9 |
|
#include "Integrator.hpp" |
10 |
|
#include "simError.h" |
11 |
|
|
12 |
+ |
#ifdef IS_MPI |
13 |
+ |
#include "mpiSimulation.hpp" |
14 |
+ |
#endif |
15 |
|
|
16 |
|
// Basic non-isotropic thermostating and barostating via the Melchionna |
17 |
|
// modification of the Hoover algorithm: |
26 |
|
template<typename T> NPTf<T>::NPTf ( SimInfo *theInfo, ForceFields* the_ff): |
27 |
|
T( theInfo, the_ff ) |
28 |
|
{ |
29 |
< |
int i, j; |
30 |
< |
chi = 0.0; |
29 |
> |
|
30 |
> |
int i,j; |
31 |
> |
|
32 |
> |
for(i = 0; i < 3; i++){ |
33 |
> |
for (j = 0; j < 3; j++){ |
34 |
> |
|
35 |
> |
eta[i][j] = 0.0; |
36 |
> |
oldEta[i][j] = 0.0; |
37 |
> |
} |
38 |
> |
} |
39 |
> |
} |
40 |
|
|
41 |
< |
for(i = 0; i < 3; i++) |
42 |
< |
for (j = 0; j < 3; j++) |
41 |
> |
template<typename T> NPTf<T>::~NPTf() { |
42 |
> |
|
43 |
> |
// empty for now |
44 |
> |
} |
45 |
> |
|
46 |
> |
template<typename T> void NPTf<T>::resetIntegrator() { |
47 |
> |
|
48 |
> |
int i, j; |
49 |
> |
|
50 |
> |
for(i = 0; i < 3; i++) |
51 |
> |
for (j = 0; j < 3; j++) |
52 |
|
eta[i][j] = 0.0; |
53 |
+ |
|
54 |
+ |
T::resetIntegrator(); |
55 |
+ |
} |
56 |
|
|
57 |
< |
have_tau_thermostat = 0; |
58 |
< |
have_tau_barostat = 0; |
59 |
< |
have_target_temp = 0; |
60 |
< |
have_target_pressure = 0; |
57 |
> |
template<typename T> void NPTf<T>::evolveEtaA() { |
58 |
> |
|
59 |
> |
int i, j; |
60 |
> |
|
61 |
> |
for(i = 0; i < 3; i ++){ |
62 |
> |
for(j = 0; j < 3; j++){ |
63 |
> |
if( i == j) |
64 |
> |
eta[i][j] += dt2 * instaVol * |
65 |
> |
(press[i][j] - targetPressure/p_convert) / (NkBT*tb2); |
66 |
> |
else |
67 |
> |
eta[i][j] += dt2 * instaVol * press[i][j] / (NkBT*tb2); |
68 |
> |
} |
69 |
> |
} |
70 |
> |
|
71 |
> |
for(i = 0; i < 3; i++) |
72 |
> |
for (j = 0; j < 3; j++) |
73 |
> |
oldEta[i][j] = eta[i][j]; |
74 |
|
} |
75 |
|
|
76 |
< |
template<typename T> void NPTf<T>::moveA() { |
76 |
> |
template<typename T> void NPTf<T>::evolveEtaB() { |
77 |
|
|
78 |
< |
int i, j, k; |
42 |
< |
DirectionalAtom* dAtom; |
43 |
< |
double Tb[3], ji[3]; |
44 |
< |
double A[3][3], I[3][3]; |
45 |
< |
double angle, mass; |
46 |
< |
double vel[3], pos[3], frc[3]; |
78 |
> |
int i,j; |
79 |
|
|
80 |
< |
double rj[3]; |
81 |
< |
double instaTemp, instaPress, instaVol; |
82 |
< |
double tt2, tb2; |
51 |
< |
double sc[3]; |
52 |
< |
double eta2ij; |
53 |
< |
double press[3][3], vScale[3][3], hm[3][3], hmnew[3][3], scaleMat[3][3]; |
54 |
< |
double bigScale, smallScale, offDiagMax; |
80 |
> |
for(i = 0; i < 3; i++) |
81 |
> |
for (j = 0; j < 3; j++) |
82 |
> |
prevEta[i][j] = eta[i][j]; |
83 |
|
|
84 |
< |
tt2 = tauThermostat * tauThermostat; |
85 |
< |
tb2 = tauBarostat * tauBarostat; |
84 |
> |
for(i = 0; i < 3; i ++){ |
85 |
> |
for(j = 0; j < 3; j++){ |
86 |
> |
if( i == j) { |
87 |
> |
eta[i][j] = oldEta[i][j] + dt2 * instaVol * |
88 |
> |
(press[i][j] - targetPressure/p_convert) / (NkBT*tb2); |
89 |
> |
} else { |
90 |
> |
eta[i][j] = oldEta[i][j] + dt2 * instaVol * press[i][j] / (NkBT*tb2); |
91 |
> |
} |
92 |
> |
} |
93 |
> |
} |
94 |
> |
} |
95 |
|
|
96 |
< |
instaTemp = tStats->getTemperature(); |
97 |
< |
tStats->getPressureTensor(press); |
98 |
< |
instaVol = tStats->getVolume(); |
62 |
< |
|
63 |
< |
// first evolve chi a half step |
64 |
< |
|
65 |
< |
chi += dt2 * ( instaTemp / targetTemp - 1.0) / tt2; |
96 |
> |
template<typename T> void NPTf<T>::getVelScaleA(double sc[3], double vel[3]) { |
97 |
> |
int i,j; |
98 |
> |
double vScale[3][3]; |
99 |
|
|
100 |
|
for (i = 0; i < 3; i++ ) { |
101 |
|
for (j = 0; j < 3; j++ ) { |
102 |
+ |
vScale[i][j] = eta[i][j]; |
103 |
+ |
|
104 |
|
if (i == j) { |
105 |
< |
|
106 |
< |
eta[i][j] += dt2 * instaVol * |
72 |
< |
(press[i][j] - targetPressure/p_convert) / (NkBT*tb2); |
73 |
< |
|
74 |
< |
vScale[i][j] = eta[i][j] + chi; |
75 |
< |
|
76 |
< |
} else { |
77 |
< |
|
78 |
< |
eta[i][j] += dt2 * instaVol * press[i][j] / (NkBT*tb2); |
79 |
< |
|
80 |
< |
vScale[i][j] = eta[i][j]; |
81 |
< |
|
82 |
< |
} |
105 |
> |
vScale[i][j] += chi; |
106 |
> |
} |
107 |
|
} |
108 |
|
} |
109 |
+ |
|
110 |
+ |
info->matVecMul3( vScale, vel, sc ); |
111 |
+ |
} |
112 |
|
|
113 |
< |
for( i=0; i<nAtoms; i++ ){ |
113 |
> |
template<typename T> void NPTf<T>::getVelScaleB(double sc[3], int index ){ |
114 |
> |
int i,j; |
115 |
> |
double myVel[3]; |
116 |
> |
double vScale[3][3]; |
117 |
|
|
118 |
< |
atoms[i]->getVel( vel ); |
119 |
< |
atoms[i]->getPos( pos ); |
120 |
< |
atoms[i]->getFrc( frc ); |
121 |
< |
|
122 |
< |
mass = atoms[i]->getMass(); |
123 |
< |
|
124 |
< |
// velocity half step |
95 |
< |
|
96 |
< |
info->matVecMul3( vScale, vel, sc ); |
97 |
< |
|
98 |
< |
for (j = 0; j < 3; j++) { |
99 |
< |
vel[j] += dt2 * ((frc[j] / mass) * eConvert - sc[j]); |
100 |
< |
rj[j] = pos[j]; |
118 |
> |
for (i = 0; i < 3; i++ ) { |
119 |
> |
for (j = 0; j < 3; j++ ) { |
120 |
> |
vScale[i][j] = eta[i][j]; |
121 |
> |
|
122 |
> |
if (i == j) { |
123 |
> |
vScale[i][j] += chi; |
124 |
> |
} |
125 |
|
} |
126 |
+ |
} |
127 |
+ |
|
128 |
+ |
for (j = 0; j < 3; j++) |
129 |
+ |
myVel[j] = oldVel[3*index + j]; |
130 |
|
|
131 |
< |
atoms[i]->setVel( vel ); |
131 |
> |
info->matVecMul3( vScale, myVel, sc ); |
132 |
> |
} |
133 |
|
|
134 |
< |
// position whole step |
134 |
> |
template<typename T> void NPTf<T>::getPosScale(double pos[3], double COM[3], |
135 |
> |
int index, double sc[3]){ |
136 |
> |
int j; |
137 |
> |
double rj[3]; |
138 |
|
|
139 |
< |
info->wrapVector(rj); |
139 |
> |
for(j=0; j<3; j++) |
140 |
> |
rj[j] = ( oldPos[index*3+j] + pos[j]) / 2.0 - COM[j]; |
141 |
|
|
142 |
< |
info->matVecMul3( eta, rj, sc ); |
142 |
> |
info->matVecMul3( eta, rj, sc ); |
143 |
> |
} |
144 |
|
|
145 |
< |
for (j = 0; j < 3; j++ ) |
112 |
< |
pos[j] += dt * (vel[j] + sc[j]); |
145 |
> |
template<typename T> void NPTf<T>::scaleSimBox( void ){ |
146 |
|
|
147 |
< |
atoms[i]->setPos( pos ); |
148 |
< |
|
149 |
< |
if( atoms[i]->isDirectional() ){ |
147 |
> |
int i,j,k; |
148 |
> |
double scaleMat[3][3]; |
149 |
> |
double eta2ij; |
150 |
> |
double bigScale, smallScale, offDiagMax; |
151 |
> |
double hm[3][3], hmnew[3][3]; |
152 |
> |
|
153 |
|
|
118 |
– |
dAtom = (DirectionalAtom *)atoms[i]; |
119 |
– |
|
120 |
– |
// get and convert the torque to body frame |
121 |
– |
|
122 |
– |
dAtom->getTrq( Tb ); |
123 |
– |
dAtom->lab2Body( Tb ); |
124 |
– |
|
125 |
– |
// get the angular momentum, and propagate a half step |
154 |
|
|
127 |
– |
dAtom->getJ( ji ); |
128 |
– |
|
129 |
– |
for (j=0; j < 3; j++) |
130 |
– |
ji[j] += dt2 * (Tb[j] * eConvert - ji[j]*chi); |
131 |
– |
|
132 |
– |
// use the angular velocities to propagate the rotation matrix a |
133 |
– |
// full time step |
134 |
– |
|
135 |
– |
dAtom->getA(A); |
136 |
– |
dAtom->getI(I); |
137 |
– |
|
138 |
– |
// rotate about the x-axis |
139 |
– |
angle = dt2 * ji[0] / I[0][0]; |
140 |
– |
this->rotate( 1, 2, angle, ji, A ); |
141 |
– |
|
142 |
– |
// rotate about the y-axis |
143 |
– |
angle = dt2 * ji[1] / I[1][1]; |
144 |
– |
this->rotate( 2, 0, angle, ji, A ); |
145 |
– |
|
146 |
– |
// rotate about the z-axis |
147 |
– |
angle = dt * ji[2] / I[2][2]; |
148 |
– |
this->rotate( 0, 1, angle, ji, A); |
149 |
– |
|
150 |
– |
// rotate about the y-axis |
151 |
– |
angle = dt2 * ji[1] / I[1][1]; |
152 |
– |
this->rotate( 2, 0, angle, ji, A ); |
153 |
– |
|
154 |
– |
// rotate about the x-axis |
155 |
– |
angle = dt2 * ji[0] / I[0][0]; |
156 |
– |
this->rotate( 1, 2, angle, ji, A ); |
157 |
– |
|
158 |
– |
dAtom->setJ( ji ); |
159 |
– |
dAtom->setA( A ); |
160 |
– |
} |
161 |
– |
} |
162 |
– |
|
155 |
|
// Scale the box after all the positions have been moved: |
156 |
|
|
157 |
|
// Use a taylor expansion for eta products: Hmat = Hmat . exp(dt * etaMat) |
181 |
|
if (i != j) |
182 |
|
if (fabs(scaleMat[i][j]) > offDiagMax) |
183 |
|
offDiagMax = fabs(scaleMat[i][j]); |
192 |
– |
|
184 |
|
} |
185 |
|
|
186 |
|
if (scaleMat[i][i] > bigScale) bigScale = scaleMat[i][i]; |
216 |
|
info->matMul3(hm, scaleMat, hmnew); |
217 |
|
info->setBoxM(hmnew); |
218 |
|
} |
228 |
– |
|
219 |
|
} |
220 |
|
|
221 |
< |
template<typename T> void NPTf<T>::moveB( void ){ |
221 |
> |
template<typename T> bool NPTf<T>::etaConverged() { |
222 |
> |
int i; |
223 |
> |
double diffEta, sumEta; |
224 |
|
|
225 |
< |
int i, j; |
226 |
< |
DirectionalAtom* dAtom; |
227 |
< |
double Tb[3], ji[3]; |
236 |
< |
double vel[3], frc[3]; |
237 |
< |
double mass; |
238 |
< |
|
239 |
< |
double instaTemp, instaPress, instaVol; |
240 |
< |
double tt2, tb2; |
241 |
< |
double sc[3]; |
242 |
< |
double press[3][3], vScale[3][3]; |
225 |
> |
sumEta = 0; |
226 |
> |
for(i = 0; i < 3; i++) |
227 |
> |
sumEta += pow(prevEta[i][i] - eta[i][i], 2); |
228 |
|
|
229 |
< |
tt2 = tauThermostat * tauThermostat; |
230 |
< |
tb2 = tauBarostat * tauBarostat; |
229 |
> |
diffEta = sqrt( sumEta / 3.0 ); |
230 |
> |
|
231 |
> |
return ( diffEta <= etaTolerance ); |
232 |
> |
} |
233 |
|
|
234 |
< |
instaTemp = tStats->getTemperature(); |
248 |
< |
tStats->getPressureTensor(press); |
249 |
< |
instaVol = tStats->getVolume(); |
250 |
< |
|
251 |
< |
// first evolve chi a half step |
234 |
> |
template<typename T> double NPTf<T>::getConservedQuantity(void){ |
235 |
|
|
236 |
< |
chi += dt2 * ( instaTemp / targetTemp - 1.0) / tt2; |
237 |
< |
|
238 |
< |
for (i = 0; i < 3; i++ ) { |
239 |
< |
for (j = 0; j < 3; j++ ) { |
240 |
< |
if (i == j) { |
236 |
> |
double conservedQuantity; |
237 |
> |
double totalEnergy; |
238 |
> |
double thermostat_kinetic; |
239 |
> |
double thermostat_potential; |
240 |
> |
double barostat_kinetic; |
241 |
> |
double barostat_potential; |
242 |
> |
double trEta; |
243 |
> |
double a[3][3], b[3][3]; |
244 |
|
|
245 |
< |
eta[i][j] += dt2 * instaVol * |
260 |
< |
(press[i][j] - targetPressure/p_convert) / (NkBT*tb2); |
245 |
> |
totalEnergy = tStats->getTotalE(); |
246 |
|
|
247 |
< |
vScale[i][j] = eta[i][j] + chi; |
248 |
< |
|
264 |
< |
} else { |
265 |
< |
|
266 |
< |
eta[i][j] += dt2 * instaVol * press[i][j] / (NkBT*tb2); |
247 |
> |
thermostat_kinetic = fkBT * tt2 * chi * chi / |
248 |
> |
(2.0 * eConvert); |
249 |
|
|
250 |
< |
vScale[i][j] = eta[i][j]; |
269 |
< |
|
270 |
< |
} |
271 |
< |
} |
272 |
< |
} |
250 |
> |
thermostat_potential = fkBT* integralOfChidt / eConvert; |
251 |
|
|
252 |
< |
for( i=0; i<nAtoms; i++ ){ |
252 |
> |
info->transposeMat3(eta, a); |
253 |
> |
info->matMul3(a, eta, b); |
254 |
> |
trEta = info->matTrace3(b); |
255 |
|
|
256 |
< |
atoms[i]->getVel( vel ); |
257 |
< |
atoms[i]->getFrc( frc ); |
278 |
< |
|
279 |
< |
mass = atoms[i]->getMass(); |
280 |
< |
|
281 |
< |
// velocity half step |
282 |
< |
|
283 |
< |
info->matVecMul3( vScale, vel, sc ); |
284 |
< |
|
285 |
< |
for (j = 0; j < 3; j++) { |
286 |
< |
vel[j] += dt2 * ((frc[j] / mass) * eConvert - sc[j]); |
287 |
< |
} |
288 |
< |
|
289 |
< |
atoms[i]->setVel( vel ); |
290 |
< |
|
291 |
< |
if( atoms[i]->isDirectional() ){ |
292 |
< |
|
293 |
< |
dAtom = (DirectionalAtom *)atoms[i]; |
294 |
< |
|
295 |
< |
// get and convert the torque to body frame |
296 |
< |
|
297 |
< |
dAtom->getTrq( Tb ); |
298 |
< |
dAtom->lab2Body( Tb ); |
299 |
< |
|
300 |
< |
// get the angular momentum, and propagate a half step |
301 |
< |
|
302 |
< |
dAtom->getJ( ji ); |
303 |
< |
|
304 |
< |
for (j=0; j < 3; j++) |
305 |
< |
ji[j] += dt2 * (Tb[j] * eConvert - ji[j]*chi); |
306 |
< |
|
307 |
< |
dAtom->setJ( ji ); |
308 |
< |
|
309 |
< |
} |
310 |
< |
} |
311 |
< |
} |
312 |
< |
|
313 |
< |
template<typename T> int NPTf<T>::readyCheck() { |
314 |
< |
|
315 |
< |
//check parent's readyCheck() first |
316 |
< |
if (T::readyCheck() == -1) |
317 |
< |
return -1; |
318 |
< |
|
319 |
< |
// First check to see if we have a target temperature. |
320 |
< |
// Not having one is fatal. |
256 |
> |
barostat_kinetic = NkBT * tb2 * trEta / |
257 |
> |
(2.0 * eConvert); |
258 |
|
|
259 |
< |
if (!have_target_temp) { |
260 |
< |
sprintf( painCave.errMsg, |
324 |
< |
"NPTf error: You can't use the NPTf integrator\n" |
325 |
< |
" without a targetTemp!\n" |
326 |
< |
); |
327 |
< |
painCave.isFatal = 1; |
328 |
< |
simError(); |
329 |
< |
return -1; |
330 |
< |
} |
259 |
> |
barostat_potential = (targetPressure * tStats->getVolume() / p_convert) / |
260 |
> |
eConvert; |
261 |
|
|
262 |
< |
if (!have_target_pressure) { |
263 |
< |
sprintf( painCave.errMsg, |
334 |
< |
"NPTf error: You can't use the NPTf integrator\n" |
335 |
< |
" without a targetPressure!\n" |
336 |
< |
); |
337 |
< |
painCave.isFatal = 1; |
338 |
< |
simError(); |
339 |
< |
return -1; |
340 |
< |
} |
262 |
> |
conservedQuantity = totalEnergy + thermostat_kinetic + thermostat_potential + |
263 |
> |
barostat_kinetic + barostat_potential; |
264 |
|
|
265 |
< |
// We must set tauThermostat. |
266 |
< |
|
344 |
< |
if (!have_tau_thermostat) { |
345 |
< |
sprintf( painCave.errMsg, |
346 |
< |
"NPTf error: If you use the NPTf\n" |
347 |
< |
" integrator, you must set tauThermostat.\n"); |
348 |
< |
painCave.isFatal = 1; |
349 |
< |
simError(); |
350 |
< |
return -1; |
351 |
< |
} |
265 |
> |
// cout.width(8); |
266 |
> |
// cout.precision(8); |
267 |
|
|
268 |
< |
// We must set tauBarostat. |
269 |
< |
|
270 |
< |
if (!have_tau_barostat) { |
356 |
< |
sprintf( painCave.errMsg, |
357 |
< |
"NPTf error: If you use the NPTf\n" |
358 |
< |
" integrator, you must set tauBarostat.\n"); |
359 |
< |
painCave.isFatal = 1; |
360 |
< |
simError(); |
361 |
< |
return -1; |
362 |
< |
} |
268 |
> |
// cerr << info->getTime() << "\t" << Energy << "\t" << thermostat_kinetic << |
269 |
> |
// "\t" << thermostat_potential << "\t" << barostat_kinetic << |
270 |
> |
// "\t" << barostat_potential << "\t" << conservedQuantity << endl; |
271 |
|
|
272 |
< |
// We need NkBT a lot, so just set it here: |
273 |
< |
|
366 |
< |
NkBT = (double)info->ndf * kB * targetTemp; |
367 |
< |
|
368 |
< |
return 1; |
272 |
> |
return conservedQuantity; |
273 |
> |
|
274 |
|
} |