1 |
< |
#include <cmath> |
1 |
> |
#include <math.h> |
2 |
> |
|
3 |
|
#include "Atom.hpp" |
4 |
|
#include "SRI.hpp" |
5 |
|
#include "AbstractClasses.hpp" |
8 |
|
#include "Thermo.hpp" |
9 |
|
#include "ReadWrite.hpp" |
10 |
|
#include "Integrator.hpp" |
11 |
< |
#include "simError.h" |
11 |
> |
#include "simError.h" |
12 |
|
|
13 |
|
#ifdef IS_MPI |
14 |
|
#include "mpiSimulation.hpp" |
18 |
|
// modification of the Hoover algorithm: |
19 |
|
// |
20 |
|
// Melchionna, S., Ciccotti, G., and Holian, B. L., 1993, |
21 |
< |
// Molec. Phys., 78, 533. |
21 |
> |
// Molec. Phys., 78, 533. |
22 |
|
// |
23 |
|
// and |
24 |
< |
// |
24 |
> |
// |
25 |
|
// Hoover, W. G., 1986, Phys. Rev. A, 34, 2499. |
26 |
|
|
27 |
|
template<typename T> NPTf<T>::NPTf ( SimInfo *theInfo, ForceFields* the_ff): |
28 |
|
T( theInfo, the_ff ) |
29 |
|
{ |
30 |
< |
|
30 |
> |
GenericData* data; |
31 |
> |
DoubleArrayData * etaValue; |
32 |
> |
vector<double> etaArray; |
33 |
|
int i,j; |
34 |
< |
|
34 |
> |
|
35 |
|
for(i = 0; i < 3; i++){ |
36 |
|
for (j = 0; j < 3; j++){ |
37 |
< |
|
37 |
> |
|
38 |
|
eta[i][j] = 0.0; |
39 |
|
oldEta[i][j] = 0.0; |
40 |
|
} |
41 |
|
} |
42 |
+ |
|
43 |
+ |
|
44 |
+ |
if( theInfo->useInitXSstate ){ |
45 |
+ |
// retrieve eta array from simInfo if it exists |
46 |
+ |
data = info->getProperty(ETAVALUE_ID); |
47 |
+ |
if(data){ |
48 |
+ |
etaValue = dynamic_cast<DoubleArrayData*>(data); |
49 |
+ |
|
50 |
+ |
if(etaValue){ |
51 |
+ |
etaArray = etaValue->getData(); |
52 |
+ |
|
53 |
+ |
for(i = 0; i < 3; i++){ |
54 |
+ |
for (j = 0; j < 3; j++){ |
55 |
+ |
eta[i][j] = etaArray[3*i+j]; |
56 |
+ |
oldEta[i][j] = eta[i][j]; |
57 |
+ |
} |
58 |
+ |
} |
59 |
+ |
} |
60 |
+ |
} |
61 |
+ |
} |
62 |
+ |
|
63 |
|
} |
64 |
|
|
65 |
|
template<typename T> NPTf<T>::~NPTf() { |
68 |
|
} |
69 |
|
|
70 |
|
template<typename T> void NPTf<T>::resetIntegrator() { |
71 |
< |
|
71 |
> |
|
72 |
|
int i, j; |
73 |
< |
|
73 |
> |
|
74 |
|
for(i = 0; i < 3; i++) |
75 |
|
for (j = 0; j < 3; j++) |
76 |
|
eta[i][j] = 0.0; |
77 |
< |
|
77 |
> |
|
78 |
|
T::resetIntegrator(); |
79 |
|
} |
80 |
|
|
81 |
|
template<typename T> void NPTf<T>::evolveEtaA() { |
82 |
< |
|
82 |
> |
|
83 |
|
int i, j; |
84 |
< |
|
84 |
> |
|
85 |
|
for(i = 0; i < 3; i ++){ |
86 |
|
for(j = 0; j < 3; j++){ |
87 |
|
if( i == j) |
88 |
< |
eta[i][j] += dt2 * instaVol * |
88 |
> |
eta[i][j] += dt2 * instaVol * |
89 |
|
(press[i][j] - targetPressure/p_convert) / (NkBT*tb2); |
90 |
|
else |
91 |
|
eta[i][j] += dt2 * instaVol * press[i][j] / (NkBT*tb2); |
92 |
|
} |
93 |
|
} |
94 |
< |
|
94 |
> |
|
95 |
|
for(i = 0; i < 3; i++) |
96 |
|
for (j = 0; j < 3; j++) |
97 |
|
oldEta[i][j] = eta[i][j]; |
98 |
|
} |
99 |
|
|
100 |
|
template<typename T> void NPTf<T>::evolveEtaB() { |
101 |
< |
|
101 |
> |
|
102 |
|
int i,j; |
103 |
|
|
104 |
|
for(i = 0; i < 3; i++) |
108 |
|
for(i = 0; i < 3; i ++){ |
109 |
|
for(j = 0; j < 3; j++){ |
110 |
|
if( i == j) { |
111 |
< |
eta[i][j] = oldEta[i][j] + dt2 * instaVol * |
111 |
> |
eta[i][j] = oldEta[i][j] + dt2 * instaVol * |
112 |
|
(press[i][j] - targetPressure/p_convert) / (NkBT*tb2); |
113 |
|
} else { |
114 |
|
eta[i][j] = oldEta[i][j] + dt2 * instaVol * press[i][j] / (NkBT*tb2); |
117 |
|
} |
118 |
|
} |
119 |
|
|
120 |
< |
template<typename T> void NPTf<T>::getVelScaleA(double sc[3], double vel[3]) { |
120 |
> |
template<typename T> void NPTf<T>::calcVelScale(void){ |
121 |
|
int i,j; |
98 |
– |
double vScale[3][3]; |
122 |
|
|
123 |
|
for (i = 0; i < 3; i++ ) { |
124 |
|
for (j = 0; j < 3; j++ ) { |
125 |
|
vScale[i][j] = eta[i][j]; |
126 |
< |
|
126 |
> |
|
127 |
|
if (i == j) { |
128 |
< |
vScale[i][j] += chi; |
129 |
< |
} |
128 |
> |
vScale[i][j] += chi; |
129 |
> |
} |
130 |
|
} |
131 |
|
} |
132 |
< |
|
132 |
> |
} |
133 |
> |
|
134 |
> |
template<typename T> void NPTf<T>::getVelScaleA(double sc[3], double vel[3]) { |
135 |
> |
|
136 |
|
info->matVecMul3( vScale, vel, sc ); |
137 |
|
} |
138 |
|
|
139 |
|
template<typename T> void NPTf<T>::getVelScaleB(double sc[3], int index ){ |
140 |
< |
int i,j; |
140 |
> |
int j; |
141 |
|
double myVel[3]; |
142 |
|
double vScale[3][3]; |
143 |
|
|
118 |
– |
for (i = 0; i < 3; i++ ) { |
119 |
– |
for (j = 0; j < 3; j++ ) { |
120 |
– |
vScale[i][j] = eta[i][j]; |
121 |
– |
|
122 |
– |
if (i == j) { |
123 |
– |
vScale[i][j] += chi; |
124 |
– |
} |
125 |
– |
} |
126 |
– |
} |
127 |
– |
|
144 |
|
for (j = 0; j < 3; j++) |
145 |
|
myVel[j] = oldVel[3*index + j]; |
146 |
|
|
147 |
|
info->matVecMul3( vScale, myVel, sc ); |
148 |
|
} |
149 |
|
|
150 |
< |
template<typename T> void NPTf<T>::getPosScale(double pos[3], double COM[3], |
150 |
> |
template<typename T> void NPTf<T>::getPosScale(double pos[3], double COM[3], |
151 |
|
int index, double sc[3]){ |
152 |
|
int j; |
153 |
|
double rj[3]; |
165 |
|
double eta2ij; |
166 |
|
double bigScale, smallScale, offDiagMax; |
167 |
|
double hm[3][3], hmnew[3][3]; |
152 |
– |
|
168 |
|
|
169 |
|
|
170 |
+ |
|
171 |
|
// Scale the box after all the positions have been moved: |
172 |
< |
|
172 |
> |
|
173 |
|
// Use a taylor expansion for eta products: Hmat = Hmat . exp(dt * etaMat) |
174 |
|
// Hmat = Hmat . ( Ident + dt * etaMat + dt^2 * etaMat*etaMat / 2) |
175 |
< |
|
175 |
> |
|
176 |
|
bigScale = 1.0; |
177 |
|
smallScale = 1.0; |
178 |
|
offDiagMax = 0.0; |
179 |
< |
|
179 |
> |
|
180 |
|
for(i=0; i<3; i++){ |
181 |
|
for(j=0; j<3; j++){ |
182 |
< |
|
182 |
> |
|
183 |
|
// Calculate the matrix Product of the eta array (we only need |
184 |
|
// the ij element right now): |
185 |
< |
|
185 |
> |
|
186 |
|
eta2ij = 0.0; |
187 |
|
for(k=0; k<3; k++){ |
188 |
|
eta2ij += eta[i][k] * eta[k][j]; |
189 |
|
} |
190 |
< |
|
190 |
> |
|
191 |
|
scaleMat[i][j] = 0.0; |
192 |
|
// identity matrix (see above): |
193 |
|
if (i == j) scaleMat[i][j] = 1.0; |
195 |
|
scaleMat[i][j] += dt*eta[i][j] + 0.5*dt*dt*eta2ij; |
196 |
|
|
197 |
|
if (i != j) |
198 |
< |
if (fabs(scaleMat[i][j]) > offDiagMax) |
198 |
> |
if (fabs(scaleMat[i][j]) > offDiagMax) |
199 |
|
offDiagMax = fabs(scaleMat[i][j]); |
200 |
|
} |
201 |
|
|
202 |
|
if (scaleMat[i][i] > bigScale) bigScale = scaleMat[i][i]; |
203 |
|
if (scaleMat[i][i] < smallScale) smallScale = scaleMat[i][i]; |
204 |
|
} |
205 |
< |
|
206 |
< |
if ((bigScale > 1.1) || (smallScale < 0.9)) { |
205 |
> |
|
206 |
> |
if ((bigScale > 1.01) || (smallScale < 0.99)) { |
207 |
|
sprintf( painCave.errMsg, |
208 |
< |
"NPTf error: Attempting a Box scaling of more than 10 percent.\n" |
208 |
> |
"NPTf error: Attempting a Box scaling of more than 1 percent.\n" |
209 |
|
" Check your tauBarostat, as it is probably too small!\n\n" |
210 |
|
" scaleMat = [%lf\t%lf\t%lf]\n" |
211 |
|
" [%lf\t%lf\t%lf]\n" |
215 |
|
scaleMat[2][0],scaleMat[2][1],scaleMat[2][2]); |
216 |
|
painCave.isFatal = 1; |
217 |
|
simError(); |
218 |
< |
} else if (offDiagMax > 0.1) { |
218 |
> |
} else if (offDiagMax > 0.01) { |
219 |
|
sprintf( painCave.errMsg, |
220 |
< |
"NPTf error: Attempting an off-diagonal Box scaling of more than 10 percent.\n" |
220 |
> |
"NPTf error: Attempting an off-diagonal Box scaling of more than 1 percent.\n" |
221 |
|
" Check your tauBarostat, as it is probably too small!\n\n" |
222 |
|
" scaleMat = [%lf\t%lf\t%lf]\n" |
223 |
|
" [%lf\t%lf\t%lf]\n" |
240 |
|
|
241 |
|
sumEta = 0; |
242 |
|
for(i = 0; i < 3; i++) |
243 |
< |
sumEta += pow(prevEta[i][i] - eta[i][i], 2); |
244 |
< |
|
243 |
> |
sumEta += pow(prevEta[i][i] - eta[i][i], 2); |
244 |
> |
|
245 |
|
diffEta = sqrt( sumEta / 3.0 ); |
246 |
< |
|
246 |
> |
|
247 |
|
return ( diffEta <= etaTolerance ); |
248 |
|
} |
249 |
|
|
250 |
|
template<typename T> double NPTf<T>::getConservedQuantity(void){ |
251 |
< |
|
251 |
> |
|
252 |
|
double conservedQuantity; |
253 |
|
double totalEnergy; |
254 |
|
double thermostat_kinetic; |
260 |
|
|
261 |
|
totalEnergy = tStats->getTotalE(); |
262 |
|
|
263 |
< |
thermostat_kinetic = fkBT* tt2 * chi * chi / |
263 |
> |
thermostat_kinetic = fkBT * tt2 * chi * chi / |
264 |
|
(2.0 * eConvert); |
265 |
|
|
266 |
|
thermostat_potential = fkBT* integralOfChidt / eConvert; |
269 |
|
info->matMul3(a, eta, b); |
270 |
|
trEta = info->matTrace3(b); |
271 |
|
|
272 |
< |
barostat_kinetic = NkBT * tb2 * trEta / |
272 |
> |
barostat_kinetic = NkBT * tb2 * trEta / |
273 |
|
(2.0 * eConvert); |
274 |
< |
|
275 |
< |
barostat_potential = (targetPressure * tStats->getVolume() / p_convert) / |
274 |
> |
|
275 |
> |
barostat_potential = (targetPressure * tStats->getVolume() / p_convert) / |
276 |
|
eConvert; |
277 |
|
|
278 |
|
conservedQuantity = totalEnergy + thermostat_kinetic + thermostat_potential + |
279 |
|
barostat_kinetic + barostat_potential; |
264 |
– |
|
265 |
– |
// cout.width(8); |
266 |
– |
// cout.precision(8); |
280 |
|
|
281 |
< |
// cerr << info->getTime() << "\t" << Energy << "\t" << thermostat_kinetic << |
269 |
< |
// "\t" << thermostat_potential << "\t" << barostat_kinetic << |
270 |
< |
// "\t" << barostat_potential << "\t" << conservedQuantity << endl; |
281 |
> |
return conservedQuantity; |
282 |
|
|
272 |
– |
return conservedQuantity; |
273 |
– |
|
283 |
|
} |
284 |
+ |
|
285 |
+ |
template<typename T> string NPTf<T>::getAdditionalParameters(void){ |
286 |
+ |
string parameters; |
287 |
+ |
const int BUFFERSIZE = 2000; // size of the read buffer |
288 |
+ |
char buffer[BUFFERSIZE]; |
289 |
+ |
|
290 |
+ |
sprintf(buffer,"\t%G\t%G;", chi, integralOfChidt); |
291 |
+ |
parameters += buffer; |
292 |
+ |
|
293 |
+ |
for(int i = 0; i < 3; i++){ |
294 |
+ |
sprintf(buffer,"\t%G\t%G\t%G;", eta[i][0], eta[i][1], eta[i][2]); |
295 |
+ |
parameters += buffer; |
296 |
+ |
} |
297 |
+ |
|
298 |
+ |
return parameters; |
299 |
+ |
|
300 |
+ |
} |