->run_time; | |
171 | double sampleTime = info->sampleTime; | |
172 | double statusTime = info->statusTime; | |
# | Line 188 | Line 180 | void Integrator::integrate( void ){ | |
180 | int calcPot, calcStress; | |
181 | int isError; | |
182 | ||
183 | + | |
184 | + | |
185 | tStats = new Thermo( info ); | |
186 | < | e_out = new StatWriter( info ); |
187 | < | dump_out = new DumpWriter( info ); |
186 | > | statOut = new StatWriter( info ); |
187 | > | dumpOut = new DumpWriter( info ); |
188 | ||
189 | < | Atom** atoms = info->atoms; |
189 | > | atoms = info->atoms; |
190 | DirectionalAtom* dAtom; | |
191 | + | |
192 | + | dt = info->dt; |
193 | dt2 = 0.5 * dt; | |
194 | ||
195 | // initialize the forces before the first step | |
# | Line 205 | Line 201 | void Integrator::integrate( void ){ | |
201 | tStats->velocitize(); | |
202 | } | |
203 | ||
204 | < | dump_out->writeDump( 0.0 ); |
205 | < | e_out->writeStat( 0.0 ); |
204 | > | dumpOut->writeDump( 0.0 ); |
205 | > | statOut->writeStat( 0.0 ); |
206 | ||
207 | calcPot = 0; | |
208 | calcStress = 0; | |
# | Line 215 | Line 211 | void Integrator::integrate( void ){ | |
211 | currStatus = statusTime; | |
212 | currTime = 0.0;; | |
213 | ||
214 | + | |
215 | + | readyCheck(); |
216 | + | |
217 | + | #ifdef IS_MPI |
218 | + | strcpy( checkPointMsg, |
219 | + | "The integrator is ready to go." ); |
220 | + | MPIcheckPoint(); |
221 | + | #endif // is_mpi |
222 | + | |
223 | + | |
224 | + | pos = Atom::getPosArray(); |
225 | + | vel = Atom::getVelArray(); |
226 | + | frc = Atom::getFrcArray(); |
227 | + | trq = Atom::getTrqArray(); |
228 | + | Amat = Atom::getAmatArray(); |
229 | + | |
230 | while( currTime < runTime ){ | |
231 | ||
232 | if( (currTime+dt) >= currStatus ){ | |
233 | calcPot = 1; | |
234 | calcStress = 1; | |
235 | } | |
236 | < | |
236 | > | |
237 | > | std::cerr << "calcPot = " << calcPot << "; calcStress = " |
238 | > | << calcStress << "\n"; |
239 | > | |
240 | integrateStep( calcPot, calcStress ); | |
241 | ||
242 | currTime += dt; | |
# | Line 234 | Line 249 | void Integrator::integrate( void ){ | |
249 | } | |
250 | ||
251 | if( currTime >= currSample ){ | |
252 | < | dump_out->writeDump( currTime ); |
252 | > | dumpOut->writeDump( currTime ); |
253 | currSample += sampleTime; | |
254 | } | |
255 | ||
256 | if( currTime >= currStatus ){ | |
257 | < | e_out->writeStat( time * dt ); |
257 | > | statOut->writeStat( currTime ); |
258 | calcPot = 0; | |
259 | calcStress = 0; | |
260 | currStatus += statusTime; | |
261 | } | |
262 | + | |
263 | + | #ifdef IS_MPI |
264 | + | strcpy( checkPointMsg, |
265 | + | "successfully took a time step." ); |
266 | + | MPIcheckPoint(); |
267 | + | #endif // is_mpi |
268 | + | |
269 | } | |
270 | ||
271 | < | dump_out->writeFinal(); |
271 | > | dumpOut->writeFinal(currTime); |
272 | ||
273 | < | delete dump_out; |
274 | < | delete e_out; |
273 | > | delete dumpOut; |
274 | > | delete statOut; |
275 | } | |
276 | ||
277 | void Integrator::integrateStep( int calcPot, int calcStress ){ | |
278 | + | |
279 | ||
280 | + | |
281 | // Position full step, and velocity half step | |
282 | ||
283 | < | //preMove(); |
283 | > | preMove(); |
284 | moveA(); | |
285 | if( nConstrained ) constrainA(); | |
286 | ||
# | Line 279 | Line 303 | void Integrator::moveA( void ){ | |
303 | DirectionalAtom* dAtom; | |
304 | double Tb[3]; | |
305 | double ji[3]; | |
306 | + | double angle; |
307 | + | double A[3][3]; |
308 | ||
309 | + | |
310 | for( i=0; i<nAtoms; i++ ){ | |
311 | atomIndex = i * 3; | |
312 | aMatIndex = i * 9; | |
313 | < | |
313 | > | |
314 | // velocity half step | |
315 | for( j=atomIndex; j<(atomIndex+3); j++ ) | |
316 | vel[j] += ( dt2 * frc[j] / atoms[i]->getMass() ) * eConvert; | |
317 | ||
318 | + | std::cerr<< "MoveA vel[" << i << "] = " |
319 | + | << vel[atomIndex] << "\t" |
320 | + | << vel[atomIndex+1]<< "\t" |
321 | + | << vel[atomIndex+2]<< "\n"; |
322 | + | |
323 | // position whole step | |
324 | < | for( j=atomIndex; j<(atomIndex+3); j++ ) |
325 | < | pos[j] += dt * vel[j]; |
324 | > | for( j=atomIndex; j<(atomIndex+3); j++ ) pos[j] += dt * vel[j]; |
325 | > | |
326 | ||
327 | < | |
327 | > | std::cerr<< "MoveA pos[" << i << "] = " |
328 | > | << pos[atomIndex] << "\t" |
329 | > | << pos[atomIndex+1]<< "\t" |
330 | > | << pos[atomIndex+2]<< "\n"; |
331 | > | |
332 | if( atoms[i]->isDirectional() ){ | |
333 | ||
334 | dAtom = (DirectionalAtom *)atoms[i]; | |
# | Line 314 | Line 350 | void Integrator::moveA( void ){ | |
350 | // use the angular velocities to propagate the rotation matrix a | |
351 | // full time step | |
352 | ||
353 | + | // get the atom's rotation matrix |
354 | + | |
355 | + | A[0][0] = dAtom->getAxx(); |
356 | + | A[0][1] = dAtom->getAxy(); |
357 | + | A[0][2] = dAtom->getAxz(); |
358 | + | |
359 | + | A[1][0] = dAtom->getAyx(); |
360 | + | A[1][1] = dAtom->getAyy(); |
361 | + | A[1][2] = dAtom->getAyz(); |
362 | + | |
363 | + | A[2][0] = dAtom->getAzx(); |
364 | + | A[2][1] = dAtom->getAzy(); |
365 | + | A[2][2] = dAtom->getAzz(); |
366 | + | |
367 | // rotate about the x-axis | |
368 | angle = dt2 * ji[0] / dAtom->getIxx(); | |
369 | < | this->rotate( 1, 2, angle, ji, &aMat[aMatIndex] ); |
369 | > | this->rotate( 1, 2, angle, ji, A ); |
370 | ||
371 | // rotate about the y-axis | |
372 | angle = dt2 * ji[1] / dAtom->getIyy(); | |
373 | < | this->rotate( 2, 0, angle, ji, &aMat[aMatIndex] ); |
373 | > | this->rotate( 2, 0, angle, ji, A ); |
374 | ||
375 | // rotate about the z-axis | |
376 | angle = dt * ji[2] / dAtom->getIzz(); | |
377 | < | this->rotate( 0, 1, angle, ji, &aMat[aMatIndex] ); |
377 | > | this->rotate( 0, 1, angle, ji, A ); |
378 | ||
379 | // rotate about the y-axis | |
380 | angle = dt2 * ji[1] / dAtom->getIyy(); | |
381 | < | this->rotate( 2, 0, angle, ji, &aMat[aMatIndex] ); |
381 | > | this->rotate( 2, 0, angle, ji, A ); |
382 | ||
383 | // rotate about the x-axis | |
384 | angle = dt2 * ji[0] / dAtom->getIxx(); | |
385 | < | this->rotate( 1, 2, angle, ji, &aMat[aMatIndex] ); |
385 | > | this->rotate( 1, 2, angle, ji, A ); |
386 | ||
387 | dAtom->setJx( ji[0] ); | |
388 | dAtom->setJy( ji[1] ); | |
# | Line 357 | Line 407 | void Integrator::moveB( void ){ | |
407 | for( j=atomIndex; j<(atomIndex+3); j++ ) | |
408 | vel[j] += ( dt2 * frc[j] / atoms[i]->getMass() ) * eConvert; | |
409 | ||
410 | + | std::cerr<< "MoveB vel[" << i << "] = " |
411 | + | << vel[atomIndex] << "\t" |
412 | + | << vel[atomIndex+1]<< "\t" |
413 | + | << vel[atomIndex+2]<< "\n"; |
414 | + | |
415 | + | |
416 | if( atoms[i]->isDirectional() ){ | |
417 | ||
418 | dAtom = (DirectionalAtom *)atoms[i]; | |
# | Line 376 | Line 432 | void Integrator::moveB( void ){ | |
432 | ji[1] = dAtom->getJy() + ( dt2 * Tb[1] ) * eConvert; | |
433 | ji[2] = dAtom->getJz() + ( dt2 * Tb[2] ) * eConvert; | |
434 | ||
379 | – | jx2 = ji[0] * ji[0]; |
380 | – | jy2 = ji[1] * ji[1]; |
381 | – | jz2 = ji[2] * ji[2]; |
382 | – | |
435 | dAtom->setJx( ji[0] ); | |
436 | dAtom->setJy( ji[1] ); | |
437 | dAtom->setJz( ji[2] ); | |
# | Line 392 | Line 444 | void Integrator::preMove( void ){ | |
444 | int i; | |
445 | ||
446 | if( nConstrained ){ | |
447 | < | if( oldAtoms != nAtoms ){ |
396 | < | |
397 | < | // save oldAtoms to check for lode balanceing later on. |
398 | < | |
399 | < | oldAtoms = nAtoms; |
400 | < | |
401 | < | delete[] moving; |
402 | < | delete[] moved; |
403 | < | delete[] oldPos; |
404 | < | |
405 | < | moving = new int[nAtoms]; |
406 | < | moved = new int[nAtoms]; |
407 | < | |
408 | < | oldPos = new double[nAtoms*3]; |
409 | < | } |
410 | < | |
447 | > | |
448 | for(i=0; i<(nAtoms*3); i++) oldPos[i] = pos[i]; | |
449 | } | |
450 | } | |
# | Line 416 | Line 453 | void Integrator::constrainA(){ | |
453 | ||
454 | int i,j,k; | |
455 | int done; | |
456 | < | double pxab, pyab, pzab; |
457 | < | double rxab, ryab, rzab; |
458 | < | int a, b; |
456 | > | double pab[3]; |
457 | > | double rab[3]; |
458 | > | int a, b, ax, ay, az, bx, by, bz; |
459 | double rma, rmb; | |
460 | double dx, dy, dz; | |
461 | + | double rpab; |
462 | double rabsq, pabsq, rpabsq; | |
463 | double diffsq; | |
464 | double gab; | |
465 | int iteration; | |
466 | ||
429 | – | |
430 | – | |
467 | for( i=0; i<nAtoms; i++){ | |
468 | ||
469 | moving[i] = 0; | |
470 | moved[i] = 1; | |
471 | } | |
472 | < | |
437 | < | |
472 | > | |
473 | iteration = 0; | |
474 | done = 0; | |
475 | while( !done && (iteration < maxIteration )){ | |
# | Line 444 | Line 479 | void Integrator::constrainA(){ | |
479 | ||
480 | a = constrainedA[i]; | |
481 | b = constrainedB[i]; | |
482 | < | |
482 | > | |
483 | > | ax = (a*3) + 0; |
484 | > | ay = (a*3) + 1; |
485 | > | az = (a*3) + 2; |
486 | > | |
487 | > | bx = (b*3) + 0; |
488 | > | by = (b*3) + 1; |
489 | > | bz = (b*3) + 2; |
490 | > | |
491 | if( moved[a] || moved[b] ){ | |
492 | ||
493 | < | pxab = pos[3*a+0] - pos[3*b+0]; |
494 | < | pyab = pos[3*a+1] - pos[3*b+1]; |
495 | < | pzab = pos[3*a+2] - pos[3*b+2]; |
493 | > | pab[0] = pos[ax] - pos[bx]; |
494 | > | pab[1] = pos[ay] - pos[by]; |
495 | > | pab[2] = pos[az] - pos[bz]; |
496 | ||
497 | < | //periodic boundary condition |
455 | < | pxab = pxab - info->box_x * copysign(1, pxab) |
456 | < | * int(pxab / info->box_x + 0.5); |
457 | < | pyab = pyab - info->box_y * copysign(1, pyab) |
458 | < | * int(pyab / info->box_y + 0.5); |
459 | < | pzab = pzab - info->box_z * copysign(1, pzab) |
460 | < | * int(pzab / info->box_z + 0.5); |
461 | < | |
462 | < | pabsq = pxab * pxab + pyab * pyab + pzab * pzab; |
463 | < | rabsq = constraintedDsqr[i]; |
464 | < | diffsq = pabsq - rabsq; |
497 | > | //periodic boundary condition |
498 | ||
499 | + | info->wrapVector( pab ); |
500 | + | |
501 | + | pabsq = pab[0] * pab[0] + pab[1] * pab[1] + pab[2] * pab[2]; |
502 | + | |
503 | + | rabsq = constrainedDsqr[i]; |
504 | + | diffsq = rabsq - pabsq; |
505 | + | |
506 | // the original rattle code from alan tidesley | |
507 | < | if (fabs(diffsq) > tol*rabsq*2) { |
508 | < | rxab = oldPos[3*a+0] - oldPos[3*b+0]; |
509 | < | ryab = oldPos[3*a+1] - oldPos[3*b+1]; |
510 | < | rzab = oldPos[3*a+2] - oldPos[3*b+2]; |
471 | < | |
472 | < | rxab = rxab - info->box_x * copysign(1, rxab) |
473 | < | * int(rxab / info->box_x + 0.5); |
474 | < | ryab = ryab - info->box_y * copysign(1, ryab) |
475 | < | * int(ryab / info->box_y + 0.5); |
476 | < | rzab = rzab - info->box_z * copysign(1, rzab) |
477 | < | * int(rzab / info->box_z + 0.5); |
507 | > | if (fabs(diffsq) > (tol*rabsq*2)) { |
508 | > | rab[0] = oldPos[ax] - oldPos[bx]; |
509 | > | rab[1] = oldPos[ay] - oldPos[by]; |
510 | > | rab[2] = oldPos[az] - oldPos[bz]; |
511 | ||
512 | < | rpab = rxab * pxab + ryab * pyab + rzab * pzab; |
512 | > | info->wrapVector( rab ); |
513 | > | |
514 | > | rpab = rab[0] * pab[0] + rab[1] * pab[1] + rab[2] * pab[2]; |
515 | > | |
516 | rpabsq = rpab * rpab; | |
517 | ||
518 | ||
519 | if (rpabsq < (rabsq * -diffsq)){ | |
520 | + | |
521 | #ifdef IS_MPI | |
522 | a = atoms[a]->getGlobalIndex(); | |
523 | b = atoms[b]->getGlobalIndex(); | |
524 | #endif //is_mpi | |
525 | sprintf( painCave.errMsg, | |
526 | < | "Constraint failure in constrainA at atom %d and %d\n.", |
526 | > | "Constraint failure in constrainA at atom %d and %d.\n", |
527 | a, b ); | |
528 | painCave.isFatal = 1; | |
529 | simError(); | |
# | Line 494 | Line 531 | void Integrator::constrainA(){ | |
531 | ||
532 | rma = 1.0 / atoms[a]->getMass(); | |
533 | rmb = 1.0 / atoms[b]->getMass(); | |
534 | < | |
534 | > | |
535 | gab = diffsq / ( 2.0 * ( rma + rmb ) * rpab ); | |
499 | – | dx = rxab * gab; |
500 | – | dy = ryab * gab; |
501 | – | dz = rzab * gab; |
536 | ||
537 | < | pos[3*a+0] += rma * dx; |
538 | < | pos[3*a+1] += rma * dy; |
539 | < | pos[3*a+2] += rma * dz; |
537 | > | dx = rab[0] * gab; |
538 | > | dy = rab[1] * gab; |
539 | > | dz = rab[2] * gab; |
540 | ||
541 | < | pos[3*b+0] -= rmb * dx; |
542 | < | pos[3*b+1] -= rmb * dy; |
543 | < | pos[3*b+2] -= rmb * dz; |
541 | > | pos[ax] += rma * dx; |
542 | > | pos[ay] += rma * dy; |
543 | > | pos[az] += rma * dz; |
544 | ||
545 | + | pos[bx] -= rmb * dx; |
546 | + | pos[by] -= rmb * dy; |
547 | + | pos[bz] -= rmb * dz; |
548 | + | |
549 | dx = dx / dt; | |
550 | dy = dy / dt; | |
551 | dz = dz / dt; | |
552 | ||
553 | < | vel[3*a+0] += rma * dx; |
554 | < | vel[3*a+1] += rma * dy; |
555 | < | vel[3*a+2] += rma * dz; |
553 | > | vel[ax] += rma * dx; |
554 | > | vel[ay] += rma * dy; |
555 | > | vel[az] += rma * dz; |
556 | ||
557 | < | vel[3*b+0] -= rmb * dx; |
558 | < | vel[3*b+1] -= rmb * dy; |
559 | < | vel[3*b+2] -= rmb * dz; |
557 | > | vel[bx] -= rmb * dx; |
558 | > | vel[by] -= rmb * dy; |
559 | > | vel[bz] -= rmb * dz; |
560 | ||
561 | moving[a] = 1; | |
562 | moving[b] = 1; | |
# | Line 538 | Line 576 | void Integrator::constrainA(){ | |
576 | ||
577 | if( !done ){ | |
578 | ||
579 | < | sprintf( painCae.errMsg, |
579 | > | sprintf( painCave.errMsg, |
580 | "Constraint failure in constrainA, too many iterations: %d\n", | |
581 | < | iterations ); |
581 | > | iteration ); |
582 | painCave.isFatal = 1; | |
583 | simError(); | |
584 | } | |
# | Line 552 | Line 590 | void Integrator::constrainB( void ){ | |
590 | int i,j,k; | |
591 | int done; | |
592 | double vxab, vyab, vzab; | |
593 | < | double rxab, ryab, rzab; |
594 | < | int a, b; |
593 | > | double rab[3]; |
594 | > | int a, b, ax, ay, az, bx, by, bz; |
595 | double rma, rmb; | |
596 | double dx, dy, dz; | |
597 | double rabsq, pabsq, rvab; | |
# | Line 561 | Line 599 | void Integrator::constrainB( void ){ | |
599 | double gab; | |
600 | int iteration; | |
601 | ||
602 | < | for(i=0; i<nAtom; i++){ |
602 | > | for(i=0; i<nAtoms; i++){ |
603 | moving[i] = 0; | |
604 | moved[i] = 1; | |
605 | } | |
606 | ||
607 | done = 0; | |
608 | + | iteration = 0; |
609 | while( !done && (iteration < maxIteration ) ){ | |
610 | ||
611 | + | done = 1; |
612 | + | |
613 | for(i=0; i<nConstrained; i++){ | |
614 | ||
615 | a = constrainedA[i]; | |
616 | b = constrainedB[i]; | |
617 | ||
618 | + | ax = (a*3) + 0; |
619 | + | ay = (a*3) + 1; |
620 | + | az = (a*3) + 2; |
621 | + | |
622 | + | bx = (b*3) + 0; |
623 | + | by = (b*3) + 1; |
624 | + | bz = (b*3) + 2; |
625 | + | |
626 | if( moved[a] || moved[b] ){ | |
627 | ||
628 | < | vxab = vel[3*a+0] - vel[3*b+0]; |
629 | < | vyab = vel[3*a+1] - vel[3*b+1]; |
630 | < | vzab = vel[3*a+2] - vel[3*b+2]; |
628 | > | vxab = vel[ax] - vel[bx]; |
629 | > | vyab = vel[ay] - vel[by]; |
630 | > | vzab = vel[az] - vel[bz]; |
631 | ||
632 | < | rxab = pos[3*a+0] - pos[3*b+0];q |
633 | < | ryab = pos[3*a+1] - pos[3*b+1]; |
634 | < | rzab = pos[3*a+2] - pos[3*b+2]; |
632 | > | rab[0] = pos[ax] - pos[bx]; |
633 | > | rab[1] = pos[ay] - pos[by]; |
634 | > | rab[2] = pos[az] - pos[bz]; |
635 | ||
636 | < | rxab = rxab - info->box_x * copysign(1, rxab) |
637 | < | * int(rxab / info->box_x + 0.5); |
589 | < | ryab = ryab - info->box_y * copysign(1, ryab) |
590 | < | * int(ryab / info->box_y + 0.5); |
591 | < | rzab = rzab - info->box_z * copysign(1, rzab) |
592 | < | * int(rzab / info->box_z + 0.5); |
593 | < | |
636 | > | info->wrapVector( rab ); |
637 | > | |
638 | rma = 1.0 / atoms[a]->getMass(); | |
639 | rmb = 1.0 / atoms[b]->getMass(); | |
640 | ||
641 | < | rvab = rxab * vxab + ryab * vyab + rzab * vzab; |
641 | > | rvab = rab[0] * vxab + rab[1] * vyab + rab[2] * vzab; |
642 | ||
643 | < | gab = -rvab / ( ( rma + rmb ) * constraintsDsqr[i] ); |
643 | > | gab = -rvab / ( ( rma + rmb ) * constrainedDsqr[i] ); |
644 | ||
645 | if (fabs(gab) > tol) { | |
646 | ||
647 | < | dx = rxab * gab; |
648 | < | dy = ryab * gab; |
649 | < | dz = rzab * gab; |
647 | > | dx = rab[0] * gab; |
648 | > | dy = rab[1] * gab; |
649 | > | dz = rab[2] * gab; |
650 | ||
651 | < | vel[3*a+0] += rma * dx; |
652 | < | vel[3*a+1] += rma * dy; |
653 | < | vel[3*a+2] += rma * dz; |
651 | > | vel[ax] += rma * dx; |
652 | > | vel[ay] += rma * dy; |
653 | > | vel[az] += rma * dz; |
654 | ||
655 | < | vel[3*b+0] -= rmb * dx; |
656 | < | vel[3*b+1] -= rmb * dy; |
657 | < | vel[3*b+2] -= rmb * dz; |
655 | > | vel[bx] -= rmb * dx; |
656 | > | vel[by] -= rmb * dy; |
657 | > | vel[bz] -= rmb * dz; |
658 | ||
659 | moving[a] = 1; | |
660 | moving[b] = 1; | |
# | Line 630 | Line 674 | void Integrator::constrainB( void ){ | |
674 | if( !done ){ | |
675 | ||
676 | ||
677 | < | sprintf( painCae.errMsg, |
677 | > | sprintf( painCave.errMsg, |
678 | "Constraint failure in constrainB, too many iterations: %d\n", | |
679 | < | iterations ); |
679 | > | iteration ); |
680 | painCave.isFatal = 1; | |
681 | simError(); | |
682 | } | |
# | Line 713 | Line 757 | void Integrator::rotate( int axes1, int axes2, double | |
757 | // A[][] = A[][] * transpose(rot[][]) | |
758 | ||
759 | ||
760 | < | // NOte for as yet unknown reason, we are setting the performing the |
760 | > | // NOte for as yet unknown reason, we are performing the |
761 | // calculation as: | |
762 | // transpose(A[][]) = transpose(A[][]) * transpose(rot[][]) | |
763 |
– | Removed lines |
+ | Added lines |
< | Changed lines |
> | Changed lines |