ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/trunk/OOPSE/libmdtools/Integrator.cpp
(Generate patch)

Comparing trunk/OOPSE/libmdtools/Integrator.cpp (file contents):
Revision 563 by mmeineke, Mon Jun 23 21:24:03 2003 UTC vs.
Revision 637 by gezelter, Thu Jul 17 21:50:01 2003 UTC

# Line 72 | Line 72 | void Integrator::checkConstraints( void ){
72      for(int j=0; j<molecules[i].getNBonds(); j++){
73        
74        constrained = theArray[j]->is_constrained();
75 <      
75 >
76        if(constrained){
77 <        
77 >
78          dummy_plug = theArray[j]->get_constraint();
79          temp_con[nConstrained].set_a( dummy_plug->get_a() );
80          temp_con[nConstrained].set_b( dummy_plug->get_b() );
# Line 82 | Line 82 | void Integrator::checkConstraints( void ){
82          
83          nConstrained++;
84          constrained = 0;
85 <      }
85 >      }
86      }
87  
88      theArray = (SRI**) molecules[i].getMyBends();
# Line 138 | Line 138 | void Integrator::checkConstraints( void ){
138        constrainedB[i] = temp_con[i].get_b();
139        constrainedDsqr[i] = temp_con[i].get_dsqr();
140  
141      cerr << "constraint " << constrainedA[i] << " <-> " << constrainedB[i]
142           << " => " << constrainedDsqr[i] << "\n";
141      }
142  
143      
# Line 174 | Line 172 | void Integrator::integrate( void ){
172    int calcPot, calcStress;
173    int isError;
174  
177
178
175    tStats   = new Thermo( info );
176    statOut  = new StatWriter( info );
177    dumpOut  = new DumpWriter( info );
# Line 213 | Line 209 | void Integrator::integrate( void ){
209            "The integrator is ready to go." );
210    MPIcheckPoint();
211   #endif // is_mpi
216
217
218  pos  = Atom::getPosArray();
219  vel  = Atom::getVelArray();
220  frc  = Atom::getFrcArray();
221  trq  = Atom::getTrqArray();
222  Amat = Atom::getAmatArray();
212  
213    while( currTime < runTime ){
214  
# Line 231 | Line 220 | void Integrator::integrate( void ){
220      integrateStep( calcPot, calcStress );
221        
222      currTime += dt;
223 +    info->setTime(currTime);
224  
225      if( info->setTemp ){
226        if( currTime >= currThermal ){
# Line 259 | Line 249 | void Integrator::integrate( void ){
249  
250    }
251  
252 <  dumpOut->writeFinal();
252 >  dumpOut->writeFinal(currTime);
253  
254    delete dumpOut;
255    delete statOut;
# Line 275 | Line 265 | void Integrator::integrateStep( int calcPot, int calcS
265    moveA();
266    if( nConstrained ) constrainA();
267  
268 +  
269 + #ifdef IS_MPI
270 +  strcpy( checkPointMsg, "Succesful moveA\n" );
271 +  MPIcheckPoint();
272 + #endif // is_mpi
273 +  
274 +
275    // calc forces
276  
277    myFF->doForces(calcPot,calcStress);
278  
279 + #ifdef IS_MPI
280 +  strcpy( checkPointMsg, "Succesful doForces\n" );
281 +  MPIcheckPoint();
282 + #endif // is_mpi
283 +  
284 +
285    // finish the velocity  half step
286    
287    moveB();
288    if( nConstrained ) constrainB();
289 <  
289 >  
290 > #ifdef IS_MPI
291 >  strcpy( checkPointMsg, "Succesful moveB\n" );
292 >  MPIcheckPoint();
293 > #endif // is_mpi
294 >  
295 >
296   }
297  
298  
299   void Integrator::moveA( void ){
300    
301 <  int i,j,k;
293 <  int atomIndex, aMatIndex;
301 >  int i, j;
302    DirectionalAtom* dAtom;
303 <  double Tb[3];
304 <  double ji[3];
303 >  double Tb[3], ji[3];
304 >  double A[3][3], I[3][3];
305    double angle;
306 +  double vel[3], pos[3], frc[3];
307 +  double mass;
308  
309    for( i=0; i<nAtoms; i++ ){
300    atomIndex = i * 3;
301    aMatIndex = i * 9;
302    
303    // velocity half step
304    for( j=atomIndex; j<(atomIndex+3); j++ )
305      vel[j] += ( dt2 * frc[j] / atoms[i]->getMass() ) * eConvert;
310  
311 <    // position whole step    
312 <    for( j=atomIndex; j<(atomIndex+3); j++ )
311 >    atoms[i]->getVel( vel );
312 >    atoms[i]->getPos( pos );
313 >    atoms[i]->getFrc( frc );
314 >
315 >    mass = atoms[i]->getMass();
316 >
317 >    for (j=0; j < 3; j++) {
318 >      // velocity half step
319 >      vel[j] += ( dt2 * frc[j] / mass ) * eConvert;
320 >      // position whole step
321        pos[j] += dt * vel[j];
322 +    }
323  
324 <  
324 >    atoms[i]->setVel( vel );
325 >    atoms[i]->setPos( pos );
326 >
327      if( atoms[i]->isDirectional() ){
328  
329        dAtom = (DirectionalAtom *)atoms[i];
330            
331        // get and convert the torque to body frame
332        
333 <      Tb[0] = dAtom->getTx();
319 <      Tb[1] = dAtom->getTy();
320 <      Tb[2] = dAtom->getTz();
321 <      
333 >      dAtom->getTrq( Tb );
334        dAtom->lab2Body( Tb );
335 <      
335 >
336        // get the angular momentum, and propagate a half step
337 +
338 +      dAtom->getJ( ji );
339 +
340 +      for (j=0; j < 3; j++)
341 +        ji[j] += (dt2 * Tb[j]) * eConvert;
342        
326      ji[0] = dAtom->getJx() + ( dt2 * Tb[0] ) * eConvert;
327      ji[1] = dAtom->getJy() + ( dt2 * Tb[1] ) * eConvert;
328      ji[2] = dAtom->getJz() + ( dt2 * Tb[2] ) * eConvert;
329      
343        // use the angular velocities to propagate the rotation matrix a
344        // full time step
345 <      
345 >
346 >      dAtom->getA(A);
347 >      dAtom->getI(I);
348 >    
349        // rotate about the x-axis      
350 <      angle = dt2 * ji[0] / dAtom->getIxx();
351 <      this->rotate( 1, 2, angle, ji, &Amat[aMatIndex] );
352 <      
350 >      angle = dt2 * ji[0] / I[0][0];
351 >      this->rotate( 1, 2, angle, ji, A );
352 >
353        // rotate about the y-axis
354 <      angle = dt2 * ji[1] / dAtom->getIyy();
355 <      this->rotate( 2, 0, angle, ji, &Amat[aMatIndex] );
354 >      angle = dt2 * ji[1] / I[1][1];
355 >      this->rotate( 2, 0, angle, ji, A );
356        
357        // rotate about the z-axis
358 <      angle = dt * ji[2] / dAtom->getIzz();
359 <      this->rotate( 0, 1, angle, ji, &Amat[aMatIndex] );
358 >      angle = dt * ji[2] / I[2][2];
359 >      this->rotate( 0, 1, angle, ji, A);
360        
361        // rotate about the y-axis
362 <      angle = dt2 * ji[1] / dAtom->getIyy();
363 <      this->rotate( 2, 0, angle, ji, &Amat[aMatIndex] );
362 >      angle = dt2 * ji[1] / I[1][1];
363 >      this->rotate( 2, 0, angle, ji, A );
364        
365         // rotate about the x-axis
366 <      angle = dt2 * ji[0] / dAtom->getIxx();
367 <      this->rotate( 1, 2, angle, ji, &Amat[aMatIndex] );
366 >      angle = dt2 * ji[0] / I[0][0];
367 >      this->rotate( 1, 2, angle, ji, A );
368        
369 <      dAtom->setJx( ji[0] );
370 <      dAtom->setJy( ji[1] );
371 <      dAtom->setJz( ji[2] );
372 <    }
373 <    
369 >
370 >      dAtom->setJ( ji );
371 >      dAtom->setA( A  );
372 >          
373 >    }    
374    }
375   }
376  
377  
378   void Integrator::moveB( void ){
379 <  int i,j,k;
364 <  int atomIndex;
379 >  int i, j;
380    DirectionalAtom* dAtom;
381 <  double Tb[3];
382 <  double ji[3];
381 >  double Tb[3], ji[3];
382 >  double vel[3], frc[3];
383 >  double mass;
384  
385    for( i=0; i<nAtoms; i++ ){
386 <    atomIndex = i * 3;
386 >
387 >    atoms[i]->getVel( vel );
388 >    atoms[i]->getFrc( frc );
389  
390 <    // velocity half step
373 <    for( j=atomIndex; j<(atomIndex+3); j++ )
374 <      vel[j] += ( dt2 * frc[j] / atoms[i]->getMass() ) * eConvert;
390 >    mass = atoms[i]->getMass();
391  
392 +    // velocity half step
393 +    for (j=0; j < 3; j++)
394 +      vel[j] += ( dt2 * frc[j] / mass ) * eConvert;
395 +    
396 +    atoms[i]->setVel( vel );
397 +
398      if( atoms[i]->isDirectional() ){
399 <      
399 >
400        dAtom = (DirectionalAtom *)atoms[i];
401 <      
402 <      // get and convert the torque to body frame
403 <      
404 <      Tb[0] = dAtom->getTx();
383 <      Tb[1] = dAtom->getTy();
384 <      Tb[2] = dAtom->getTz();
385 <      
401 >
402 >      // get and convert the torque to body frame      
403 >
404 >      dAtom->getTrq( Tb );
405        dAtom->lab2Body( Tb );
406 +
407 +      // get the angular momentum, and propagate a half step
408 +
409 +      dAtom->getJ( ji );
410 +
411 +      for (j=0; j < 3; j++)
412 +        ji[j] += (dt2 * Tb[j]) * eConvert;
413        
414 <      // get the angular momentum, and complete the angular momentum
415 <      // half step
390 <      
391 <      ji[0] = dAtom->getJx() + ( dt2 * Tb[0] ) * eConvert;
392 <      ji[1] = dAtom->getJy() + ( dt2 * Tb[1] ) * eConvert;
393 <      ji[2] = dAtom->getJz() + ( dt2 * Tb[2] ) * eConvert;
394 <      
395 <      dAtom->setJx( ji[0] );
396 <      dAtom->setJy( ji[1] );
397 <      dAtom->setJz( ji[2] );
414 >
415 >      dAtom->setJ( ji );
416      }
417    }
400
418   }
419  
420   void Integrator::preMove( void ){
421 <  int i;
421 >  int i, j;
422 >  double pos[3];
423  
424    if( nConstrained ){
425  
426 <    for(i=0; i<(nAtoms*3); i++) oldPos[i] = pos[i];
427 <  }
428 < }  
426 >    for(i=0; i < nAtoms; i++) {
427 >
428 >      atoms[i]->getPos( pos );
429  
430 +      for (j = 0; j < 3; j++) {        
431 +        oldPos[3*i + j] = pos[j];
432 +      }
433 +
434 +    }
435 +  }  
436 + }
437 +
438   void Integrator::constrainA(){
439  
440    int i,j,k;
441    int done;
442 <  double pxab, pyab, pzab;
443 <  double rxab, ryab, rzab;
442 >  double posA[3], posB[3];
443 >  double velA[3], velB[3];
444 >  double pab[3];
445 >  double rab[3];
446    int a, b, ax, ay, az, bx, by, bz;
447    double rma, rmb;
448    double dx, dy, dz;
# Line 424 | Line 452 | void Integrator::constrainA(){
452    double gab;
453    int iteration;
454  
455 <
428 <  
429 <  for( i=0; i<nAtoms; i++){
430 <    
455 >  for( i=0; i<nAtoms; i++){    
456      moving[i] = 0;
457      moved[i]  = 1;
458    }
459 <  
435 <  
459 >
460    iteration = 0;
461    done = 0;
462    while( !done && (iteration < maxIteration )){
# Line 451 | Line 475 | void Integrator::constrainA(){
475        by = (b*3) + 1;
476        bz = (b*3) + 2;
477  
454
478        if( moved[a] || moved[b] ){
479 <        
480 <        pxab = pos[ax] - pos[bx];
481 <        pyab = pos[ay] - pos[by];
482 <        pzab = pos[az] - pos[bz];
479 >        
480 >        atoms[a]->getPos( posA );
481 >        atoms[b]->getPos( posB );
482 >        
483 >        for (j = 0; j < 3; j++ )
484 >          pab[j] = posA[j] - posB[j];
485 >        
486 >        //periodic boundary condition
487  
488 <        //periodic boundary condition
489 <        pxab = pxab - info->box_x * copysign(1, pxab)
490 <          * (int)( fabs(pxab / info->box_x) + 0.5);
491 <        pyab = pyab - info->box_y * copysign(1, pyab)
465 <          * (int)( fabs(pyab / info->box_y) + 0.5);
466 <        pzab = pzab - info->box_z * copysign(1, pzab)
467 <          * (int)( fabs(pzab / info->box_z) + 0.5);
468 <      
469 <        pabsq = pxab * pxab + pyab * pyab + pzab * pzab;
488 >        info->wrapVector( pab );
489 >
490 >        pabsq = pab[0] * pab[0] + pab[1] * pab[1] + pab[2] * pab[2];
491 >
492          rabsq = constrainedDsqr[i];
493 <        diffsq = pabsq - rabsq;
493 >        diffsq = rabsq - pabsq;
494  
495          // the original rattle code from alan tidesley
496          if (fabs(diffsq) > (tol*rabsq*2)) {
497 <          rxab = oldPos[ax] - oldPos[bx];
498 <          ryab = oldPos[ay] - oldPos[by];
499 <          rzab = oldPos[az] - oldPos[bz];
478 <
479 <          rxab = rxab - info->box_x * copysign(1, rxab)
480 <            * (int)( fabs(rxab / info->box_x) + 0.5);
481 <          ryab = ryab - info->box_y * copysign(1, ryab)
482 <            * (int)( fabs(ryab / info->box_y) + 0.5);
483 <          rzab = rzab - info->box_z * copysign(1, rzab)
484 <            * (int)( fabs(rzab / info->box_z) + 0.5);
497 >          rab[0] = oldPos[ax] - oldPos[bx];
498 >          rab[1] = oldPos[ay] - oldPos[by];
499 >          rab[2] = oldPos[az] - oldPos[bz];
500  
501 <          rpab = rxab * pxab + ryab * pyab + rzab * pzab;
501 >          info->wrapVector( rab );
502 >
503 >          rpab = rab[0] * pab[0] + rab[1] * pab[1] + rab[2] * pab[2];
504 >
505            rpabsq = rpab * rpab;
506  
507  
508            if (rpabsq < (rabsq * -diffsq)){
509  
492            cerr << "rpabsq = " << rpabsq << ", rabsq = " << rabsq
493                 << ", -diffsq = " << -diffsq << "\n";
494
510   #ifdef IS_MPI
511              a = atoms[a]->getGlobalIndex();
512              b = atoms[b]->getGlobalIndex();
# Line 505 | Line 520 | void Integrator::constrainA(){
520  
521            rma = 1.0 / atoms[a]->getMass();
522            rmb = 1.0 / atoms[b]->getMass();
523 <          
523 >
524            gab = diffsq / ( 2.0 * ( rma + rmb ) * rpab );
510          dx = rxab * gab;
511          dy = ryab * gab;
512          dz = rzab * gab;
525  
526 <          pos[ax] += rma * dx;
527 <          pos[ay] += rma * dy;
528 <          pos[az] += rma * dz;
526 >          dx = rab[0] * gab;
527 >          dy = rab[1] * gab;
528 >          dz = rab[2] * gab;
529  
530 <          pos[bx] -= rmb * dx;
531 <          pos[by] -= rmb * dy;
532 <          pos[bz] -= rmb * dz;
530 >          posA[0] += rma * dx;
531 >          posA[1] += rma * dy;
532 >          posA[2] += rma * dz;
533  
534 +          atoms[a]->setPos( posA );
535 +
536 +          posB[0] -= rmb * dx;
537 +          posB[1] -= rmb * dy;
538 +          posB[2] -= rmb * dz;
539 +
540 +          atoms[b]->setPos( posB );
541 +
542            dx = dx / dt;
543            dy = dy / dt;
544            dz = dz / dt;
545  
546 <          vel[ax] += rma * dx;
527 <          vel[ay] += rma * dy;
528 <          vel[az] += rma * dz;
546 >          atoms[a]->getVel( velA );
547  
548 <          vel[bx] -= rmb * dx;
549 <          vel[by] -= rmb * dy;
550 <          vel[bz] -= rmb * dz;
548 >          velA[0] += rma * dx;
549 >          velA[1] += rma * dy;
550 >          velA[2] += rma * dz;
551  
552 +          atoms[a]->setVel( velA );
553 +
554 +          atoms[b]->getVel( velB );
555 +
556 +          velB[0] -= rmb * dx;
557 +          velB[1] -= rmb * dy;
558 +          velB[2] -= rmb * dz;
559 +
560 +          atoms[b]->setVel( velB );
561 +
562            moving[a] = 1;
563            moving[b] = 1;
564            done = 0;
# Line 545 | Line 573 | void Integrator::constrainA(){
573      }
574  
575      iteration++;
548    cerr << "iterainA = " << iteration << "\n";
576    }
577  
578    if( !done ){
# Line 563 | Line 590 | void Integrator::constrainB( void ){
590    
591    int i,j,k;
592    int done;
593 +  double posA[3], posB[3];
594 +  double velA[3], velB[3];
595    double vxab, vyab, vzab;
596 <  double rxab, ryab, rzab;
596 >  double rab[3];
597    int a, b, ax, ay, az, bx, by, bz;
598    double rma, rmb;
599    double dx, dy, dz;
# Line 582 | Line 611 | void Integrator::constrainB( void ){
611    iteration = 0;
612    while( !done && (iteration < maxIteration ) ){
613  
614 +    done = 1;
615 +
616      for(i=0; i<nConstrained; i++){
617        
618        a = constrainedA[i];
619        b = constrainedB[i];
620  
621 <      ax = 3*a +0;
622 <      ay = 3*a +1;
623 <      az = 3*a +2;
621 >      ax = (a*3) + 0;
622 >      ay = (a*3) + 1;
623 >      az = (a*3) + 2;
624  
625 <      bx = 3*b +0;
626 <      by = 3*b +1;
627 <      bz = 3*b +2;
625 >      bx = (b*3) + 0;
626 >      by = (b*3) + 1;
627 >      bz = (b*3) + 2;
628  
629        if( moved[a] || moved[b] ){
599        
600        vxab = vel[ax] - vel[bx];
601        vyab = vel[ay] - vel[by];
602        vzab = vel[az] - vel[bz];
630  
631 <        rxab = pos[ax] - pos[bx];
632 <        ryab = pos[ay] - pos[by];
633 <        rzab = pos[az] - pos[bz];
634 <        
635 <        rxab = rxab - info->box_x * copysign(1, rxab)
636 <          * (int)( fabs(rxab / info->box_x) + 0.5);
610 <        ryab = ryab - info->box_y * copysign(1, ryab)
611 <          * (int)( fabs(ryab / info->box_y) + 0.5);
612 <        rzab = rzab - info->box_z * copysign(1, rzab)
613 <          * (int)( fabs(rzab / info->box_z) + 0.5);
631 >        atoms[a]->getVel( velA );
632 >        atoms[b]->getVel( velB );
633 >          
634 >        vxab = velA[0] - velB[0];
635 >        vyab = velA[1] - velB[1];
636 >        vzab = velA[2] - velB[2];
637  
638 +        atoms[a]->getPos( posA );
639 +        atoms[b]->getPos( posB );
640 +
641 +        for (j = 0; j < 3; j++)
642 +          rab[j] = posA[j] - posB[j];
643 +          
644 +        info->wrapVector( rab );
645 +        
646          rma = 1.0 / atoms[a]->getMass();
647          rmb = 1.0 / atoms[b]->getMass();
648  
649 <        rvab = rxab * vxab + ryab * vyab + rzab * vzab;
649 >        rvab = rab[0] * vxab + rab[1] * vyab + rab[2] * vzab;
650            
651          gab = -rvab / ( ( rma + rmb ) * constrainedDsqr[i] );
652  
653          if (fabs(gab) > tol) {
654            
655 <          dx = rxab * gab;
656 <          dy = ryab * gab;
657 <          dz = rzab * gab;
658 <          
659 <          vel[ax] += rma * dx;
660 <          vel[ay] += rma * dy;
661 <          vel[az] += rma * dz;
655 >          dx = rab[0] * gab;
656 >          dy = rab[1] * gab;
657 >          dz = rab[2] * gab;
658 >        
659 >          velA[0] += rma * dx;
660 >          velA[1] += rma * dy;
661 >          velA[2] += rma * dz;
662  
663 <          vel[bx] -= rmb * dx;
664 <          vel[by] -= rmb * dy;
665 <          vel[bz] -= rmb * dz;
663 >          atoms[a]->setVel( velA );
664 >
665 >          velB[0] -= rmb * dx;
666 >          velB[1] -= rmb * dy;
667 >          velB[2] -= rmb * dz;
668 >
669 >          atoms[b]->setVel( velB );
670            
671            moving[a] = 1;
672            moving[b] = 1;
# Line 647 | Line 682 | void Integrator::constrainB( void ){
682      
683      iteration++;
684    }
685 <
685 >  
686    if( !done ){
687  
688    
# Line 660 | Line 695 | void Integrator::constrainB( void ){
695  
696   }
697  
663
664
665
666
667
668
698   void Integrator::rotate( int axes1, int axes2, double angle, double ji[3],
699 <                         double A[9] ){
699 >                         double A[3][3] ){
700  
701    int i,j,k;
702    double sinAngle;
# Line 683 | Line 712 | void Integrator::rotate( int axes1, int axes2, double
712  
713    for(i=0; i<3; i++){
714      for(j=0; j<3; j++){
715 <      tempA[j][i] = A[3*i + j];
715 >      tempA[j][i] = A[i][j];
716      }
717    }
718  
# Line 740 | Line 769 | void Integrator::rotate( int axes1, int axes2, double
769  
770    for(i=0; i<3; i++){
771      for(j=0; j<3; j++){
772 <      A[3*j + i] = 0.0;
772 >      A[j][i] = 0.0;
773        for(k=0; k<3; k++){
774 <        A[3*j + i] += tempA[i][k] * rot[j][k];
774 >        A[j][i] += tempA[i][k] * rot[j][k];
775        }
776      }
777    }

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines