--- trunk/OOPSE/libmdtools/Integrator.cpp 2003/06/25 21:12:14 567 +++ trunk/OOPSE/libmdtools/Integrator.cpp 2003/07/21 16:23:10 641 @@ -72,9 +72,9 @@ void Integrator::checkConstraints( void ){ for(int j=0; jis_constrained(); - + if(constrained){ - + dummy_plug = theArray[j]->get_constraint(); temp_con[nConstrained].set_a( dummy_plug->get_a() ); temp_con[nConstrained].set_b( dummy_plug->get_b() ); @@ -82,7 +82,7 @@ void Integrator::checkConstraints( void ){ nConstrained++; constrained = 0; - } + } } theArray = (SRI**) molecules[i].getMyBends(); @@ -167,13 +167,10 @@ void Integrator::integrate( void ){ double currSample; double currThermal; double currStatus; - double currTime; int calcPot, calcStress; int isError; - - tStats = new Thermo( info ); statOut = new StatWriter( info ); dumpOut = new DumpWriter( info ); @@ -193,16 +190,14 @@ void Integrator::integrate( void ){ tStats->velocitize(); } - dumpOut->writeDump( 0.0 ); - statOut->writeStat( 0.0 ); - calcPot = 0; calcStress = 0; currSample = sampleTime; currThermal = thermalTime; currStatus = statusTime; - currTime = 0.0;; + dumpOut->writeDump( info->currTime ); + statOut->writeStat( info->currTime ); readyCheck(); @@ -212,38 +207,32 @@ void Integrator::integrate( void ){ MPIcheckPoint(); #endif // is_mpi + while( info->currTime < runTime ){ - pos = Atom::getPosArray(); - vel = Atom::getVelArray(); - frc = Atom::getFrcArray(); - trq = Atom::getTrqArray(); - Amat = Atom::getAmatArray(); - - while( currTime < runTime ){ - - if( (currTime+dt) >= currStatus ){ + if( (info->currTime+dt) >= currStatus ){ calcPot = 1; calcStress = 1; } integrateStep( calcPot, calcStress ); - currTime += dt; + info->currTime += dt; + info->setTime(info->currTime); if( info->setTemp ){ - if( currTime >= currThermal ){ + if( info->currTime >= currThermal ){ tStats->velocitize(); currThermal += thermalTime; } } - if( currTime >= currSample ){ - dumpOut->writeDump( currTime ); + if( info->currTime >= currSample ){ + dumpOut->writeDump( info->currTime ); currSample += sampleTime; } - if( currTime >= currStatus ){ - statOut->writeStat( currTime ); + if( info->currTime >= currStatus ){ + statOut->writeStat( info->currTime ); calcPot = 0; calcStress = 0; currStatus += statusTime; @@ -257,7 +246,7 @@ void Integrator::integrate( void ){ } - dumpOut->writeFinal(); + dumpOut->writeFinal(info->currTime); delete dumpOut; delete statOut; @@ -273,146 +262,184 @@ void Integrator::integrateStep( int calcPot, int calcS moveA(); if( nConstrained ) constrainA(); + +#ifdef IS_MPI + strcpy( checkPointMsg, "Succesful moveA\n" ); + MPIcheckPoint(); +#endif // is_mpi + + // calc forces myFF->doForces(calcPot,calcStress); +#ifdef IS_MPI + strcpy( checkPointMsg, "Succesful doForces\n" ); + MPIcheckPoint(); +#endif // is_mpi + + // finish the velocity half step moveB(); if( nConstrained ) constrainB(); - + +#ifdef IS_MPI + strcpy( checkPointMsg, "Succesful moveB\n" ); + MPIcheckPoint(); +#endif // is_mpi + + } void Integrator::moveA( void ){ - int i,j,k; - int atomIndex, aMatIndex; + int i, j; DirectionalAtom* dAtom; - double Tb[3]; - double ji[3]; + double Tb[3], ji[3]; + double A[3][3], I[3][3]; double angle; + double vel[3], pos[3], frc[3]; + double mass; + for( i=0; igetVel( vel ); + atoms[i]->getPos( pos ); + atoms[i]->getFrc( frc ); - for( i=0; igetMass(); - // velocity half step - for( j=atomIndex; j<(atomIndex+3); j++ ) - vel[j] += ( dt2 * frc[j] / atoms[i]->getMass() ) * eConvert; + for (j=0; j < 3; j++) { + // velocity half step + vel[j] += ( dt2 * frc[j] / mass ) * eConvert; + // position whole step + pos[j] += dt * vel[j]; + } - // position whole step - for( j=atomIndex; j<(atomIndex+3); j++ ) pos[j] += dt * vel[j]; - + atoms[i]->setVel( vel ); + atoms[i]->setPos( pos ); + if( atoms[i]->isDirectional() ){ dAtom = (DirectionalAtom *)atoms[i]; // get and convert the torque to body frame - Tb[0] = dAtom->getTx(); - Tb[1] = dAtom->getTy(); - Tb[2] = dAtom->getTz(); - + dAtom->getTrq( Tb ); dAtom->lab2Body( Tb ); - + // get the angular momentum, and propagate a half step + + dAtom->getJ( ji ); + + for (j=0; j < 3; j++) + ji[j] += (dt2 * Tb[j]) * eConvert; - ji[0] = dAtom->getJx() + ( dt2 * Tb[0] ) * eConvert; - ji[1] = dAtom->getJy() + ( dt2 * Tb[1] ) * eConvert; - ji[2] = dAtom->getJz() + ( dt2 * Tb[2] ) * eConvert; - // use the angular velocities to propagate the rotation matrix a // full time step - + + dAtom->getA(A); + dAtom->getI(I); + // rotate about the x-axis - angle = dt2 * ji[0] / dAtom->getIxx(); - this->rotate( 1, 2, angle, ji, &Amat[aMatIndex] ); - + angle = dt2 * ji[0] / I[0][0]; + this->rotate( 1, 2, angle, ji, A ); + // rotate about the y-axis - angle = dt2 * ji[1] / dAtom->getIyy(); - this->rotate( 2, 0, angle, ji, &Amat[aMatIndex] ); + angle = dt2 * ji[1] / I[1][1]; + this->rotate( 2, 0, angle, ji, A ); // rotate about the z-axis - angle = dt * ji[2] / dAtom->getIzz(); - this->rotate( 0, 1, angle, ji, &Amat[aMatIndex] ); + angle = dt * ji[2] / I[2][2]; + this->rotate( 0, 1, angle, ji, A); // rotate about the y-axis - angle = dt2 * ji[1] / dAtom->getIyy(); - this->rotate( 2, 0, angle, ji, &Amat[aMatIndex] ); + angle = dt2 * ji[1] / I[1][1]; + this->rotate( 2, 0, angle, ji, A ); // rotate about the x-axis - angle = dt2 * ji[0] / dAtom->getIxx(); - this->rotate( 1, 2, angle, ji, &Amat[aMatIndex] ); + angle = dt2 * ji[0] / I[0][0]; + this->rotate( 1, 2, angle, ji, A ); - dAtom->setJx( ji[0] ); - dAtom->setJy( ji[1] ); - dAtom->setJz( ji[2] ); - } - + + dAtom->setJ( ji ); + dAtom->setA( A ); + + } } } void Integrator::moveB( void ){ - int i,j,k; - int atomIndex; + int i, j; DirectionalAtom* dAtom; - double Tb[3]; - double ji[3]; + double Tb[3], ji[3]; + double vel[3], frc[3]; + double mass; for( i=0; igetVel( vel ); + atoms[i]->getFrc( frc ); - // velocity half step - for( j=atomIndex; j<(atomIndex+3); j++ ) - vel[j] += ( dt2 * frc[j] / atoms[i]->getMass() ) * eConvert; + mass = atoms[i]->getMass(); + // velocity half step + for (j=0; j < 3; j++) + vel[j] += ( dt2 * frc[j] / mass ) * eConvert; + + atoms[i]->setVel( vel ); + if( atoms[i]->isDirectional() ){ - + dAtom = (DirectionalAtom *)atoms[i]; - - // get and convert the torque to body frame - - Tb[0] = dAtom->getTx(); - Tb[1] = dAtom->getTy(); - Tb[2] = dAtom->getTz(); - + + // get and convert the torque to body frame + + dAtom->getTrq( Tb ); dAtom->lab2Body( Tb ); + + // get the angular momentum, and propagate a half step + + dAtom->getJ( ji ); + + for (j=0; j < 3; j++) + ji[j] += (dt2 * Tb[j]) * eConvert; - // get the angular momentum, and complete the angular momentum - // half step - - ji[0] = dAtom->getJx() + ( dt2 * Tb[0] ) * eConvert; - ji[1] = dAtom->getJy() + ( dt2 * Tb[1] ) * eConvert; - ji[2] = dAtom->getJz() + ( dt2 * Tb[2] ) * eConvert; - - dAtom->setJx( ji[0] ); - dAtom->setJy( ji[1] ); - dAtom->setJz( ji[2] ); + + dAtom->setJ( ji ); } } - } void Integrator::preMove( void ){ - int i; + int i, j; + double pos[3]; if( nConstrained ){ - for(i=0; i<(nAtoms*3); i++) oldPos[i] = pos[i]; - } -} + for(i=0; i < nAtoms; i++) { + + atoms[i]->getPos( pos ); + for (j = 0; j < 3; j++) { + oldPos[3*i + j] = pos[j]; + } + + } + } +} + void Integrator::constrainA(){ int i,j,k; int done; - double pxab, pyab, pzab; - double rxab, ryab, rzab; + double posA[3], posB[3]; + double velA[3], velB[3]; + double pab[3]; + double rab[3]; int a, b, ax, ay, az, bx, by, bz; double rma, rmb; double dx, dy, dz; @@ -422,10 +449,7 @@ void Integrator::constrainA(){ double gab; int iteration; - - - for( i=0; igetPos( posA ); + atoms[b]->getPos( posB ); + + for (j = 0; j < 3; j++ ) + pab[j] = posA[j] - posB[j]; + //periodic boundary condition - pxab = pxab - info->box_x * copysign(1, pxab) - * (int)( fabs(pxab / info->box_x) + 0.5); - pyab = pyab - info->box_y * copysign(1, pyab) - * (int)( fabs(pyab / info->box_y) + 0.5); - pzab = pzab - info->box_z * copysign(1, pzab) - * (int)( fabs(pzab / info->box_z) + 0.5); - pabsq = pxab * pxab + pyab * pyab + pzab * pzab; + info->wrapVector( pab ); + pabsq = pab[0] * pab[0] + pab[1] * pab[1] + pab[2] * pab[2]; + rabsq = constrainedDsqr[i]; diffsq = rabsq - pabsq; // the original rattle code from alan tidesley if (fabs(diffsq) > (tol*rabsq*2)) { - rxab = oldPos[ax] - oldPos[bx]; - ryab = oldPos[ay] - oldPos[by]; - rzab = oldPos[az] - oldPos[bz]; + rab[0] = oldPos[ax] - oldPos[bx]; + rab[1] = oldPos[ay] - oldPos[by]; + rab[2] = oldPos[az] - oldPos[bz]; - rxab = rxab - info->box_x * copysign(1, rxab) - * (int)( fabs(rxab / info->box_x) + 0.5); - ryab = ryab - info->box_y * copysign(1, ryab) - * (int)( fabs(ryab / info->box_y) + 0.5); - rzab = rzab - info->box_z * copysign(1, rzab) - * (int)( fabs(rzab / info->box_z) + 0.5); + info->wrapVector( rab ); - rpab = rxab * pxab + ryab * pyab + rzab * pzab; + rpab = rab[0] * pab[0] + rab[1] * pab[1] + rab[2] * pab[2]; rpabsq = rpab * rpab; @@ -503,30 +520,42 @@ void Integrator::constrainA(){ gab = diffsq / ( 2.0 * ( rma + rmb ) * rpab ); - dx = rxab * gab; - dy = ryab * gab; - dz = rzab * gab; + dx = rab[0] * gab; + dy = rab[1] * gab; + dz = rab[2] * gab; - pos[ax] += rma * dx; - pos[ay] += rma * dy; - pos[az] += rma * dz; + posA[0] += rma * dx; + posA[1] += rma * dy; + posA[2] += rma * dz; - pos[bx] -= rmb * dx; - pos[by] -= rmb * dy; - pos[bz] -= rmb * dz; + atoms[a]->setPos( posA ); + posB[0] -= rmb * dx; + posB[1] -= rmb * dy; + posB[2] -= rmb * dz; + + atoms[b]->setPos( posB ); + dx = dx / dt; dy = dy / dt; dz = dz / dt; - vel[ax] += rma * dx; - vel[ay] += rma * dy; - vel[az] += rma * dz; + atoms[a]->getVel( velA ); - vel[bx] -= rmb * dx; - vel[by] -= rmb * dy; - vel[bz] -= rmb * dz; + velA[0] += rma * dx; + velA[1] += rma * dy; + velA[2] += rma * dz; + atoms[a]->setVel( velA ); + + atoms[b]->getVel( velB ); + + velB[0] -= rmb * dx; + velB[1] -= rmb * dy; + velB[2] -= rmb * dz; + + atoms[b]->setVel( velB ); + moving[a] = 1; moving[b] = 1; done = 0; @@ -558,8 +587,10 @@ void Integrator::constrainB( void ){ int i,j,k; int done; + double posA[3], posB[3]; + double velA[3], velB[3]; double vxab, vyab, vzab; - double rxab, ryab, rzab; + double rab[3]; int a, b, ax, ay, az, bx, by, bz; double rma, rmb; double dx, dy, dz; @@ -593,43 +624,46 @@ void Integrator::constrainB( void ){ bz = (b*3) + 2; if( moved[a] || moved[b] ){ - - vxab = vel[ax] - vel[bx]; - vyab = vel[ay] - vel[by]; - vzab = vel[az] - vel[bz]; - rxab = pos[ax] - pos[bx]; - ryab = pos[ay] - pos[by]; - rzab = pos[az] - pos[bz]; - + atoms[a]->getVel( velA ); + atoms[b]->getVel( velB ); + + vxab = velA[0] - velB[0]; + vyab = velA[1] - velB[1]; + vzab = velA[2] - velB[2]; - rxab = rxab - info->box_x * copysign(1, rxab) - * (int)( fabs(rxab / info->box_x) + 0.5); - ryab = ryab - info->box_y * copysign(1, ryab) - * (int)( fabs(ryab / info->box_y) + 0.5); - rzab = rzab - info->box_z * copysign(1, rzab) - * (int)( fabs(rzab / info->box_z) + 0.5); + atoms[a]->getPos( posA ); + atoms[b]->getPos( posB ); + + for (j = 0; j < 3; j++) + rab[j] = posA[j] - posB[j]; + + info->wrapVector( rab ); rma = 1.0 / atoms[a]->getMass(); rmb = 1.0 / atoms[b]->getMass(); - rvab = rxab * vxab + ryab * vyab + rzab * vzab; + rvab = rab[0] * vxab + rab[1] * vyab + rab[2] * vzab; gab = -rvab / ( ( rma + rmb ) * constrainedDsqr[i] ); if (fabs(gab) > tol) { - dx = rxab * gab; - dy = ryab * gab; - dz = rzab * gab; - - vel[ax] += rma * dx; - vel[ay] += rma * dy; - vel[az] += rma * dz; + dx = rab[0] * gab; + dy = rab[1] * gab; + dz = rab[2] * gab; + + velA[0] += rma * dx; + velA[1] += rma * dy; + velA[2] += rma * dz; - vel[bx] -= rmb * dx; - vel[by] -= rmb * dy; - vel[bz] -= rmb * dz; + atoms[a]->setVel( velA ); + + velB[0] -= rmb * dx; + velB[1] -= rmb * dy; + velB[2] -= rmb * dz; + + atoms[b]->setVel( velB ); moving[a] = 1; moving[b] = 1; @@ -645,7 +679,7 @@ void Integrator::constrainB( void ){ iteration++; } - + if( !done ){ @@ -658,14 +692,8 @@ void Integrator::constrainB( void ){ } - - - - - - void Integrator::rotate( int axes1, int axes2, double angle, double ji[3], - double A[9] ){ + double A[3][3] ){ int i,j,k; double sinAngle; @@ -681,7 +709,7 @@ void Integrator::rotate( int axes1, int axes2, double for(i=0; i<3; i++){ for(j=0; j<3; j++){ - tempA[j][i] = A[3*i + j]; + tempA[j][i] = A[i][j]; } } @@ -738,9 +766,9 @@ void Integrator::rotate( int axes1, int axes2, double for(i=0; i<3; i++){ for(j=0; j<3; j++){ - A[3*j + i] = 0.0; + A[j][i] = 0.0; for(k=0; k<3; k++){ - A[3*j + i] += tempA[i][k] * rot[j][k]; + A[j][i] += tempA[i][k] * rot[j][k]; } } }