ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/trunk/OOPSE/libmdtools/NPTf.cpp
Revision: 586
Committed: Wed Jul 9 22:14:06 2003 UTC (21 years ago) by mmeineke
File size: 9436 byte(s)
Log Message:
Bug fixing NPTi and NPTf. there is some error in the caclulation of HmatInverse.

File Contents

# User Rev Content
1 gezelter 576 #include "Atom.hpp"
2     #include "SRI.hpp"
3     #include "AbstractClasses.hpp"
4     #include "SimInfo.hpp"
5     #include "ForceFields.hpp"
6     #include "Thermo.hpp"
7     #include "ReadWrite.hpp"
8     #include "Integrator.hpp"
9     #include "simError.h"
10    
11    
12 gezelter 578 // Basic non-isotropic thermostating and barostating via the Melchionna
13 gezelter 576 // modification of the Hoover algorithm:
14     //
15     // Melchionna, S., Ciccotti, G., and Holian, B. L., 1993,
16     // Molec. Phys., 78, 533.
17     //
18     // and
19     //
20     // Hoover, W. G., 1986, Phys. Rev. A, 34, 2499.
21    
22 gezelter 577 NPTf::NPTf ( SimInfo *theInfo, ForceFields* the_ff):
23 gezelter 576 Integrator( theInfo, the_ff )
24     {
25     int i;
26     chi = 0.0;
27     for(i = 0; i < 9; i++) eta[i] = 0.0;
28     have_tau_thermostat = 0;
29     have_tau_barostat = 0;
30     have_target_temp = 0;
31     have_target_pressure = 0;
32     }
33    
34 gezelter 577 void NPTf::moveA() {
35 gezelter 576
36     int i,j,k;
37     int atomIndex, aMatIndex;
38     DirectionalAtom* dAtom;
39     double Tb[3];
40     double ji[3];
41     double rj[3];
42 gezelter 578 double ident[3][3], eta1[3][3], eta2[3][3], hmnew[3][3];
43     double hm[9];
44     double vx, vy, vz;
45     double scx, scy, scz;
46 gezelter 576 double instaTemp, instaPress, instaVol;
47     double tt2, tb2;
48     double angle;
49 gezelter 577 double press[9];
50 gezelter 576
51     tt2 = tauThermostat * tauThermostat;
52     tb2 = tauBarostat * tauBarostat;
53    
54     instaTemp = tStats->getTemperature();
55 gezelter 577 tStats->getPressureTensor(press);
56 gezelter 576 instaVol = tStats->getVolume();
57    
58     // first evolve chi a half step
59    
60     chi += dt2 * ( instaTemp / targetTemp - 1.0) / tt2;
61    
62 mmeineke 586 eta[0] += dt2 * instaVol * (press[0] - targetPressure/p_convert) /
63     (NkBT*tb2);
64 gezelter 577 eta[1] += dt2 * instaVol * press[1] / (NkBT*tb2);
65     eta[2] += dt2 * instaVol * press[2] / (NkBT*tb2);
66     eta[3] += dt2 * instaVol * press[3] / (NkBT*tb2);
67 mmeineke 586 eta[4] += dt2 * instaVol * (press[4] - targetPressure/p_convert) /
68     (NkBT*tb2);
69 gezelter 577 eta[5] += dt2 * instaVol * press[5] / (NkBT*tb2);
70     eta[6] += dt2 * instaVol * press[6] / (NkBT*tb2);
71     eta[7] += dt2 * instaVol * press[7] / (NkBT*tb2);
72 mmeineke 586 eta[8] += dt2 * instaVol * (press[8] - targetPressure/p_convert) /
73     (NkBT*tb2);
74 gezelter 577
75 gezelter 576 for( i=0; i<nAtoms; i++ ){
76     atomIndex = i * 3;
77     aMatIndex = i * 9;
78    
79     // velocity half step
80 gezelter 577
81     vx = vel[atomIndex];
82     vy = vel[atomIndex+1];
83     vz = vel[atomIndex+2];
84    
85     scx = (chi + eta[0])*vx + eta[1]*vy + eta[2]*vz;
86     scy = eta[3]*vx + (chi + eta[4])*vy + eta[5]*vz;
87     scz = eta[6]*vx + eta[7]*vy + (chi + eta[8])*vz;
88    
89     vx += dt2 * ((frc[atomIndex] /atoms[i]->getMass())*eConvert - scx);
90     vy += dt2 * ((frc[atomIndex+1]/atoms[i]->getMass())*eConvert - scy);
91     vz += dt2 * ((frc[atomIndex+2]/atoms[i]->getMass())*eConvert - scz);
92 gezelter 576
93 gezelter 577 vel[atomIndex] = vx;
94     vel[atomIndex+1] = vy;
95     vel[atomIndex+2] = vz;
96    
97 gezelter 576 // position whole step
98    
99 gezelter 577 rj[0] = pos[atomIndex];
100     rj[1] = pos[atomIndex+1];
101     rj[2] = pos[atomIndex+2];
102 gezelter 576
103 gezelter 577 info->wrapVector(rj);
104 gezelter 576
105 gezelter 577 scx = eta[0]*rj[0] + eta[1]*rj[1] + eta[2]*rj[2];
106     scy = eta[3]*rj[0] + eta[4]*rj[1] + eta[5]*rj[2];
107     scz = eta[6]*rj[0] + eta[7]*rj[1] + eta[8]*rj[2];
108 gezelter 576
109 gezelter 577 pos[atomIndex] += dt * (vel[atomIndex] + scx);
110     pos[atomIndex+1] += dt * (vel[atomIndex+1] + scy);
111     pos[atomIndex+2] += dt * (vel[atomIndex+2] + scz);
112 gezelter 576
113     if( atoms[i]->isDirectional() ){
114    
115     dAtom = (DirectionalAtom *)atoms[i];
116    
117     // get and convert the torque to body frame
118    
119     Tb[0] = dAtom->getTx();
120     Tb[1] = dAtom->getTy();
121     Tb[2] = dAtom->getTz();
122    
123     dAtom->lab2Body( Tb );
124    
125     // get the angular momentum, and propagate a half step
126    
127     ji[0] = dAtom->getJx();
128     ji[1] = dAtom->getJy();
129     ji[2] = dAtom->getJz();
130    
131     ji[0] += dt2 * (Tb[0] * eConvert - ji[0]*chi);
132     ji[1] += dt2 * (Tb[1] * eConvert - ji[1]*chi);
133     ji[2] += dt2 * (Tb[2] * eConvert - ji[2]*chi);
134    
135     // use the angular velocities to propagate the rotation matrix a
136     // full time step
137    
138     // rotate about the x-axis
139     angle = dt2 * ji[0] / dAtom->getIxx();
140     this->rotate( 1, 2, angle, ji, &Amat[aMatIndex] );
141    
142     // rotate about the y-axis
143     angle = dt2 * ji[1] / dAtom->getIyy();
144     this->rotate( 2, 0, angle, ji, &Amat[aMatIndex] );
145    
146     // rotate about the z-axis
147     angle = dt * ji[2] / dAtom->getIzz();
148     this->rotate( 0, 1, angle, ji, &Amat[aMatIndex] );
149    
150     // rotate about the y-axis
151     angle = dt2 * ji[1] / dAtom->getIyy();
152     this->rotate( 2, 0, angle, ji, &Amat[aMatIndex] );
153    
154     // rotate about the x-axis
155     angle = dt2 * ji[0] / dAtom->getIxx();
156     this->rotate( 1, 2, angle, ji, &Amat[aMatIndex] );
157    
158     dAtom->setJx( ji[0] );
159     dAtom->setJy( ji[1] );
160     dAtom->setJz( ji[2] );
161     }
162    
163     }
164 gezelter 577
165     // Scale the box after all the positions have been moved:
166    
167 gezelter 578 // Use a taylor expansion for eta products: Hmat = Hmat . exp(dt * etaMat)
168     // Hmat = Hmat . ( Ident + dt * etaMat + dt^2 * etaMat*etaMat / 2)
169 gezelter 577
170 gezelter 578
171     for(i=0; i<3; i++){
172     for(j=0; j<3; j++){
173     ident[i][j] = 0.0;
174     eta1[i][j] = eta[3*i+j];
175     eta2[i][j] = 0.0;
176     for(k=0; k<3; k++){
177     eta2[i][j] += eta[3*i+k] * eta[3*k+j];
178     }
179     }
180     ident[i][i] = 1.0;
181     }
182    
183 gezelter 577
184     info->getBoxM(hm);
185 gezelter 578
186     for(i=0; i<3; i++){
187     for(j=0; j<3; j++){
188     hmnew[i][j] = 0.0;
189     for(k=0; k<3; k++){
190     // remember that hmat has transpose ordering for Fortran compat:
191     hmnew[i][j] += hm[3*k+i] * (ident[k][j]
192     + dt * eta1[k][j]
193     + 0.5 * dt * dt * eta2[k][j]);
194     }
195     }
196     }
197 gezelter 577
198 gezelter 578 for (i = 0; i < 3; i++) {
199     for (j = 0; j < 3; j++) {
200     // remember that hmat has transpose ordering for Fortran compat:
201 mmeineke 586 hm[3*j + i] = hmnew[i][j];
202 gezelter 578 }
203     }
204 gezelter 577
205 gezelter 578 info->setBoxM(hm);
206    
207 gezelter 576 }
208    
209 gezelter 578 void NPTf::moveB( void ){
210 gezelter 576 int i,j,k;
211     int atomIndex;
212     DirectionalAtom* dAtom;
213     double Tb[3];
214     double ji[3];
215 gezelter 578 double press[9];
216     double instaTemp, instaVol;
217 gezelter 576 double tt2, tb2;
218 gezelter 578 double vx, vy, vz;
219     double scx, scy, scz;
220     const double p_convert = 1.63882576e8;
221 gezelter 576
222     tt2 = tauThermostat * tauThermostat;
223     tb2 = tauBarostat * tauBarostat;
224    
225     instaTemp = tStats->getTemperature();
226 gezelter 578 tStats->getPressureTensor(press);
227 gezelter 576 instaVol = tStats->getVolume();
228 gezelter 578
229     // first evolve chi a half step
230    
231 gezelter 576 chi += dt2 * ( instaTemp / targetTemp - 1.0) / tt2;
232    
233 mmeineke 586 eta[0] += dt2 * instaVol * (press[0] - targetPressure/p_convert) /
234     (NkBT*tb2);
235 gezelter 578 eta[1] += dt2 * instaVol * press[1] / (NkBT*tb2);
236     eta[2] += dt2 * instaVol * press[2] / (NkBT*tb2);
237     eta[3] += dt2 * instaVol * press[3] / (NkBT*tb2);
238 mmeineke 586 eta[4] += dt2 * instaVol * (press[4] - targetPressure/p_convert) /
239     (NkBT*tb2);
240 gezelter 578 eta[5] += dt2 * instaVol * press[5] / (NkBT*tb2);
241     eta[6] += dt2 * instaVol * press[6] / (NkBT*tb2);
242     eta[7] += dt2 * instaVol * press[7] / (NkBT*tb2);
243 mmeineke 586 eta[8] += dt2 * instaVol * (press[8] - targetPressure/p_convert) /
244     (NkBT*tb2);
245 gezelter 578
246 gezelter 576 for( i=0; i<nAtoms; i++ ){
247     atomIndex = i * 3;
248 gezelter 578
249 gezelter 576 // velocity half step
250    
251 gezelter 578 vx = vel[atomIndex];
252     vy = vel[atomIndex+1];
253     vz = vel[atomIndex+2];
254    
255     scx = (chi + eta[0])*vx + eta[1]*vy + eta[2]*vz;
256     scy = eta[3]*vx + (chi + eta[4])*vy + eta[5]*vz;
257     scz = eta[6]*vx + eta[7]*vy + (chi + eta[8])*vz;
258    
259     vx += dt2 * ((frc[atomIndex] /atoms[i]->getMass())*eConvert - scx);
260     vy += dt2 * ((frc[atomIndex+1]/atoms[i]->getMass())*eConvert - scy);
261     vz += dt2 * ((frc[atomIndex+2]/atoms[i]->getMass())*eConvert - scz);
262    
263     vel[atomIndex] = vx;
264     vel[atomIndex+1] = vy;
265     vel[atomIndex+2] = vz;
266    
267 gezelter 576 if( atoms[i]->isDirectional() ){
268    
269     dAtom = (DirectionalAtom *)atoms[i];
270    
271     // get and convert the torque to body frame
272    
273     Tb[0] = dAtom->getTx();
274     Tb[1] = dAtom->getTy();
275     Tb[2] = dAtom->getTz();
276    
277     dAtom->lab2Body( Tb );
278    
279     // get the angular momentum, and complete the angular momentum
280     // half step
281    
282     ji[0] = dAtom->getJx();
283     ji[1] = dAtom->getJy();
284     ji[2] = dAtom->getJz();
285    
286     ji[0] += dt2 * (Tb[0] * eConvert - ji[0]*chi);
287     ji[1] += dt2 * (Tb[1] * eConvert - ji[1]*chi);
288     ji[2] += dt2 * (Tb[2] * eConvert - ji[2]*chi);
289    
290     dAtom->setJx( ji[0] );
291     dAtom->setJy( ji[1] );
292     dAtom->setJz( ji[2] );
293     }
294     }
295     }
296    
297 gezelter 580 int NPTf::readyCheck() {
298 gezelter 576
299     // First check to see if we have a target temperature.
300     // Not having one is fatal.
301    
302     if (!have_target_temp) {
303     sprintf( painCave.errMsg,
304 gezelter 580 "NPTf error: You can't use the NPTf integrator\n"
305 gezelter 576 " without a targetTemp!\n"
306     );
307     painCave.isFatal = 1;
308     simError();
309     return -1;
310     }
311    
312     if (!have_target_pressure) {
313     sprintf( painCave.errMsg,
314 gezelter 580 "NPTf error: You can't use the NPTf integrator\n"
315 gezelter 576 " without a targetPressure!\n"
316     );
317     painCave.isFatal = 1;
318     simError();
319     return -1;
320     }
321    
322     // We must set tauThermostat.
323    
324     if (!have_tau_thermostat) {
325     sprintf( painCave.errMsg,
326 gezelter 580 "NPTf error: If you use the NPTf\n"
327 gezelter 576 " integrator, you must set tauThermostat.\n");
328     painCave.isFatal = 1;
329     simError();
330     return -1;
331     }
332    
333     // We must set tauBarostat.
334    
335     if (!have_tau_barostat) {
336     sprintf( painCave.errMsg,
337 gezelter 580 "NPTf error: If you use the NPTf\n"
338 gezelter 576 " integrator, you must set tauBarostat.\n");
339     painCave.isFatal = 1;
340     simError();
341     return -1;
342     }
343    
344     // We need NkBT a lot, so just set it here:
345    
346     NkBT = (double)info->ndf * kB * targetTemp;
347    
348     return 1;
349     }