ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/trunk/OOPSE/libmdtools/NPTf.cpp
Revision: 772
Committed: Fri Sep 19 16:01:07 2003 UTC (20 years, 9 months ago) by gezelter
File size: 13271 byte(s)
Log Message:
fixed bugs in NPTf, found (nearly) conserved quantities for both NPTi
and NPTf

File Contents

# User Rev Content
1 gezelter 617 #include <cmath>
2 gezelter 576 #include "Atom.hpp"
3     #include "SRI.hpp"
4     #include "AbstractClasses.hpp"
5     #include "SimInfo.hpp"
6     #include "ForceFields.hpp"
7     #include "Thermo.hpp"
8     #include "ReadWrite.hpp"
9     #include "Integrator.hpp"
10     #include "simError.h"
11    
12 gezelter 772 #ifdef IS_MPI
13     #include "mpiSimulation.hpp"
14     #endif
15 gezelter 576
16 gezelter 578 // Basic non-isotropic thermostating and barostating via the Melchionna
17 gezelter 576 // modification of the Hoover algorithm:
18     //
19     // Melchionna, S., Ciccotti, G., and Holian, B. L., 1993,
20     // Molec. Phys., 78, 533.
21     //
22     // and
23     //
24     // Hoover, W. G., 1986, Phys. Rev. A, 34, 2499.
25    
26 tim 645 template<typename T> NPTf<T>::NPTf ( SimInfo *theInfo, ForceFields* the_ff):
27     T( theInfo, the_ff )
28 gezelter 576 {
29 gezelter 588 int i, j;
30 gezelter 576 chi = 0.0;
31 tim 763 integralOfChidt = 0.0;
32 gezelter 588
33     for(i = 0; i < 3; i++)
34 mmeineke 590 for (j = 0; j < 3; j++)
35 gezelter 588 eta[i][j] = 0.0;
36    
37 gezelter 576 have_tau_thermostat = 0;
38     have_tau_barostat = 0;
39     have_target_temp = 0;
40     have_target_pressure = 0;
41 tim 767
42     have_chi_tolerance = 0;
43     have_eta_tolerance = 0;
44     have_pos_iter_tolerance = 0;
45    
46     oldPos = new double[3*nAtoms];
47     oldVel = new double[3*nAtoms];
48     oldJi = new double[3*nAtoms];
49     #ifdef IS_MPI
50     Nparticles = mpiSim->getTotAtoms();
51     #else
52     Nparticles = theInfo->n_atoms;
53     #endif
54 gezelter 772
55 gezelter 576 }
56    
57 tim 767 template<typename T> NPTf<T>::~NPTf() {
58     delete[] oldPos;
59     delete[] oldVel;
60     delete[] oldJi;
61     }
62    
63 tim 645 template<typename T> void NPTf<T>::moveA() {
64 gezelter 772
65     // new version of NPTf
66 gezelter 600 int i, j, k;
67 gezelter 576 DirectionalAtom* dAtom;
68 gezelter 600 double Tb[3], ji[3];
69     double A[3][3], I[3][3];
70     double angle, mass;
71     double vel[3], pos[3], frc[3];
72    
73     double rj[3];
74     double instaTemp, instaPress, instaVol;
75     double tt2, tb2;
76     double sc[3];
77     double eta2ij;
78 gezelter 588 double press[3][3], vScale[3][3], hm[3][3], hmnew[3][3], scaleMat[3][3];
79 gezelter 617 double bigScale, smallScale, offDiagMax;
80 tim 767 double COM[3];
81 gezelter 576
82     tt2 = tauThermostat * tauThermostat;
83     tb2 = tauBarostat * tauBarostat;
84    
85     instaTemp = tStats->getTemperature();
86 gezelter 577 tStats->getPressureTensor(press);
87 gezelter 576 instaVol = tStats->getVolume();
88    
89 tim 767 tStats->getCOM(COM);
90 gezelter 588
91 tim 767 //calculate scale factor of veloity
92 gezelter 588 for (i = 0; i < 3; i++ ) {
93     for (j = 0; j < 3; j++ ) {
94 tim 767 vScale[i][j] = eta[i][j];
95    
96 gezelter 588 if (i == j) {
97 tim 767 vScale[i][j] += chi;
98     }
99 gezelter 588 }
100     }
101 tim 767
102     //evolve velocity half step
103 gezelter 576 for( i=0; i<nAtoms; i++ ){
104 gezelter 600
105     atoms[i]->getVel( vel );
106     atoms[i]->getFrc( frc );
107    
108     mass = atoms[i]->getMass();
109 gezelter 576
110 gezelter 600 info->matVecMul3( vScale, vel, sc );
111 tim 767
112     for (j=0; j < 3; j++) {
113 gezelter 772 // velocity half step
114 gezelter 600 vel[j] += dt2 * ((frc[j] / mass) * eConvert - sc[j]);
115     }
116 gezelter 576
117 gezelter 600 atoms[i]->setVel( vel );
118 gezelter 576
119     if( atoms[i]->isDirectional() ){
120    
121     dAtom = (DirectionalAtom *)atoms[i];
122 tim 767
123 gezelter 576 // get and convert the torque to body frame
124    
125 gezelter 600 dAtom->getTrq( Tb );
126 gezelter 576 dAtom->lab2Body( Tb );
127    
128     // get the angular momentum, and propagate a half step
129    
130 gezelter 600 dAtom->getJ( ji );
131    
132     for (j=0; j < 3; j++)
133     ji[j] += dt2 * (Tb[j] * eConvert - ji[j]*chi);
134 gezelter 576
135     // use the angular velocities to propagate the rotation matrix a
136     // full time step
137 gezelter 600
138     dAtom->getA(A);
139     dAtom->getI(I);
140    
141 gezelter 576 // rotate about the x-axis
142 gezelter 600 angle = dt2 * ji[0] / I[0][0];
143     this->rotate( 1, 2, angle, ji, A );
144    
145 gezelter 576 // rotate about the y-axis
146 gezelter 600 angle = dt2 * ji[1] / I[1][1];
147     this->rotate( 2, 0, angle, ji, A );
148 gezelter 576
149     // rotate about the z-axis
150 gezelter 600 angle = dt * ji[2] / I[2][2];
151     this->rotate( 0, 1, angle, ji, A);
152 gezelter 576
153     // rotate about the y-axis
154 gezelter 600 angle = dt2 * ji[1] / I[1][1];
155     this->rotate( 2, 0, angle, ji, A );
156 gezelter 576
157     // rotate about the x-axis
158 gezelter 600 angle = dt2 * ji[0] / I[0][0];
159     this->rotate( 1, 2, angle, ji, A );
160 gezelter 576
161 gezelter 600 dAtom->setJ( ji );
162     dAtom->setA( A );
163 tim 767 }
164 gezelter 576 }
165 tim 767
166     // advance chi half step
167     chi += dt2 * ( instaTemp / targetTemp - 1.0) / tt2;
168    
169 gezelter 772 // calculate the integral of chidt
170 tim 767 integralOfChidt += dt2*chi;
171    
172 gezelter 772 // advance eta half step
173    
174 tim 767 for(i = 0; i < 3; i ++)
175     for(j = 0; j < 3; j++){
176     if( i == j)
177     eta[i][j] += dt2 * instaVol *
178     (press[i][j] - targetPressure/p_convert) / (NkBT*tb2);
179     else
180 gezelter 772 eta[i][j] += dt2 * instaVol * press[i][j] / (NkBT*tb2);
181 tim 767 }
182    
183     //save the old positions
184     for(i = 0; i < nAtoms; i++){
185     atoms[i]->getPos(pos);
186     for(j = 0; j < 3; j++)
187     oldPos[i*3 + j] = pos[j];
188     }
189 gezelter 600
190 tim 767 //the first estimation of r(t+dt) is equal to r(t)
191    
192     for(k = 0; k < 4; k ++){
193    
194     for(i =0 ; i < nAtoms; i++){
195    
196     atoms[i]->getVel(vel);
197     atoms[i]->getPos(pos);
198    
199     for(j = 0; j < 3; j++)
200     rj[j] = (oldPos[i*3 + j] + pos[j])/2 - COM[j];
201    
202     info->matVecMul3( eta, rj, sc );
203    
204     for(j = 0; j < 3; j++)
205     pos[j] = oldPos[i*3 + j] + dt*(vel[j] + sc[j]);
206    
207     atoms[i]->setPos( pos );
208    
209     }
210    
211 gezelter 772 if (nConstrained) {
212     constrainA();
213     }
214 tim 767 }
215    
216    
217 gezelter 577 // Scale the box after all the positions have been moved:
218 gezelter 600
219 gezelter 578 // Use a taylor expansion for eta products: Hmat = Hmat . exp(dt * etaMat)
220     // Hmat = Hmat . ( Ident + dt * etaMat + dt^2 * etaMat*etaMat / 2)
221 gezelter 600
222 gezelter 617 bigScale = 1.0;
223     smallScale = 1.0;
224     offDiagMax = 0.0;
225 gezelter 600
226 gezelter 578 for(i=0; i<3; i++){
227     for(j=0; j<3; j++){
228 gezelter 600
229 gezelter 588 // Calculate the matrix Product of the eta array (we only need
230     // the ij element right now):
231 gezelter 600
232 gezelter 588 eta2ij = 0.0;
233 gezelter 578 for(k=0; k<3; k++){
234 gezelter 588 eta2ij += eta[i][k] * eta[k][j];
235 gezelter 578 }
236 gezelter 588
237     scaleMat[i][j] = 0.0;
238     // identity matrix (see above):
239     if (i == j) scaleMat[i][j] = 1.0;
240     // Taylor expansion for the exponential truncated at second order:
241     scaleMat[i][j] += dt*eta[i][j] + 0.5*dt*dt*eta2ij;
242 gezelter 617
243     if (i != j)
244     if (fabs(scaleMat[i][j]) > offDiagMax)
245     offDiagMax = fabs(scaleMat[i][j]);
246 gezelter 578 }
247 gezelter 617
248     if (scaleMat[i][i] > bigScale) bigScale = scaleMat[i][i];
249     if (scaleMat[i][i] < smallScale) smallScale = scaleMat[i][i];
250 gezelter 578 }
251 gezelter 600
252 gezelter 617 if ((bigScale > 1.1) || (smallScale < 0.9)) {
253     sprintf( painCave.errMsg,
254     "NPTf error: Attempting a Box scaling of more than 10 percent.\n"
255     " Check your tauBarostat, as it is probably too small!\n\n"
256     " scaleMat = [%lf\t%lf\t%lf]\n"
257     " [%lf\t%lf\t%lf]\n"
258     " [%lf\t%lf\t%lf]\n",
259     scaleMat[0][0],scaleMat[0][1],scaleMat[0][2],
260     scaleMat[1][0],scaleMat[1][1],scaleMat[1][2],
261     scaleMat[2][0],scaleMat[2][1],scaleMat[2][2]);
262     painCave.isFatal = 1;
263     simError();
264     } else if (offDiagMax > 0.1) {
265     sprintf( painCave.errMsg,
266     "NPTf error: Attempting an off-diagonal Box scaling of more than 10 percent.\n"
267     " Check your tauBarostat, as it is probably too small!\n\n"
268     " scaleMat = [%lf\t%lf\t%lf]\n"
269     " [%lf\t%lf\t%lf]\n"
270     " [%lf\t%lf\t%lf]\n",
271     scaleMat[0][0],scaleMat[0][1],scaleMat[0][2],
272     scaleMat[1][0],scaleMat[1][1],scaleMat[1][2],
273     scaleMat[2][0],scaleMat[2][1],scaleMat[2][2]);
274     painCave.isFatal = 1;
275     simError();
276     } else {
277     info->getBoxM(hm);
278     info->matMul3(hm, scaleMat, hmnew);
279     info->setBoxM(hmnew);
280     }
281 gezelter 577
282 gezelter 576 }
283    
284 tim 645 template<typename T> void NPTf<T>::moveB( void ){
285 gezelter 600
286 gezelter 772 //new version of NPTf
287 tim 767 int i, j, k;
288 gezelter 576 DirectionalAtom* dAtom;
289 gezelter 600 double Tb[3], ji[3];
290 gezelter 772 double vel[3], myVel[3], frc[3];
291 gezelter 600 double mass;
292    
293     double instaTemp, instaPress, instaVol;
294 gezelter 576 double tt2, tb2;
295 gezelter 600 double sc[3];
296 gezelter 588 double press[3][3], vScale[3][3];
297 tim 767 double oldChi, prevChi;
298 gezelter 772 double oldEta[3][3], prevEta[3][3], diffEta;
299 gezelter 576
300     tt2 = tauThermostat * tauThermostat;
301     tb2 = tauBarostat * tauBarostat;
302    
303 tim 767 // Set things up for the iteration:
304    
305     oldChi = chi;
306 gezelter 578
307 tim 767 for(i = 0; i < 3; i++)
308     for(j = 0; j < 3; j++)
309     oldEta[i][j] = eta[i][j];
310 gezelter 578
311 tim 767 for( i=0; i<nAtoms; i++ ){
312 gezelter 588
313 tim 767 atoms[i]->getVel( vel );
314 gezelter 588
315 tim 767 for (j=0; j < 3; j++)
316     oldVel[3*i + j] = vel[j];
317    
318     if( atoms[i]->isDirectional() ){
319    
320     dAtom = (DirectionalAtom *)atoms[i];
321    
322     dAtom->getJ( ji );
323    
324     for (j=0; j < 3; j++)
325     oldJi[3*i + j] = ji[j];
326    
327 gezelter 588 }
328     }
329    
330 tim 767 // do the iteration:
331 gezelter 578
332 tim 767 instaVol = tStats->getVolume();
333    
334     for (k=0; k < 4; k++) {
335 gezelter 600
336 tim 767 instaTemp = tStats->getTemperature();
337     tStats->getPressureTensor(press);
338 gezelter 578
339 tim 767 // evolve chi another half step using the temperature at t + dt/2
340    
341     prevChi = chi;
342     chi = oldChi + dt2 * ( instaTemp / targetTemp - 1.0) / tt2;
343 gezelter 578
344 tim 767 for(i = 0; i < 3; i++)
345     for(j = 0; j < 3; j++)
346 gezelter 772 prevEta[i][j] = eta[i][j];
347 gezelter 600
348 tim 767 //advance eta half step and calculate scale factor for velocity
349 gezelter 772
350 tim 767 for(i = 0; i < 3; i ++)
351     for(j = 0; j < 3; j++){
352 gezelter 772 if( i == j) {
353 tim 767 eta[i][j] = oldEta[i][j] + dt2 * instaVol *
354 gezelter 772 (press[i][j] - targetPressure/p_convert) / (NkBT*tb2);
355 tim 767 vScale[i][j] = eta[i][j] + chi;
356 gezelter 772 } else {
357 tim 767 eta[i][j] = oldEta[i][j] + dt2 * instaVol * press[i][j] / (NkBT*tb2);
358     vScale[i][j] = eta[i][j];
359     }
360 gezelter 772 }
361    
362 tim 767 for( i=0; i<nAtoms; i++ ){
363    
364     atoms[i]->getFrc( frc );
365     atoms[i]->getVel(vel);
366 gezelter 576
367 tim 767 mass = atoms[i]->getMass();
368 gezelter 772
369     for (j = 0; j < 3; j++)
370     myVel[j] = oldVel[3*i + j];
371 gezelter 576
372 gezelter 772 info->matVecMul3( vScale, myVel, sc );
373    
374     // velocity half step
375 tim 767 for (j=0; j < 3; j++) {
376     // velocity half step (use chi from previous step here):
377     vel[j] = oldVel[3*i+j] + dt2 * ((frc[j] / mass) * eConvert - sc[j]);
378     }
379 gezelter 576
380 tim 767 atoms[i]->setVel( vel );
381 gezelter 576
382 tim 767 if( atoms[i]->isDirectional() ){
383    
384     dAtom = (DirectionalAtom *)atoms[i];
385    
386     // get and convert the torque to body frame
387    
388     dAtom->getTrq( Tb );
389     dAtom->lab2Body( Tb );
390    
391     for (j=0; j < 3; j++)
392     ji[j] = oldJi[3*i + j] + dt2 * (Tb[j] * eConvert - oldJi[3*i+j]*chi);
393 gezelter 576
394 tim 767 dAtom->setJ( ji );
395     }
396     }
397 gezelter 600
398 gezelter 772 if (nConstrained) {
399     constrainB();
400     }
401 tim 767
402     diffEta = 0;
403     for(i = 0; i < 3; i++)
404 gezelter 772 diffEta += pow(prevEta[i][i] - eta[i][i], 2);
405 tim 767
406     if (fabs(prevChi - chi) <= chiTolerance && sqrt(diffEta / 3) <= etaTolerance)
407     break;
408 gezelter 576 }
409 tim 767
410 gezelter 772 //calculate integral of chidt
411 tim 767 integralOfChidt += dt2*chi;
412    
413 gezelter 576 }
414    
415 mmeineke 746 template<typename T> void NPTf<T>::resetIntegrator() {
416     int i,j;
417    
418     chi = 0.0;
419    
420     for(i = 0; i < 3; i++)
421     for (j = 0; j < 3; j++)
422     eta[i][j] = 0.0;
423    
424     }
425    
426 tim 645 template<typename T> int NPTf<T>::readyCheck() {
427 tim 658
428     //check parent's readyCheck() first
429     if (T::readyCheck() == -1)
430     return -1;
431 gezelter 576
432     // First check to see if we have a target temperature.
433     // Not having one is fatal.
434    
435     if (!have_target_temp) {
436     sprintf( painCave.errMsg,
437 gezelter 580 "NPTf error: You can't use the NPTf integrator\n"
438 gezelter 576 " without a targetTemp!\n"
439     );
440     painCave.isFatal = 1;
441     simError();
442     return -1;
443     }
444    
445     if (!have_target_pressure) {
446     sprintf( painCave.errMsg,
447 gezelter 580 "NPTf error: You can't use the NPTf integrator\n"
448 gezelter 576 " without a targetPressure!\n"
449     );
450     painCave.isFatal = 1;
451     simError();
452     return -1;
453     }
454    
455     // We must set tauThermostat.
456    
457     if (!have_tau_thermostat) {
458     sprintf( painCave.errMsg,
459 gezelter 580 "NPTf error: If you use the NPTf\n"
460 gezelter 576 " integrator, you must set tauThermostat.\n");
461     painCave.isFatal = 1;
462     simError();
463     return -1;
464     }
465    
466     // We must set tauBarostat.
467    
468     if (!have_tau_barostat) {
469     sprintf( painCave.errMsg,
470 gezelter 580 "NPTf error: If you use the NPTf\n"
471 gezelter 576 " integrator, you must set tauBarostat.\n");
472     painCave.isFatal = 1;
473     simError();
474     return -1;
475     }
476    
477 gezelter 772
478     // We need NkBT a lot, so just set it here: This is the RAW number
479     // of particles, so no subtraction or addition of constraints or
480     // orientational degrees of freedom:
481    
482 tim 767 NkBT = (double)Nparticles * kB * targetTemp;
483 gezelter 772
484     // fkBT is used because the thermostat operates on more degrees of freedom
485     // than the barostat (when there are particles with orientational degrees
486     // of freedom). ndf = 3 * (n_atoms + n_oriented -1) - n_constraint - nZcons
487    
488 tim 767 fkBT = (double)info->ndf * kB * targetTemp;
489 gezelter 576
490     return 1;
491     }
492 tim 763
493     template<typename T> double NPTf<T>::getConservedQuantity(void){
494    
495     double conservedQuantity;
496 gezelter 772 double Energy;
497     double thermostat_kinetic;
498     double thermostat_potential;
499     double barostat_kinetic;
500     double barostat_potential;
501     double trEta;
502     double a[3][3], b[3][3];
503 tim 763
504 gezelter 772 Energy = tStats->getTotalE();
505 tim 763
506 gezelter 772 thermostat_kinetic = fkBT* tauThermostat * tauThermostat * chi * chi /
507     (2.0 * eConvert);
508 tim 763
509 gezelter 772 thermostat_potential = fkBT* integralOfChidt / eConvert;
510 tim 763
511 gezelter 772 info->transposeMat3(eta, a);
512     info->matMul3(a, eta, b);
513     trEta = info->matTrace3(b);
514 tim 767
515 gezelter 772 barostat_kinetic = NkBT * tauBarostat * tauBarostat * trEta /
516     (2.0 * eConvert);
517    
518     barostat_potential = (targetPressure * tStats->getVolume() / p_convert) /
519     eConvert;
520 tim 767
521 gezelter 772 conservedQuantity = Energy + thermostat_kinetic + thermostat_potential +
522     barostat_kinetic + barostat_potential;
523    
524 tim 767 cout.width(8);
525     cout.precision(8);
526    
527 gezelter 772 cerr << info->getTime() << "\t" << Energy << "\t" << thermostat_kinetic <<
528     "\t" << thermostat_potential << "\t" << barostat_kinetic <<
529     "\t" << barostat_potential << "\t" << conservedQuantity << endl;
530    
531     return conservedQuantity;
532 tim 763 }