1 |
< |
#include <cmath> |
1 |
> |
#include <math.h> |
2 |
|
#include "Atom.hpp" |
3 |
|
#include "SRI.hpp" |
4 |
|
#include "AbstractClasses.hpp" |
7 |
|
#include "Thermo.hpp" |
8 |
|
#include "ReadWrite.hpp" |
9 |
|
#include "Integrator.hpp" |
10 |
< |
#include "simError.h" |
10 |
> |
#include "simError.h" |
11 |
|
|
12 |
+ |
#ifdef IS_MPI |
13 |
+ |
#include "mpiSimulation.hpp" |
14 |
+ |
#endif |
15 |
|
|
16 |
|
// Basic non-isotropic thermostating and barostating via the Melchionna |
17 |
|
// modification of the Hoover algorithm: |
18 |
|
// |
19 |
|
// Melchionna, S., Ciccotti, G., and Holian, B. L., 1993, |
20 |
< |
// Molec. Phys., 78, 533. |
20 |
> |
// Molec. Phys., 78, 533. |
21 |
|
// |
22 |
|
// and |
23 |
< |
// |
23 |
> |
// |
24 |
|
// Hoover, W. G., 1986, Phys. Rev. A, 34, 2499. |
25 |
|
|
26 |
|
template<typename T> NPTf<T>::NPTf ( SimInfo *theInfo, ForceFields* the_ff): |
27 |
|
T( theInfo, the_ff ) |
28 |
|
{ |
29 |
< |
int i, j; |
30 |
< |
chi = 0.0; |
31 |
< |
integralOfChidt = 0.0; |
29 |
> |
GenericData* data; |
30 |
> |
DoubleArrayData * etaValue; |
31 |
> |
vector<double> etaArray; |
32 |
> |
int i,j; |
33 |
|
|
34 |
< |
for(i = 0; i < 3; i++) |
35 |
< |
for (j = 0; j < 3; j++) |
34 |
> |
for(i = 0; i < 3; i++){ |
35 |
> |
for (j = 0; j < 3; j++){ |
36 |
> |
|
37 |
|
eta[i][j] = 0.0; |
38 |
+ |
oldEta[i][j] = 0.0; |
39 |
+ |
} |
40 |
+ |
} |
41 |
|
|
42 |
< |
have_tau_thermostat = 0; |
43 |
< |
have_tau_barostat = 0; |
44 |
< |
have_target_temp = 0; |
45 |
< |
have_target_pressure = 0; |
42 |
> |
// retrieve eta array from simInfo if it exists |
43 |
> |
data = info->getProperty(ETAVALUE_ID); |
44 |
> |
if(data){ |
45 |
> |
etaValue = dynamic_cast<DoubleArrayData*>(data); |
46 |
|
|
47 |
< |
have_chi_tolerance = 0; |
48 |
< |
have_eta_tolerance = 0; |
41 |
< |
have_pos_iter_tolerance = 0; |
47 |
> |
if(etaValue){ |
48 |
> |
etaArray = etaValue->getData(); |
49 |
|
|
50 |
< |
oldPos = new double[3*nAtoms]; |
51 |
< |
oldVel = new double[3*nAtoms]; |
52 |
< |
oldJi = new double[3*nAtoms]; |
53 |
< |
#ifdef IS_MPI |
54 |
< |
Nparticles = mpiSim->getTotAtoms(); |
55 |
< |
#else |
56 |
< |
Nparticles = theInfo->n_atoms; |
57 |
< |
#endif |
50 |
> |
for(i = 0; i < 3; i++){ |
51 |
> |
for (j = 0; j < 3; j++){ |
52 |
> |
eta[i][j] = etaArray[3*i+j]; |
53 |
> |
oldEta[i][j] = eta[i][j]; |
54 |
> |
} |
55 |
> |
} |
56 |
> |
|
57 |
> |
} |
58 |
> |
} |
59 |
> |
|
60 |
|
} |
61 |
|
|
62 |
|
template<typename T> NPTf<T>::~NPTf() { |
63 |
< |
delete[] oldPos; |
64 |
< |
delete[] oldVel; |
56 |
< |
delete[] oldJi; |
63 |
> |
|
64 |
> |
// empty for now |
65 |
|
} |
66 |
|
|
67 |
< |
template<typename T> void NPTf<T>::moveA() { |
60 |
< |
|
61 |
< |
int i, j, k; |
62 |
< |
DirectionalAtom* dAtom; |
63 |
< |
double Tb[3], ji[3]; |
64 |
< |
double A[3][3], I[3][3]; |
65 |
< |
double angle, mass; |
66 |
< |
double vel[3], pos[3], frc[3]; |
67 |
> |
template<typename T> void NPTf<T>::resetIntegrator() { |
68 |
|
|
69 |
< |
double rj[3]; |
69 |
< |
double instaTemp, instaPress, instaVol; |
70 |
< |
double tt2, tb2; |
71 |
< |
double sc[3]; |
72 |
< |
double eta2ij; |
73 |
< |
double press[3][3], vScale[3][3], hm[3][3], hmnew[3][3], scaleMat[3][3]; |
74 |
< |
double bigScale, smallScale, offDiagMax; |
75 |
< |
double COM[3]; |
69 |
> |
int i, j; |
70 |
|
|
71 |
< |
tt2 = tauThermostat * tauThermostat; |
72 |
< |
tb2 = tauBarostat * tauBarostat; |
71 |
> |
for(i = 0; i < 3; i++) |
72 |
> |
for (j = 0; j < 3; j++) |
73 |
> |
eta[i][j] = 0.0; |
74 |
|
|
75 |
< |
instaTemp = tStats->getTemperature(); |
76 |
< |
tStats->getPressureTensor(press); |
82 |
< |
instaVol = tStats->getVolume(); |
83 |
< |
|
84 |
< |
tStats->getCOM(COM); |
75 |
> |
T::resetIntegrator(); |
76 |
> |
} |
77 |
|
|
78 |
< |
//calculate scale factor of veloity |
87 |
< |
for (i = 0; i < 3; i++ ) { |
88 |
< |
for (j = 0; j < 3; j++ ) { |
89 |
< |
vScale[i][j] = eta[i][j]; |
90 |
< |
|
91 |
< |
if (i == j) { |
92 |
< |
vScale[i][j] += chi; |
93 |
< |
} |
94 |
< |
} |
95 |
< |
} |
96 |
< |
|
97 |
< |
//evolve velocity half step |
98 |
< |
for( i=0; i<nAtoms; i++ ){ |
78 |
> |
template<typename T> void NPTf<T>::evolveEtaA() { |
79 |
|
|
80 |
< |
atoms[i]->getVel( vel ); |
101 |
< |
atoms[i]->getFrc( frc ); |
80 |
> |
int i, j; |
81 |
|
|
82 |
< |
mass = atoms[i]->getMass(); |
83 |
< |
|
84 |
< |
info->matVecMul3( vScale, vel, sc ); |
85 |
< |
|
86 |
< |
for (j=0; j < 3; j++) { |
87 |
< |
// velocity half step (use chi from previous step here): |
88 |
< |
vel[j] += dt2 * ((frc[j] / mass) * eConvert - sc[j]); |
110 |
< |
|
82 |
> |
for(i = 0; i < 3; i ++){ |
83 |
> |
for(j = 0; j < 3; j++){ |
84 |
> |
if( i == j) |
85 |
> |
eta[i][j] += dt2 * instaVol * |
86 |
> |
(press[i][j] - targetPressure/p_convert) / (NkBT*tb2); |
87 |
> |
else |
88 |
> |
eta[i][j] += dt2 * instaVol * press[i][j] / (NkBT*tb2); |
89 |
|
} |
90 |
+ |
} |
91 |
|
|
92 |
< |
atoms[i]->setVel( vel ); |
93 |
< |
|
94 |
< |
if( atoms[i]->isDirectional() ){ |
92 |
> |
for(i = 0; i < 3; i++) |
93 |
> |
for (j = 0; j < 3; j++) |
94 |
> |
oldEta[i][j] = eta[i][j]; |
95 |
> |
} |
96 |
|
|
97 |
< |
dAtom = (DirectionalAtom *)atoms[i]; |
97 |
> |
template<typename T> void NPTf<T>::evolveEtaB() { |
98 |
|
|
99 |
< |
// get and convert the torque to body frame |
120 |
< |
|
121 |
< |
dAtom->getTrq( Tb ); |
122 |
< |
dAtom->lab2Body( Tb ); |
123 |
< |
|
124 |
< |
// get the angular momentum, and propagate a half step |
99 |
> |
int i,j; |
100 |
|
|
101 |
< |
dAtom->getJ( ji ); |
101 |
> |
for(i = 0; i < 3; i++) |
102 |
> |
for (j = 0; j < 3; j++) |
103 |
> |
prevEta[i][j] = eta[i][j]; |
104 |
|
|
105 |
< |
for (j=0; j < 3; j++) |
106 |
< |
ji[j] += dt2 * (Tb[j] * eConvert - ji[j]*chi); |
107 |
< |
|
108 |
< |
// use the angular velocities to propagate the rotation matrix a |
109 |
< |
// full time step |
110 |
< |
|
111 |
< |
dAtom->getA(A); |
112 |
< |
dAtom->getI(I); |
113 |
< |
|
114 |
< |
// rotate about the x-axis |
115 |
< |
angle = dt2 * ji[0] / I[0][0]; |
139 |
< |
this->rotate( 1, 2, angle, ji, A ); |
105 |
> |
for(i = 0; i < 3; i ++){ |
106 |
> |
for(j = 0; j < 3; j++){ |
107 |
> |
if( i == j) { |
108 |
> |
eta[i][j] = oldEta[i][j] + dt2 * instaVol * |
109 |
> |
(press[i][j] - targetPressure/p_convert) / (NkBT*tb2); |
110 |
> |
} else { |
111 |
> |
eta[i][j] = oldEta[i][j] + dt2 * instaVol * press[i][j] / (NkBT*tb2); |
112 |
> |
} |
113 |
> |
} |
114 |
> |
} |
115 |
> |
} |
116 |
|
|
117 |
< |
// rotate about the y-axis |
118 |
< |
angle = dt2 * ji[1] / I[1][1]; |
119 |
< |
this->rotate( 2, 0, angle, ji, A ); |
120 |
< |
|
121 |
< |
// rotate about the z-axis |
122 |
< |
angle = dt * ji[2] / I[2][2]; |
123 |
< |
this->rotate( 0, 1, angle, ji, A); |
124 |
< |
|
125 |
< |
// rotate about the y-axis |
126 |
< |
angle = dt2 * ji[1] / I[1][1]; |
127 |
< |
this->rotate( 2, 0, angle, ji, A ); |
128 |
< |
|
153 |
< |
// rotate about the x-axis |
154 |
< |
angle = dt2 * ji[0] / I[0][0]; |
155 |
< |
this->rotate( 1, 2, angle, ji, A ); |
156 |
< |
|
157 |
< |
dAtom->setJ( ji ); |
158 |
< |
dAtom->setA( A ); |
159 |
< |
} |
117 |
> |
template<typename T> void NPTf<T>::getVelScaleA(double sc[3], double vel[3]) { |
118 |
> |
int i,j; |
119 |
> |
double vScale[3][3]; |
120 |
> |
|
121 |
> |
for (i = 0; i < 3; i++ ) { |
122 |
> |
for (j = 0; j < 3; j++ ) { |
123 |
> |
vScale[i][j] = eta[i][j]; |
124 |
> |
|
125 |
> |
if (i == j) { |
126 |
> |
vScale[i][j] += chi; |
127 |
> |
} |
128 |
> |
} |
129 |
|
} |
130 |
|
|
131 |
< |
// advance chi half step |
132 |
< |
chi += dt2 * ( instaTemp / targetTemp - 1.0) / tt2; |
131 |
> |
info->matVecMul3( vScale, vel, sc ); |
132 |
> |
} |
133 |
|
|
134 |
< |
//calculate the integral of chidt |
135 |
< |
integralOfChidt += dt2*chi; |
134 |
> |
template<typename T> void NPTf<T>::getVelScaleB(double sc[3], int index ){ |
135 |
> |
int i,j; |
136 |
> |
double myVel[3]; |
137 |
> |
double vScale[3][3]; |
138 |
|
|
139 |
< |
//advance eta half step |
140 |
< |
for(i = 0; i < 3; i ++) |
141 |
< |
for(j = 0; j < 3; j++){ |
142 |
< |
if( i == j) |
143 |
< |
eta[i][j] += dt2 * instaVol * |
144 |
< |
(press[i][j] - targetPressure/p_convert) / (NkBT*tb2); |
145 |
< |
else |
175 |
< |
eta[i][j] += dt2 * instaVol * press[i][j] / ( NkBT*tb2); |
139 |
> |
for (i = 0; i < 3; i++ ) { |
140 |
> |
for (j = 0; j < 3; j++ ) { |
141 |
> |
vScale[i][j] = eta[i][j]; |
142 |
> |
|
143 |
> |
if (i == j) { |
144 |
> |
vScale[i][j] += chi; |
145 |
> |
} |
146 |
|
} |
177 |
– |
|
178 |
– |
//save the old positions |
179 |
– |
for(i = 0; i < nAtoms; i++){ |
180 |
– |
atoms[i]->getPos(pos); |
181 |
– |
for(j = 0; j < 3; j++) |
182 |
– |
oldPos[i*3 + j] = pos[j]; |
147 |
|
} |
184 |
– |
|
185 |
– |
//the first estimation of r(t+dt) is equal to r(t) |
186 |
– |
|
187 |
– |
for(k = 0; k < 4; k ++){ |
148 |
|
|
149 |
< |
for(i =0 ; i < nAtoms; i++){ |
149 |
> |
for (j = 0; j < 3; j++) |
150 |
> |
myVel[j] = oldVel[3*index + j]; |
151 |
|
|
152 |
< |
atoms[i]->getVel(vel); |
153 |
< |
atoms[i]->getPos(pos); |
152 |
> |
info->matVecMul3( vScale, myVel, sc ); |
153 |
> |
} |
154 |
|
|
155 |
< |
for(j = 0; j < 3; j++) |
156 |
< |
rj[j] = (oldPos[i*3 + j] + pos[j])/2 - COM[j]; |
157 |
< |
|
158 |
< |
info->matVecMul3( eta, rj, sc ); |
198 |
< |
|
199 |
< |
for(j = 0; j < 3; j++) |
200 |
< |
pos[j] = oldPos[i*3 + j] + dt*(vel[j] + sc[j]); |
155 |
> |
template<typename T> void NPTf<T>::getPosScale(double pos[3], double COM[3], |
156 |
> |
int index, double sc[3]){ |
157 |
> |
int j; |
158 |
> |
double rj[3]; |
159 |
|
|
160 |
< |
atoms[i]->setPos( pos ); |
160 |
> |
for(j=0; j<3; j++) |
161 |
> |
rj[j] = ( oldPos[index*3+j] + pos[j]) / 2.0 - COM[j]; |
162 |
|
|
163 |
< |
} |
163 |
> |
info->matVecMul3( eta, rj, sc ); |
164 |
> |
} |
165 |
|
|
166 |
< |
} |
166 |
> |
template<typename T> void NPTf<T>::scaleSimBox( void ){ |
167 |
|
|
168 |
< |
|
168 |
> |
int i,j,k; |
169 |
> |
double scaleMat[3][3]; |
170 |
> |
double eta2ij; |
171 |
> |
double bigScale, smallScale, offDiagMax; |
172 |
> |
double hm[3][3], hmnew[3][3]; |
173 |
> |
|
174 |
> |
|
175 |
> |
|
176 |
|
// Scale the box after all the positions have been moved: |
177 |
< |
|
177 |
> |
|
178 |
|
// Use a taylor expansion for eta products: Hmat = Hmat . exp(dt * etaMat) |
179 |
|
// Hmat = Hmat . ( Ident + dt * etaMat + dt^2 * etaMat*etaMat / 2) |
180 |
< |
|
180 |
> |
|
181 |
|
bigScale = 1.0; |
182 |
|
smallScale = 1.0; |
183 |
|
offDiagMax = 0.0; |
184 |
< |
|
184 |
> |
|
185 |
|
for(i=0; i<3; i++){ |
186 |
|
for(j=0; j<3; j++){ |
187 |
< |
|
187 |
> |
|
188 |
|
// Calculate the matrix Product of the eta array (we only need |
189 |
|
// the ij element right now): |
190 |
< |
|
190 |
> |
|
191 |
|
eta2ij = 0.0; |
192 |
|
for(k=0; k<3; k++){ |
193 |
|
eta2ij += eta[i][k] * eta[k][j]; |
194 |
|
} |
195 |
< |
|
195 |
> |
|
196 |
|
scaleMat[i][j] = 0.0; |
197 |
|
// identity matrix (see above): |
198 |
|
if (i == j) scaleMat[i][j] = 1.0; |
200 |
|
scaleMat[i][j] += dt*eta[i][j] + 0.5*dt*dt*eta2ij; |
201 |
|
|
202 |
|
if (i != j) |
203 |
< |
if (fabs(scaleMat[i][j]) > offDiagMax) |
203 |
> |
if (fabs(scaleMat[i][j]) > offDiagMax) |
204 |
|
offDiagMax = fabs(scaleMat[i][j]); |
205 |
|
} |
206 |
|
|
207 |
|
if (scaleMat[i][i] > bigScale) bigScale = scaleMat[i][i]; |
208 |
|
if (scaleMat[i][i] < smallScale) smallScale = scaleMat[i][i]; |
209 |
|
} |
210 |
< |
|
211 |
< |
if ((bigScale > 1.1) || (smallScale < 0.9)) { |
210 |
> |
|
211 |
> |
if ((bigScale > 1.01) || (smallScale < 0.99)) { |
212 |
|
sprintf( painCave.errMsg, |
213 |
< |
"NPTf error: Attempting a Box scaling of more than 10 percent.\n" |
213 |
> |
"NPTf error: Attempting a Box scaling of more than 1 percent.\n" |
214 |
|
" Check your tauBarostat, as it is probably too small!\n\n" |
215 |
|
" scaleMat = [%lf\t%lf\t%lf]\n" |
216 |
|
" [%lf\t%lf\t%lf]\n" |
220 |
|
scaleMat[2][0],scaleMat[2][1],scaleMat[2][2]); |
221 |
|
painCave.isFatal = 1; |
222 |
|
simError(); |
223 |
< |
} else if (offDiagMax > 0.1) { |
223 |
> |
} else if (offDiagMax > 0.01) { |
224 |
|
sprintf( painCave.errMsg, |
225 |
< |
"NPTf error: Attempting an off-diagonal Box scaling of more than 10 percent.\n" |
225 |
> |
"NPTf error: Attempting an off-diagonal Box scaling of more than 1 percent.\n" |
226 |
|
" Check your tauBarostat, as it is probably too small!\n\n" |
227 |
|
" scaleMat = [%lf\t%lf\t%lf]\n" |
228 |
|
" [%lf\t%lf\t%lf]\n" |
237 |
|
info->matMul3(hm, scaleMat, hmnew); |
238 |
|
info->setBoxM(hmnew); |
239 |
|
} |
273 |
– |
|
240 |
|
} |
241 |
|
|
242 |
< |
template<typename T> void NPTf<T>::moveB( void ){ |
242 |
> |
template<typename T> bool NPTf<T>::etaConverged() { |
243 |
> |
int i; |
244 |
> |
double diffEta, sumEta; |
245 |
|
|
246 |
< |
int i, j, k; |
279 |
< |
DirectionalAtom* dAtom; |
280 |
< |
double Tb[3], ji[3]; |
281 |
< |
double vel[3], frc[3]; |
282 |
< |
double mass; |
283 |
< |
|
284 |
< |
double instaTemp, instaPress, instaVol; |
285 |
< |
double tt2, tb2; |
286 |
< |
double sc[3]; |
287 |
< |
double press[3][3], vScale[3][3]; |
288 |
< |
double oldChi, prevChi; |
289 |
< |
double oldEta[3][3], preEta[3][3], diffEta; |
290 |
< |
|
291 |
< |
tt2 = tauThermostat * tauThermostat; |
292 |
< |
tb2 = tauBarostat * tauBarostat; |
293 |
< |
|
294 |
< |
|
295 |
< |
// Set things up for the iteration: |
296 |
< |
|
297 |
< |
oldChi = chi; |
298 |
< |
|
246 |
> |
sumEta = 0; |
247 |
|
for(i = 0; i < 3; i++) |
248 |
< |
for(j = 0; j < 3; j++) |
301 |
< |
oldEta[i][j] = eta[i][j]; |
248 |
> |
sumEta += pow(prevEta[i][i] - eta[i][i], 2); |
249 |
|
|
250 |
< |
for( i=0; i<nAtoms; i++ ){ |
250 |
> |
diffEta = sqrt( sumEta / 3.0 ); |
251 |
|
|
252 |
< |
atoms[i]->getVel( vel ); |
252 |
> |
return ( diffEta <= etaTolerance ); |
253 |
> |
} |
254 |
|
|
255 |
< |
for (j=0; j < 3; j++) |
308 |
< |
oldVel[3*i + j] = vel[j]; |
255 |
> |
template<typename T> double NPTf<T>::getConservedQuantity(void){ |
256 |
|
|
257 |
< |
if( atoms[i]->isDirectional() ){ |
257 |
> |
double conservedQuantity; |
258 |
> |
double totalEnergy; |
259 |
> |
double thermostat_kinetic; |
260 |
> |
double thermostat_potential; |
261 |
> |
double barostat_kinetic; |
262 |
> |
double barostat_potential; |
263 |
> |
double trEta; |
264 |
> |
double a[3][3], b[3][3]; |
265 |
|
|
266 |
< |
dAtom = (DirectionalAtom *)atoms[i]; |
266 |
> |
totalEnergy = tStats->getTotalE(); |
267 |
|
|
268 |
< |
dAtom->getJ( ji ); |
268 |
> |
thermostat_kinetic = fkBT * tt2 * chi * chi / |
269 |
> |
(2.0 * eConvert); |
270 |
|
|
271 |
< |
for (j=0; j < 3; j++) |
317 |
< |
oldJi[3*i + j] = ji[j]; |
271 |
> |
thermostat_potential = fkBT* integralOfChidt / eConvert; |
272 |
|
|
273 |
< |
} |
274 |
< |
} |
273 |
> |
info->transposeMat3(eta, a); |
274 |
> |
info->matMul3(a, eta, b); |
275 |
> |
trEta = info->matTrace3(b); |
276 |
|
|
277 |
< |
// do the iteration: |
277 |
> |
barostat_kinetic = NkBT * tb2 * trEta / |
278 |
> |
(2.0 * eConvert); |
279 |
|
|
280 |
< |
instaVol = tStats->getVolume(); |
281 |
< |
|
326 |
< |
for (k=0; k < 4; k++) { |
327 |
< |
|
328 |
< |
instaTemp = tStats->getTemperature(); |
329 |
< |
tStats->getPressureTensor(press); |
280 |
> |
barostat_potential = (targetPressure * tStats->getVolume() / p_convert) / |
281 |
> |
eConvert; |
282 |
|
|
283 |
< |
// evolve chi another half step using the temperature at t + dt/2 |
283 |
> |
conservedQuantity = totalEnergy + thermostat_kinetic + thermostat_potential + |
284 |
> |
barostat_kinetic + barostat_potential; |
285 |
|
|
286 |
< |
prevChi = chi; |
334 |
< |
chi = oldChi + dt2 * ( instaTemp / targetTemp - 1.0) / tt2; |
335 |
< |
|
336 |
< |
for(i = 0; i < 3; i++) |
337 |
< |
for(j = 0; j < 3; j++) |
338 |
< |
preEta[i][j] = eta[i][j]; |
286 |
> |
return conservedQuantity; |
287 |
|
|
340 |
– |
//advance eta half step and calculate scale factor for velocity |
341 |
– |
for(i = 0; i < 3; i ++) |
342 |
– |
for(j = 0; j < 3; j++){ |
343 |
– |
if( i == j){ |
344 |
– |
eta[i][j] = oldEta[i][j] + dt2 * instaVol * |
345 |
– |
(press[i][j] - targetPressure/p_convert) / (NkBT*tb2); |
346 |
– |
vScale[i][j] = eta[i][j] + chi; |
347 |
– |
} |
348 |
– |
else |
349 |
– |
{ |
350 |
– |
eta[i][j] = oldEta[i][j] + dt2 * instaVol * press[i][j] / (NkBT*tb2); |
351 |
– |
vScale[i][j] = eta[i][j]; |
352 |
– |
} |
353 |
– |
} |
354 |
– |
|
355 |
– |
//advance velocity half step |
356 |
– |
for( i=0; i<nAtoms; i++ ){ |
357 |
– |
|
358 |
– |
atoms[i]->getFrc( frc ); |
359 |
– |
atoms[i]->getVel(vel); |
360 |
– |
|
361 |
– |
mass = atoms[i]->getMass(); |
362 |
– |
|
363 |
– |
info->matVecMul3( vScale, vel, sc ); |
364 |
– |
|
365 |
– |
for (j=0; j < 3; j++) { |
366 |
– |
// velocity half step (use chi from previous step here): |
367 |
– |
vel[j] = oldVel[3*i+j] + dt2 * ((frc[j] / mass) * eConvert - sc[j]); |
368 |
– |
} |
369 |
– |
|
370 |
– |
atoms[i]->setVel( vel ); |
371 |
– |
|
372 |
– |
if( atoms[i]->isDirectional() ){ |
373 |
– |
|
374 |
– |
dAtom = (DirectionalAtom *)atoms[i]; |
375 |
– |
|
376 |
– |
// get and convert the torque to body frame |
377 |
– |
|
378 |
– |
dAtom->getTrq( Tb ); |
379 |
– |
dAtom->lab2Body( Tb ); |
380 |
– |
|
381 |
– |
for (j=0; j < 3; j++) |
382 |
– |
ji[j] = oldJi[3*i + j] + dt2 * (Tb[j] * eConvert - oldJi[3*i+j]*chi); |
383 |
– |
|
384 |
– |
dAtom->setJ( ji ); |
385 |
– |
} |
386 |
– |
} |
387 |
– |
|
388 |
– |
|
389 |
– |
diffEta = 0; |
390 |
– |
for(i = 0; i < 3; i++) |
391 |
– |
diffEta += pow(preEta[i][i] - eta[i][i], 2); |
392 |
– |
|
393 |
– |
if (fabs(prevChi - chi) <= chiTolerance && sqrt(diffEta / 3) <= etaTolerance) |
394 |
– |
break; |
395 |
– |
} |
396 |
– |
|
397 |
– |
//calculate integral of chida |
398 |
– |
integralOfChidt += dt2*chi; |
399 |
– |
|
400 |
– |
|
288 |
|
} |
289 |
|
|
290 |
< |
template<typename T> void NPTf<T>::resetIntegrator() { |
291 |
< |
int i,j; |
292 |
< |
|
293 |
< |
chi = 0.0; |
290 |
> |
template<typename T> string NPTf<T>::getAdditionalParameters(void){ |
291 |
> |
string parameters; |
292 |
> |
const int BUFFERSIZE = 2000; // size of the read buffer |
293 |
> |
char buffer[BUFFERSIZE]; |
294 |
|
|
295 |
< |
for(i = 0; i < 3; i++) |
296 |
< |
for (j = 0; j < 3; j++) |
410 |
< |
eta[i][j] = 0.0; |
295 |
> |
sprintf(buffer,"\t%G\t%G;", chi, integralOfChidt); |
296 |
> |
parameters += buffer; |
297 |
|
|
298 |
< |
} |
299 |
< |
|
300 |
< |
template<typename T> int NPTf<T>::readyCheck() { |
415 |
< |
|
416 |
< |
//check parent's readyCheck() first |
417 |
< |
if (T::readyCheck() == -1) |
418 |
< |
return -1; |
419 |
< |
|
420 |
< |
// First check to see if we have a target temperature. |
421 |
< |
// Not having one is fatal. |
422 |
< |
|
423 |
< |
if (!have_target_temp) { |
424 |
< |
sprintf( painCave.errMsg, |
425 |
< |
"NPTf error: You can't use the NPTf integrator\n" |
426 |
< |
" without a targetTemp!\n" |
427 |
< |
); |
428 |
< |
painCave.isFatal = 1; |
429 |
< |
simError(); |
430 |
< |
return -1; |
298 |
> |
for(int i = 0; i < 3; i++){ |
299 |
> |
sprintf(buffer,"\t%G\t%G\t%G;", eta[i][0], eta[i][1], eta[i][2]); |
300 |
> |
parameters += buffer; |
301 |
|
} |
302 |
|
|
303 |
< |
if (!have_target_pressure) { |
434 |
< |
sprintf( painCave.errMsg, |
435 |
< |
"NPTf error: You can't use the NPTf integrator\n" |
436 |
< |
" without a targetPressure!\n" |
437 |
< |
); |
438 |
< |
painCave.isFatal = 1; |
439 |
< |
simError(); |
440 |
< |
return -1; |
441 |
< |
} |
442 |
< |
|
443 |
< |
// We must set tauThermostat. |
444 |
< |
|
445 |
< |
if (!have_tau_thermostat) { |
446 |
< |
sprintf( painCave.errMsg, |
447 |
< |
"NPTf error: If you use the NPTf\n" |
448 |
< |
" integrator, you must set tauThermostat.\n"); |
449 |
< |
painCave.isFatal = 1; |
450 |
< |
simError(); |
451 |
< |
return -1; |
452 |
< |
} |
303 |
> |
return parameters; |
304 |
|
|
454 |
– |
// We must set tauBarostat. |
455 |
– |
|
456 |
– |
if (!have_tau_barostat) { |
457 |
– |
sprintf( painCave.errMsg, |
458 |
– |
"NPTf error: If you use the NPTf\n" |
459 |
– |
" integrator, you must set tauBarostat.\n"); |
460 |
– |
painCave.isFatal = 1; |
461 |
– |
simError(); |
462 |
– |
return -1; |
463 |
– |
} |
464 |
– |
|
465 |
– |
// We need NkBT a lot, so just set it here: |
466 |
– |
|
467 |
– |
NkBT = (double)Nparticles * kB * targetTemp; |
468 |
– |
fkBT = (double)info->ndf * kB * targetTemp; |
469 |
– |
|
470 |
– |
return 1; |
305 |
|
} |
472 |
– |
|
473 |
– |
template<typename T> double NPTf<T>::getConservedQuantity(void){ |
474 |
– |
|
475 |
– |
double conservedQuantity; |
476 |
– |
double tb2; |
477 |
– |
double trEta; |
478 |
– |
double U; |
479 |
– |
double thermo; |
480 |
– |
double integral; |
481 |
– |
double baro; |
482 |
– |
double PV; |
483 |
– |
|
484 |
– |
U = tStats->getTotalE(); |
485 |
– |
thermo = (fkBT * tauThermostat * tauThermostat * chi * chi / 2.0) / eConvert; |
486 |
– |
|
487 |
– |
tb2 = tauBarostat * tauBarostat; |
488 |
– |
trEta = info->matTrace3(eta); |
489 |
– |
baro = ((double)info->ndfTrans * kB * targetTemp * tb2 * trEta * trEta / 2.0) / eConvert; |
490 |
– |
|
491 |
– |
integral = ((double)(info->ndf + 1) * kB * targetTemp * integralOfChidt) /eConvert; |
492 |
– |
|
493 |
– |
PV = (targetPressure * tStats->getVolume() / p_convert) / eConvert; |
494 |
– |
|
495 |
– |
|
496 |
– |
cout.width(8); |
497 |
– |
cout.precision(8); |
498 |
– |
|
499 |
– |
cout << info->getTime() << "\t" |
500 |
– |
<< chi << "\t" |
501 |
– |
<< trEta << "\t" |
502 |
– |
<< U << "\t" |
503 |
– |
<< thermo << "\t" |
504 |
– |
<< baro << "\t" |
505 |
– |
<< integral << "\t" |
506 |
– |
<< PV << "\t" |
507 |
– |
<< U+thermo+integral+PV+baro << endl; |
508 |
– |
|
509 |
– |
conservedQuantity = U+thermo+integral+PV+baro; |
510 |
– |
return conservedQuantity; |
511 |
– |
|
512 |
– |
} |