| 1 | #include <iostream> | 
| 2 | #include <cstdlib> | 
| 3 | #include <cmath> | 
| 4 |  | 
| 5 | #ifdef IS_MPI | 
| 6 | #include "mpiSimulation.hpp" | 
| 7 | #include <unistd.h> | 
| 8 | #endif //is_mpi | 
| 9 |  | 
| 10 | #include "Integrator.hpp" | 
| 11 | #include "simError.h" | 
| 12 |  | 
| 13 |  | 
| 14 | template<typename T> Integrator<T>::Integrator( SimInfo *theInfo, ForceFields* the_ff ) { | 
| 15 |  | 
| 16 | info = theInfo; | 
| 17 | myFF = the_ff; | 
| 18 | isFirst = 1; | 
| 19 |  | 
| 20 | molecules = info->molecules; | 
| 21 | nMols = info->n_mol; | 
| 22 |  | 
| 23 | // give a little love back to the SimInfo object | 
| 24 |  | 
| 25 | if( info->the_integrator != NULL ) delete info->the_integrator; | 
| 26 | info->the_integrator = this; | 
| 27 |  | 
| 28 | nAtoms = info->n_atoms; | 
| 29 |  | 
| 30 | // check for constraints | 
| 31 |  | 
| 32 | constrainedA    = NULL; | 
| 33 | constrainedB    = NULL; | 
| 34 | constrainedDsqr = NULL; | 
| 35 | moving          = NULL; | 
| 36 | moved           = NULL; | 
| 37 | oldPos          = NULL; | 
| 38 |  | 
| 39 | nConstrained = 0; | 
| 40 |  | 
| 41 | checkConstraints(); | 
| 42 | } | 
| 43 |  | 
| 44 | template<typename T> Integrator<T>::~Integrator() { | 
| 45 |  | 
| 46 | if( nConstrained ){ | 
| 47 | delete[] constrainedA; | 
| 48 | delete[] constrainedB; | 
| 49 | delete[] constrainedDsqr; | 
| 50 | delete[] moving; | 
| 51 | delete[] moved; | 
| 52 | delete[] oldPos; | 
| 53 | } | 
| 54 |  | 
| 55 | } | 
| 56 |  | 
| 57 | template<typename T> void Integrator<T>::checkConstraints( void ){ | 
| 58 |  | 
| 59 |  | 
| 60 | isConstrained = 0; | 
| 61 |  | 
| 62 | Constraint *temp_con; | 
| 63 | Constraint *dummy_plug; | 
| 64 | temp_con = new Constraint[info->n_SRI]; | 
| 65 | nConstrained = 0; | 
| 66 | int constrained = 0; | 
| 67 |  | 
| 68 | SRI** theArray; | 
| 69 | for(int i = 0; i < nMols; i++){ | 
| 70 |  | 
| 71 | theArray = (SRI**) molecules[i].getMyBonds(); | 
| 72 | for(int j=0; j<molecules[i].getNBonds(); j++){ | 
| 73 |  | 
| 74 | constrained = theArray[j]->is_constrained(); | 
| 75 |  | 
| 76 | if(constrained){ | 
| 77 |  | 
| 78 | dummy_plug = theArray[j]->get_constraint(); | 
| 79 | temp_con[nConstrained].set_a( dummy_plug->get_a() ); | 
| 80 | temp_con[nConstrained].set_b( dummy_plug->get_b() ); | 
| 81 | temp_con[nConstrained].set_dsqr( dummy_plug->get_dsqr() ); | 
| 82 |  | 
| 83 | nConstrained++; | 
| 84 | constrained = 0; | 
| 85 | } | 
| 86 | } | 
| 87 |  | 
| 88 | theArray = (SRI**) molecules[i].getMyBends(); | 
| 89 | for(int j=0; j<molecules[i].getNBends(); j++){ | 
| 90 |  | 
| 91 | constrained = theArray[j]->is_constrained(); | 
| 92 |  | 
| 93 | if(constrained){ | 
| 94 |  | 
| 95 | dummy_plug = theArray[j]->get_constraint(); | 
| 96 | temp_con[nConstrained].set_a( dummy_plug->get_a() ); | 
| 97 | temp_con[nConstrained].set_b( dummy_plug->get_b() ); | 
| 98 | temp_con[nConstrained].set_dsqr( dummy_plug->get_dsqr() ); | 
| 99 |  | 
| 100 | nConstrained++; | 
| 101 | constrained = 0; | 
| 102 | } | 
| 103 | } | 
| 104 |  | 
| 105 | theArray = (SRI**) molecules[i].getMyTorsions(); | 
| 106 | for(int j=0; j<molecules[i].getNTorsions(); j++){ | 
| 107 |  | 
| 108 | constrained = theArray[j]->is_constrained(); | 
| 109 |  | 
| 110 | if(constrained){ | 
| 111 |  | 
| 112 | dummy_plug = theArray[j]->get_constraint(); | 
| 113 | temp_con[nConstrained].set_a( dummy_plug->get_a() ); | 
| 114 | temp_con[nConstrained].set_b( dummy_plug->get_b() ); | 
| 115 | temp_con[nConstrained].set_dsqr( dummy_plug->get_dsqr() ); | 
| 116 |  | 
| 117 | nConstrained++; | 
| 118 | constrained = 0; | 
| 119 | } | 
| 120 | } | 
| 121 | } | 
| 122 |  | 
| 123 | if(nConstrained > 0){ | 
| 124 |  | 
| 125 | isConstrained = 1; | 
| 126 |  | 
| 127 | if(constrainedA != NULL )    delete[] constrainedA; | 
| 128 | if(constrainedB != NULL )    delete[] constrainedB; | 
| 129 | if(constrainedDsqr != NULL ) delete[] constrainedDsqr; | 
| 130 |  | 
| 131 | constrainedA =    new int[nConstrained]; | 
| 132 | constrainedB =    new int[nConstrained]; | 
| 133 | constrainedDsqr = new double[nConstrained]; | 
| 134 |  | 
| 135 | for( int i = 0; i < nConstrained; i++){ | 
| 136 |  | 
| 137 | constrainedA[i] = temp_con[i].get_a(); | 
| 138 | constrainedB[i] = temp_con[i].get_b(); | 
| 139 | constrainedDsqr[i] = temp_con[i].get_dsqr(); | 
| 140 |  | 
| 141 | } | 
| 142 |  | 
| 143 |  | 
| 144 | // save oldAtoms to check for lode balanceing later on. | 
| 145 |  | 
| 146 | oldAtoms = nAtoms; | 
| 147 |  | 
| 148 | moving = new int[nAtoms]; | 
| 149 | moved  = new int[nAtoms]; | 
| 150 |  | 
| 151 | oldPos = new double[nAtoms*3]; | 
| 152 | } | 
| 153 |  | 
| 154 | delete[] temp_con; | 
| 155 | } | 
| 156 |  | 
| 157 |  | 
| 158 | template<typename T> void Integrator<T>::integrate( void ){ | 
| 159 |  | 
| 160 | int i, j;                         // loop counters | 
| 161 |  | 
| 162 | double runTime     = info->run_time; | 
| 163 | double sampleTime  = info->sampleTime; | 
| 164 | double statusTime  = info->statusTime; | 
| 165 | double thermalTime = info->thermalTime; | 
| 166 |  | 
| 167 | double currSample; | 
| 168 | double currThermal; | 
| 169 | double currStatus; | 
| 170 |  | 
| 171 | int calcPot, calcStress; | 
| 172 | int isError; | 
| 173 |  | 
| 174 | tStats   = new Thermo( info ); | 
| 175 | statOut  = new StatWriter( info ); | 
| 176 | dumpOut  = new DumpWriter( info ); | 
| 177 |  | 
| 178 | atoms = info->atoms; | 
| 179 | DirectionalAtom* dAtom; | 
| 180 |  | 
| 181 | dt = info->dt; | 
| 182 | dt2 = 0.5 * dt; | 
| 183 |  | 
| 184 | // initialize the forces before the first step | 
| 185 |  | 
| 186 | calcForce(1, 1); | 
| 187 | // myFF->doForces(1,1); | 
| 188 |  | 
| 189 | if( info->setTemp ){ | 
| 190 |  | 
| 191 | thermalize(); | 
| 192 | } | 
| 193 |  | 
| 194 | calcPot     = 0; | 
| 195 | calcStress  = 0; | 
| 196 | currSample  = sampleTime + info->getTime(); | 
| 197 | currThermal = thermalTime+ info->getTime(); | 
| 198 | currStatus  = statusTime + info->getTime(); | 
| 199 |  | 
| 200 | dumpOut->writeDump( info->getTime() ); | 
| 201 | statOut->writeStat( info->getTime() ); | 
| 202 |  | 
| 203 | readyCheck(); | 
| 204 |  | 
| 205 | #ifdef IS_MPI | 
| 206 | strcpy( checkPointMsg, | 
| 207 | "The integrator is ready to go." ); | 
| 208 | MPIcheckPoint(); | 
| 209 | #endif // is_mpi | 
| 210 |  | 
| 211 | while( info->getTime() < runTime ){ | 
| 212 |  | 
| 213 | if( (info->getTime()+dt) >= currStatus ){ | 
| 214 | calcPot = 1; | 
| 215 | calcStress = 1; | 
| 216 | } | 
| 217 |  | 
| 218 | integrateStep( calcPot, calcStress ); | 
| 219 |  | 
| 220 | info->incrTime(dt); | 
| 221 |  | 
| 222 | if( info->setTemp ){ | 
| 223 | if( info->getTime() >= currThermal ){ | 
| 224 | thermalize(); | 
| 225 | currThermal += thermalTime; | 
| 226 | } | 
| 227 | } | 
| 228 |  | 
| 229 | if( info->getTime() >= currSample ){ | 
| 230 | dumpOut->writeDump( info->getTime() ); | 
| 231 | currSample += sampleTime; | 
| 232 | } | 
| 233 |  | 
| 234 | if( info->getTime() >= currStatus ){ | 
| 235 | statOut->writeStat( info->getTime() ); | 
| 236 | calcPot = 0; | 
| 237 | calcStress = 0; | 
| 238 | currStatus += statusTime; | 
| 239 | } | 
| 240 |  | 
| 241 | #ifdef IS_MPI | 
| 242 | strcpy( checkPointMsg, | 
| 243 | "successfully took a time step." ); | 
| 244 | MPIcheckPoint(); | 
| 245 | #endif // is_mpi | 
| 246 |  | 
| 247 | } | 
| 248 |  | 
| 249 | dumpOut->writeFinal(info->getTime()); | 
| 250 |  | 
| 251 | delete dumpOut; | 
| 252 | delete statOut; | 
| 253 | } | 
| 254 |  | 
| 255 | template<typename T> void Integrator<T>::integrateStep( int calcPot, int calcStress ){ | 
| 256 |  | 
| 257 |  | 
| 258 |  | 
| 259 | // Position full step, and velocity half step | 
| 260 |  | 
| 261 | preMove(); | 
| 262 | moveA(); | 
| 263 | if( nConstrained ) constrainA(); | 
| 264 |  | 
| 265 |  | 
| 266 | #ifdef IS_MPI | 
| 267 | strcpy( checkPointMsg, "Succesful moveA\n" ); | 
| 268 | MPIcheckPoint(); | 
| 269 | #endif // is_mpi | 
| 270 |  | 
| 271 |  | 
| 272 | // calc forces | 
| 273 |  | 
| 274 | calcForce(calcPot,calcStress); | 
| 275 |  | 
| 276 | #ifdef IS_MPI | 
| 277 | strcpy( checkPointMsg, "Succesful doForces\n" ); | 
| 278 | MPIcheckPoint(); | 
| 279 | #endif // is_mpi | 
| 280 |  | 
| 281 |  | 
| 282 | // finish the velocity  half step | 
| 283 |  | 
| 284 | moveB(); | 
| 285 | if( nConstrained ) constrainB(); | 
| 286 |  | 
| 287 | #ifdef IS_MPI | 
| 288 | strcpy( checkPointMsg, "Succesful moveB\n" ); | 
| 289 | MPIcheckPoint(); | 
| 290 | #endif // is_mpi | 
| 291 |  | 
| 292 |  | 
| 293 | } | 
| 294 |  | 
| 295 |  | 
| 296 | template<typename T> void Integrator<T>::moveA( void ){ | 
| 297 |  | 
| 298 | int i, j; | 
| 299 | DirectionalAtom* dAtom; | 
| 300 | double Tb[3], ji[3]; | 
| 301 | double A[3][3], I[3][3]; | 
| 302 | double angle; | 
| 303 | double vel[3], pos[3], frc[3]; | 
| 304 | double mass; | 
| 305 |  | 
| 306 | for( i=0; i<nAtoms; i++ ){ | 
| 307 |  | 
| 308 | atoms[i]->getVel( vel ); | 
| 309 | atoms[i]->getPos( pos ); | 
| 310 | atoms[i]->getFrc( frc ); | 
| 311 |  | 
| 312 | mass = atoms[i]->getMass(); | 
| 313 |  | 
| 314 | for (j=0; j < 3; j++) { | 
| 315 | // velocity half step | 
| 316 | vel[j] += ( dt2 * frc[j] / mass ) * eConvert; | 
| 317 | // position whole step | 
| 318 | pos[j] += dt * vel[j]; | 
| 319 | } | 
| 320 |  | 
| 321 | atoms[i]->setVel( vel ); | 
| 322 | atoms[i]->setPos( pos ); | 
| 323 |  | 
| 324 | if( atoms[i]->isDirectional() ){ | 
| 325 |  | 
| 326 | dAtom = (DirectionalAtom *)atoms[i]; | 
| 327 |  | 
| 328 | // get and convert the torque to body frame | 
| 329 |  | 
| 330 | dAtom->getTrq( Tb ); | 
| 331 | dAtom->lab2Body( Tb ); | 
| 332 |  | 
| 333 | // get the angular momentum, and propagate a half step | 
| 334 |  | 
| 335 | dAtom->getJ( ji ); | 
| 336 |  | 
| 337 | for (j=0; j < 3; j++) | 
| 338 | ji[j] += (dt2 * Tb[j]) * eConvert; | 
| 339 |  | 
| 340 | // use the angular velocities to propagate the rotation matrix a | 
| 341 | // full time step | 
| 342 |  | 
| 343 | dAtom->getA(A); | 
| 344 | dAtom->getI(I); | 
| 345 |  | 
| 346 | // rotate about the x-axis | 
| 347 | angle = dt2 * ji[0] / I[0][0]; | 
| 348 | this->rotate( 1, 2, angle, ji, A ); | 
| 349 |  | 
| 350 | // rotate about the y-axis | 
| 351 | angle = dt2 * ji[1] / I[1][1]; | 
| 352 | this->rotate( 2, 0, angle, ji, A ); | 
| 353 |  | 
| 354 | // rotate about the z-axis | 
| 355 | angle = dt * ji[2] / I[2][2]; | 
| 356 | this->rotate( 0, 1, angle, ji, A); | 
| 357 |  | 
| 358 | // rotate about the y-axis | 
| 359 | angle = dt2 * ji[1] / I[1][1]; | 
| 360 | this->rotate( 2, 0, angle, ji, A ); | 
| 361 |  | 
| 362 | // rotate about the x-axis | 
| 363 | angle = dt2 * ji[0] / I[0][0]; | 
| 364 | this->rotate( 1, 2, angle, ji, A ); | 
| 365 |  | 
| 366 |  | 
| 367 | dAtom->setJ( ji ); | 
| 368 | dAtom->setA( A  ); | 
| 369 |  | 
| 370 | } | 
| 371 | } | 
| 372 | } | 
| 373 |  | 
| 374 |  | 
| 375 | template<typename T> void Integrator<T>::moveB( void ){ | 
| 376 | int i, j; | 
| 377 | DirectionalAtom* dAtom; | 
| 378 | double Tb[3], ji[3]; | 
| 379 | double vel[3], frc[3]; | 
| 380 | double mass; | 
| 381 |  | 
| 382 | for( i=0; i<nAtoms; i++ ){ | 
| 383 |  | 
| 384 | atoms[i]->getVel( vel ); | 
| 385 | atoms[i]->getFrc( frc ); | 
| 386 |  | 
| 387 | mass = atoms[i]->getMass(); | 
| 388 |  | 
| 389 | // velocity half step | 
| 390 | for (j=0; j < 3; j++) | 
| 391 | vel[j] += ( dt2 * frc[j] / mass ) * eConvert; | 
| 392 |  | 
| 393 | atoms[i]->setVel( vel ); | 
| 394 |  | 
| 395 | if( atoms[i]->isDirectional() ){ | 
| 396 |  | 
| 397 | dAtom = (DirectionalAtom *)atoms[i]; | 
| 398 |  | 
| 399 | // get and convert the torque to body frame | 
| 400 |  | 
| 401 | dAtom->getTrq( Tb ); | 
| 402 | dAtom->lab2Body( Tb ); | 
| 403 |  | 
| 404 | // get the angular momentum, and propagate a half step | 
| 405 |  | 
| 406 | dAtom->getJ( ji ); | 
| 407 |  | 
| 408 | for (j=0; j < 3; j++) | 
| 409 | ji[j] += (dt2 * Tb[j]) * eConvert; | 
| 410 |  | 
| 411 |  | 
| 412 | dAtom->setJ( ji ); | 
| 413 | } | 
| 414 | } | 
| 415 | } | 
| 416 |  | 
| 417 | template<typename T> void Integrator<T>::preMove( void ){ | 
| 418 | int i, j; | 
| 419 | double pos[3]; | 
| 420 |  | 
| 421 | if( nConstrained ){ | 
| 422 |  | 
| 423 | for(i=0; i < nAtoms; i++) { | 
| 424 |  | 
| 425 | atoms[i]->getPos( pos ); | 
| 426 |  | 
| 427 | for (j = 0; j < 3; j++) { | 
| 428 | oldPos[3*i + j] = pos[j]; | 
| 429 | } | 
| 430 |  | 
| 431 | } | 
| 432 | } | 
| 433 | } | 
| 434 |  | 
| 435 | template<typename T> void Integrator<T>::constrainA(){ | 
| 436 |  | 
| 437 | int i,j,k; | 
| 438 | int done; | 
| 439 | double posA[3], posB[3]; | 
| 440 | double velA[3], velB[3]; | 
| 441 | double pab[3]; | 
| 442 | double rab[3]; | 
| 443 | int a, b, ax, ay, az, bx, by, bz; | 
| 444 | double rma, rmb; | 
| 445 | double dx, dy, dz; | 
| 446 | double rpab; | 
| 447 | double rabsq, pabsq, rpabsq; | 
| 448 | double diffsq; | 
| 449 | double gab; | 
| 450 | int iteration; | 
| 451 |  | 
| 452 | for( i=0; i<nAtoms; i++){ | 
| 453 | moving[i] = 0; | 
| 454 | moved[i]  = 1; | 
| 455 | } | 
| 456 |  | 
| 457 | iteration = 0; | 
| 458 | done = 0; | 
| 459 | while( !done && (iteration < maxIteration )){ | 
| 460 |  | 
| 461 | done = 1; | 
| 462 | for(i=0; i<nConstrained; i++){ | 
| 463 |  | 
| 464 | a = constrainedA[i]; | 
| 465 | b = constrainedB[i]; | 
| 466 |  | 
| 467 | ax = (a*3) + 0; | 
| 468 | ay = (a*3) + 1; | 
| 469 | az = (a*3) + 2; | 
| 470 |  | 
| 471 | bx = (b*3) + 0; | 
| 472 | by = (b*3) + 1; | 
| 473 | bz = (b*3) + 2; | 
| 474 |  | 
| 475 | if( moved[a] || moved[b] ){ | 
| 476 |  | 
| 477 | atoms[a]->getPos( posA ); | 
| 478 | atoms[b]->getPos( posB ); | 
| 479 |  | 
| 480 | for (j = 0; j < 3; j++ ) | 
| 481 | pab[j] = posA[j] - posB[j]; | 
| 482 |  | 
| 483 | //periodic boundary condition | 
| 484 |  | 
| 485 | info->wrapVector( pab ); | 
| 486 |  | 
| 487 | pabsq = pab[0] * pab[0] + pab[1] * pab[1] + pab[2] * pab[2]; | 
| 488 |  | 
| 489 | rabsq = constrainedDsqr[i]; | 
| 490 | diffsq = rabsq - pabsq; | 
| 491 |  | 
| 492 | // the original rattle code from alan tidesley | 
| 493 | if (fabs(diffsq) > (tol*rabsq*2)) { | 
| 494 | rab[0] = oldPos[ax] - oldPos[bx]; | 
| 495 | rab[1] = oldPos[ay] - oldPos[by]; | 
| 496 | rab[2] = oldPos[az] - oldPos[bz]; | 
| 497 |  | 
| 498 | info->wrapVector( rab ); | 
| 499 |  | 
| 500 | rpab = rab[0] * pab[0] + rab[1] * pab[1] + rab[2] * pab[2]; | 
| 501 |  | 
| 502 | rpabsq = rpab * rpab; | 
| 503 |  | 
| 504 |  | 
| 505 | if (rpabsq < (rabsq * -diffsq)){ | 
| 506 |  | 
| 507 | #ifdef IS_MPI | 
| 508 | a = atoms[a]->getGlobalIndex(); | 
| 509 | b = atoms[b]->getGlobalIndex(); | 
| 510 | #endif //is_mpi | 
| 511 | sprintf( painCave.errMsg, | 
| 512 | "Constraint failure in constrainA at atom %d and %d.\n", | 
| 513 | a, b ); | 
| 514 | painCave.isFatal = 1; | 
| 515 | simError(); | 
| 516 | } | 
| 517 |  | 
| 518 | rma = 1.0 / atoms[a]->getMass(); | 
| 519 | rmb = 1.0 / atoms[b]->getMass(); | 
| 520 |  | 
| 521 | gab = diffsq / ( 2.0 * ( rma + rmb ) * rpab ); | 
| 522 |  | 
| 523 | dx = rab[0] * gab; | 
| 524 | dy = rab[1] * gab; | 
| 525 | dz = rab[2] * gab; | 
| 526 |  | 
| 527 | posA[0] += rma * dx; | 
| 528 | posA[1] += rma * dy; | 
| 529 | posA[2] += rma * dz; | 
| 530 |  | 
| 531 | atoms[a]->setPos( posA ); | 
| 532 |  | 
| 533 | posB[0] -= rmb * dx; | 
| 534 | posB[1] -= rmb * dy; | 
| 535 | posB[2] -= rmb * dz; | 
| 536 |  | 
| 537 | atoms[b]->setPos( posB ); | 
| 538 |  | 
| 539 | dx = dx / dt; | 
| 540 | dy = dy / dt; | 
| 541 | dz = dz / dt; | 
| 542 |  | 
| 543 | atoms[a]->getVel( velA ); | 
| 544 |  | 
| 545 | velA[0] += rma * dx; | 
| 546 | velA[1] += rma * dy; | 
| 547 | velA[2] += rma * dz; | 
| 548 |  | 
| 549 | atoms[a]->setVel( velA ); | 
| 550 |  | 
| 551 | atoms[b]->getVel( velB ); | 
| 552 |  | 
| 553 | velB[0] -= rmb * dx; | 
| 554 | velB[1] -= rmb * dy; | 
| 555 | velB[2] -= rmb * dz; | 
| 556 |  | 
| 557 | atoms[b]->setVel( velB ); | 
| 558 |  | 
| 559 | moving[a] = 1; | 
| 560 | moving[b] = 1; | 
| 561 | done = 0; | 
| 562 | } | 
| 563 | } | 
| 564 | } | 
| 565 |  | 
| 566 | for(i=0; i<nAtoms; i++){ | 
| 567 |  | 
| 568 | moved[i] = moving[i]; | 
| 569 | moving[i] = 0; | 
| 570 | } | 
| 571 |  | 
| 572 | iteration++; | 
| 573 | } | 
| 574 |  | 
| 575 | if( !done ){ | 
| 576 |  | 
| 577 | sprintf( painCave.errMsg, | 
| 578 | "Constraint failure in constrainA, too many iterations: %d\n", | 
| 579 | iteration ); | 
| 580 | painCave.isFatal = 1; | 
| 581 | simError(); | 
| 582 | } | 
| 583 |  | 
| 584 | } | 
| 585 |  | 
| 586 | template<typename T> void Integrator<T>::constrainB( void ){ | 
| 587 |  | 
| 588 | int i,j,k; | 
| 589 | int done; | 
| 590 | double posA[3], posB[3]; | 
| 591 | double velA[3], velB[3]; | 
| 592 | double vxab, vyab, vzab; | 
| 593 | double rab[3]; | 
| 594 | int a, b, ax, ay, az, bx, by, bz; | 
| 595 | double rma, rmb; | 
| 596 | double dx, dy, dz; | 
| 597 | double rabsq, pabsq, rvab; | 
| 598 | double diffsq; | 
| 599 | double gab; | 
| 600 | int iteration; | 
| 601 |  | 
| 602 | for(i=0; i<nAtoms; i++){ | 
| 603 | moving[i] = 0; | 
| 604 | moved[i] = 1; | 
| 605 | } | 
| 606 |  | 
| 607 | done = 0; | 
| 608 | iteration = 0; | 
| 609 | while( !done && (iteration < maxIteration ) ){ | 
| 610 |  | 
| 611 | done = 1; | 
| 612 |  | 
| 613 | for(i=0; i<nConstrained; i++){ | 
| 614 |  | 
| 615 | a = constrainedA[i]; | 
| 616 | b = constrainedB[i]; | 
| 617 |  | 
| 618 | ax = (a*3) + 0; | 
| 619 | ay = (a*3) + 1; | 
| 620 | az = (a*3) + 2; | 
| 621 |  | 
| 622 | bx = (b*3) + 0; | 
| 623 | by = (b*3) + 1; | 
| 624 | bz = (b*3) + 2; | 
| 625 |  | 
| 626 | if( moved[a] || moved[b] ){ | 
| 627 |  | 
| 628 | atoms[a]->getVel( velA ); | 
| 629 | atoms[b]->getVel( velB ); | 
| 630 |  | 
| 631 | vxab = velA[0] - velB[0]; | 
| 632 | vyab = velA[1] - velB[1]; | 
| 633 | vzab = velA[2] - velB[2]; | 
| 634 |  | 
| 635 | atoms[a]->getPos( posA ); | 
| 636 | atoms[b]->getPos( posB ); | 
| 637 |  | 
| 638 | for (j = 0; j < 3; j++) | 
| 639 | rab[j] = posA[j] - posB[j]; | 
| 640 |  | 
| 641 | info->wrapVector( rab ); | 
| 642 |  | 
| 643 | rma = 1.0 / atoms[a]->getMass(); | 
| 644 | rmb = 1.0 / atoms[b]->getMass(); | 
| 645 |  | 
| 646 | rvab = rab[0] * vxab + rab[1] * vyab + rab[2] * vzab; | 
| 647 |  | 
| 648 | gab = -rvab / ( ( rma + rmb ) * constrainedDsqr[i] ); | 
| 649 |  | 
| 650 | if (fabs(gab) > tol) { | 
| 651 |  | 
| 652 | dx = rab[0] * gab; | 
| 653 | dy = rab[1] * gab; | 
| 654 | dz = rab[2] * gab; | 
| 655 |  | 
| 656 | velA[0] += rma * dx; | 
| 657 | velA[1] += rma * dy; | 
| 658 | velA[2] += rma * dz; | 
| 659 |  | 
| 660 | atoms[a]->setVel( velA ); | 
| 661 |  | 
| 662 | velB[0] -= rmb * dx; | 
| 663 | velB[1] -= rmb * dy; | 
| 664 | velB[2] -= rmb * dz; | 
| 665 |  | 
| 666 | atoms[b]->setVel( velB ); | 
| 667 |  | 
| 668 | moving[a] = 1; | 
| 669 | moving[b] = 1; | 
| 670 | done = 0; | 
| 671 | } | 
| 672 | } | 
| 673 | } | 
| 674 |  | 
| 675 | for(i=0; i<nAtoms; i++){ | 
| 676 | moved[i] = moving[i]; | 
| 677 | moving[i] = 0; | 
| 678 | } | 
| 679 |  | 
| 680 | iteration++; | 
| 681 | } | 
| 682 |  | 
| 683 | if( !done ){ | 
| 684 |  | 
| 685 |  | 
| 686 | sprintf( painCave.errMsg, | 
| 687 | "Constraint failure in constrainB, too many iterations: %d\n", | 
| 688 | iteration ); | 
| 689 | painCave.isFatal = 1; | 
| 690 | simError(); | 
| 691 | } | 
| 692 |  | 
| 693 | } | 
| 694 |  | 
| 695 | template<typename T> void Integrator<T>::rotate( int axes1, int axes2, double angle, double ji[3], | 
| 696 | double A[3][3] ){ | 
| 697 |  | 
| 698 | int i,j,k; | 
| 699 | double sinAngle; | 
| 700 | double cosAngle; | 
| 701 | double angleSqr; | 
| 702 | double angleSqrOver4; | 
| 703 | double top, bottom; | 
| 704 | double rot[3][3]; | 
| 705 | double tempA[3][3]; | 
| 706 | double tempJ[3]; | 
| 707 |  | 
| 708 | // initialize the tempA | 
| 709 |  | 
| 710 | for(i=0; i<3; i++){ | 
| 711 | for(j=0; j<3; j++){ | 
| 712 | tempA[j][i] = A[i][j]; | 
| 713 | } | 
| 714 | } | 
| 715 |  | 
| 716 | // initialize the tempJ | 
| 717 |  | 
| 718 | for( i=0; i<3; i++) tempJ[i] = ji[i]; | 
| 719 |  | 
| 720 | // initalize rot as a unit matrix | 
| 721 |  | 
| 722 | rot[0][0] = 1.0; | 
| 723 | rot[0][1] = 0.0; | 
| 724 | rot[0][2] = 0.0; | 
| 725 |  | 
| 726 | rot[1][0] = 0.0; | 
| 727 | rot[1][1] = 1.0; | 
| 728 | rot[1][2] = 0.0; | 
| 729 |  | 
| 730 | rot[2][0] = 0.0; | 
| 731 | rot[2][1] = 0.0; | 
| 732 | rot[2][2] = 1.0; | 
| 733 |  | 
| 734 | // use a small angle aproximation for sin and cosine | 
| 735 |  | 
| 736 | angleSqr  = angle * angle; | 
| 737 | angleSqrOver4 = angleSqr / 4.0; | 
| 738 | top = 1.0 - angleSqrOver4; | 
| 739 | bottom = 1.0 + angleSqrOver4; | 
| 740 |  | 
| 741 | cosAngle = top / bottom; | 
| 742 | sinAngle = angle / bottom; | 
| 743 |  | 
| 744 | rot[axes1][axes1] = cosAngle; | 
| 745 | rot[axes2][axes2] = cosAngle; | 
| 746 |  | 
| 747 | rot[axes1][axes2] = sinAngle; | 
| 748 | rot[axes2][axes1] = -sinAngle; | 
| 749 |  | 
| 750 | // rotate the momentum acoording to: ji[] = rot[][] * ji[] | 
| 751 |  | 
| 752 | for(i=0; i<3; i++){ | 
| 753 | ji[i] = 0.0; | 
| 754 | for(k=0; k<3; k++){ | 
| 755 | ji[i] += rot[i][k] * tempJ[k]; | 
| 756 | } | 
| 757 | } | 
| 758 |  | 
| 759 | // rotate the Rotation matrix acording to: | 
| 760 | //            A[][] = A[][] * transpose(rot[][]) | 
| 761 |  | 
| 762 |  | 
| 763 | // NOte for as yet unknown reason, we are performing the | 
| 764 | // calculation as: | 
| 765 | //                transpose(A[][]) = transpose(A[][]) * transpose(rot[][]) | 
| 766 |  | 
| 767 | for(i=0; i<3; i++){ | 
| 768 | for(j=0; j<3; j++){ | 
| 769 | A[j][i] = 0.0; | 
| 770 | for(k=0; k<3; k++){ | 
| 771 | A[j][i] += tempA[i][k] * rot[j][k]; | 
| 772 | } | 
| 773 | } | 
| 774 | } | 
| 775 | } | 
| 776 |  | 
| 777 | template<typename T> void Integrator<T>::calcForce( int calcPot, int calcStress ){ | 
| 778 | myFF->doForces(calcPot,calcStress); | 
| 779 |  | 
| 780 | } | 
| 781 |  | 
| 782 | template<typename T> void Integrator<T>::thermalize(){ | 
| 783 | tStats->velocitize(); | 
| 784 | } |