| 1 |
+ |
#include <math.h> |
| 2 |
|
#include "Atom.hpp" |
| 3 |
|
#include "SRI.hpp" |
| 4 |
|
#include "AbstractClasses.hpp" |
| 7 |
|
#include "Thermo.hpp" |
| 8 |
|
#include "ReadWrite.hpp" |
| 9 |
|
#include "Integrator.hpp" |
| 10 |
< |
#include "simError.h" |
| 10 |
> |
#include "simError.h" |
| 11 |
|
|
| 12 |
+ |
#ifdef IS_MPI |
| 13 |
+ |
#include "mpiSimulation.hpp" |
| 14 |
+ |
#endif |
| 15 |
|
|
| 16 |
|
// Basic non-isotropic thermostating and barostating via the Melchionna |
| 17 |
|
// modification of the Hoover algorithm: |
| 18 |
|
// |
| 19 |
|
// Melchionna, S., Ciccotti, G., and Holian, B. L., 1993, |
| 20 |
< |
// Molec. Phys., 78, 533. |
| 20 |
> |
// Molec. Phys., 78, 533. |
| 21 |
|
// |
| 22 |
|
// and |
| 23 |
< |
// |
| 23 |
> |
// |
| 24 |
|
// Hoover, W. G., 1986, Phys. Rev. A, 34, 2499. |
| 25 |
|
|
| 26 |
< |
NPTf::NPTf ( SimInfo *theInfo, ForceFields* the_ff): |
| 27 |
< |
Integrator( theInfo, the_ff ) |
| 26 |
> |
template<typename T> NPTf<T>::NPTf ( SimInfo *theInfo, ForceFields* the_ff): |
| 27 |
> |
T( theInfo, the_ff ) |
| 28 |
|
{ |
| 29 |
< |
int i; |
| 30 |
< |
chi = 0.0; |
| 31 |
< |
for(i = 0; i < 9; i++) eta[i] = 0.0; |
| 32 |
< |
have_tau_thermostat = 0; |
| 33 |
< |
have_tau_barostat = 0; |
| 34 |
< |
have_target_temp = 0; |
| 35 |
< |
have_target_pressure = 0; |
| 29 |
> |
GenericData* data; |
| 30 |
> |
DoubleArrayData * etaValue; |
| 31 |
> |
vector<double> etaArray; |
| 32 |
> |
int i,j; |
| 33 |
> |
|
| 34 |
> |
for(i = 0; i < 3; i++){ |
| 35 |
> |
for (j = 0; j < 3; j++){ |
| 36 |
> |
|
| 37 |
> |
eta[i][j] = 0.0; |
| 38 |
> |
oldEta[i][j] = 0.0; |
| 39 |
> |
} |
| 40 |
> |
} |
| 41 |
> |
|
| 42 |
> |
|
| 43 |
> |
if( theInfo->useInitXSstate ){ |
| 44 |
> |
// retrieve eta array from simInfo if it exists |
| 45 |
> |
data = info->getProperty(ETAVALUE_ID); |
| 46 |
> |
if(data){ |
| 47 |
> |
etaValue = dynamic_cast<DoubleArrayData*>(data); |
| 48 |
> |
|
| 49 |
> |
if(etaValue){ |
| 50 |
> |
etaArray = etaValue->getData(); |
| 51 |
> |
|
| 52 |
> |
for(i = 0; i < 3; i++){ |
| 53 |
> |
for (j = 0; j < 3; j++){ |
| 54 |
> |
eta[i][j] = etaArray[3*i+j]; |
| 55 |
> |
oldEta[i][j] = eta[i][j]; |
| 56 |
> |
} |
| 57 |
> |
} |
| 58 |
> |
} |
| 59 |
> |
} |
| 60 |
> |
} |
| 61 |
> |
|
| 62 |
|
} |
| 63 |
|
|
| 64 |
< |
void NPTf::moveA() { |
| 35 |
< |
|
| 36 |
< |
int i,j,k; |
| 37 |
< |
int atomIndex, aMatIndex; |
| 38 |
< |
DirectionalAtom* dAtom; |
| 39 |
< |
double Tb[3]; |
| 40 |
< |
double ji[3]; |
| 41 |
< |
double rj[3]; |
| 42 |
< |
double ident[3][3], eta1[3][3], eta2[3][3], hmnew[3][3]; |
| 43 |
< |
double hm[9]; |
| 44 |
< |
double vx, vy, vz; |
| 45 |
< |
double scx, scy, scz; |
| 46 |
< |
double instaTemp, instaPress, instaVol; |
| 47 |
< |
double tt2, tb2; |
| 48 |
< |
double angle; |
| 49 |
< |
double press[9]; |
| 64 |
> |
template<typename T> NPTf<T>::~NPTf() { |
| 65 |
|
|
| 66 |
< |
tt2 = tauThermostat * tauThermostat; |
| 67 |
< |
tb2 = tauBarostat * tauBarostat; |
| 66 |
> |
// empty for now |
| 67 |
> |
} |
| 68 |
|
|
| 69 |
< |
instaTemp = tStats->getTemperature(); |
| 55 |
< |
tStats->getPressureTensor(press); |
| 56 |
< |
instaVol = tStats->getVolume(); |
| 57 |
< |
|
| 58 |
< |
// first evolve chi a half step |
| 59 |
< |
|
| 60 |
< |
chi += dt2 * ( instaTemp / targetTemp - 1.0) / tt2; |
| 61 |
< |
|
| 62 |
< |
eta[0] += dt2 * instaVol * (press[0] - targetPressure/p_convert) / |
| 63 |
< |
(NkBT*tb2); |
| 64 |
< |
eta[1] += dt2 * instaVol * press[1] / (NkBT*tb2); |
| 65 |
< |
eta[2] += dt2 * instaVol * press[2] / (NkBT*tb2); |
| 66 |
< |
eta[3] += dt2 * instaVol * press[3] / (NkBT*tb2); |
| 67 |
< |
eta[4] += dt2 * instaVol * (press[4] - targetPressure/p_convert) / |
| 68 |
< |
(NkBT*tb2); |
| 69 |
< |
eta[5] += dt2 * instaVol * press[5] / (NkBT*tb2); |
| 70 |
< |
eta[6] += dt2 * instaVol * press[6] / (NkBT*tb2); |
| 71 |
< |
eta[7] += dt2 * instaVol * press[7] / (NkBT*tb2); |
| 72 |
< |
eta[8] += dt2 * instaVol * (press[8] - targetPressure/p_convert) / |
| 73 |
< |
(NkBT*tb2); |
| 74 |
< |
|
| 75 |
< |
for( i=0; i<nAtoms; i++ ){ |
| 76 |
< |
atomIndex = i * 3; |
| 77 |
< |
aMatIndex = i * 9; |
| 78 |
< |
|
| 79 |
< |
// velocity half step |
| 80 |
< |
|
| 81 |
< |
vx = vel[atomIndex]; |
| 82 |
< |
vy = vel[atomIndex+1]; |
| 83 |
< |
vz = vel[atomIndex+2]; |
| 84 |
< |
|
| 85 |
< |
scx = (chi + eta[0])*vx + eta[1]*vy + eta[2]*vz; |
| 86 |
< |
scy = eta[3]*vx + (chi + eta[4])*vy + eta[5]*vz; |
| 87 |
< |
scz = eta[6]*vx + eta[7]*vy + (chi + eta[8])*vz; |
| 88 |
< |
|
| 89 |
< |
vx += dt2 * ((frc[atomIndex] /atoms[i]->getMass())*eConvert - scx); |
| 90 |
< |
vy += dt2 * ((frc[atomIndex+1]/atoms[i]->getMass())*eConvert - scy); |
| 91 |
< |
vz += dt2 * ((frc[atomIndex+2]/atoms[i]->getMass())*eConvert - scz); |
| 69 |
> |
template<typename T> void NPTf<T>::resetIntegrator() { |
| 70 |
|
|
| 71 |
< |
vel[atomIndex] = vx; |
| 94 |
< |
vel[atomIndex+1] = vy; |
| 95 |
< |
vel[atomIndex+2] = vz; |
| 71 |
> |
int i, j; |
| 72 |
|
|
| 73 |
< |
// position whole step |
| 73 |
> |
for(i = 0; i < 3; i++) |
| 74 |
> |
for (j = 0; j < 3; j++) |
| 75 |
> |
eta[i][j] = 0.0; |
| 76 |
|
|
| 77 |
< |
rj[0] = pos[atomIndex]; |
| 78 |
< |
rj[1] = pos[atomIndex+1]; |
| 101 |
< |
rj[2] = pos[atomIndex+2]; |
| 77 |
> |
T::resetIntegrator(); |
| 78 |
> |
} |
| 79 |
|
|
| 80 |
< |
info->wrapVector(rj); |
| 80 |
> |
template<typename T> void NPTf<T>::evolveEtaA() { |
| 81 |
|
|
| 82 |
< |
scx = eta[0]*rj[0] + eta[1]*rj[1] + eta[2]*rj[2]; |
| 106 |
< |
scy = eta[3]*rj[0] + eta[4]*rj[1] + eta[5]*rj[2]; |
| 107 |
< |
scz = eta[6]*rj[0] + eta[7]*rj[1] + eta[8]*rj[2]; |
| 82 |
> |
int i, j; |
| 83 |
|
|
| 84 |
< |
pos[atomIndex] += dt * (vel[atomIndex] + scx); |
| 85 |
< |
pos[atomIndex+1] += dt * (vel[atomIndex+1] + scy); |
| 86 |
< |
pos[atomIndex+2] += dt * (vel[atomIndex+2] + scz); |
| 87 |
< |
|
| 88 |
< |
if( atoms[i]->isDirectional() ){ |
| 84 |
> |
for(i = 0; i < 3; i ++){ |
| 85 |
> |
for(j = 0; j < 3; j++){ |
| 86 |
> |
if( i == j) |
| 87 |
> |
eta[i][j] += dt2 * instaVol * |
| 88 |
> |
(press[i][j] - targetPressure/p_convert) / (NkBT*tb2); |
| 89 |
> |
else |
| 90 |
> |
eta[i][j] += dt2 * instaVol * press[i][j] / (NkBT*tb2); |
| 91 |
> |
} |
| 92 |
> |
} |
| 93 |
|
|
| 94 |
< |
dAtom = (DirectionalAtom *)atoms[i]; |
| 95 |
< |
|
| 96 |
< |
// get and convert the torque to body frame |
| 97 |
< |
|
| 119 |
< |
Tb[0] = dAtom->getTx(); |
| 120 |
< |
Tb[1] = dAtom->getTy(); |
| 121 |
< |
Tb[2] = dAtom->getTz(); |
| 122 |
< |
|
| 123 |
< |
dAtom->lab2Body( Tb ); |
| 124 |
< |
|
| 125 |
< |
// get the angular momentum, and propagate a half step |
| 94 |
> |
for(i = 0; i < 3; i++) |
| 95 |
> |
for (j = 0; j < 3; j++) |
| 96 |
> |
oldEta[i][j] = eta[i][j]; |
| 97 |
> |
} |
| 98 |
|
|
| 99 |
< |
ji[0] = dAtom->getJx(); |
| 100 |
< |
ji[1] = dAtom->getJy(); |
| 101 |
< |
ji[2] = dAtom->getJz(); |
| 102 |
< |
|
| 103 |
< |
ji[0] += dt2 * (Tb[0] * eConvert - ji[0]*chi); |
| 104 |
< |
ji[1] += dt2 * (Tb[1] * eConvert - ji[1]*chi); |
| 105 |
< |
ji[2] += dt2 * (Tb[2] * eConvert - ji[2]*chi); |
| 106 |
< |
|
| 107 |
< |
// use the angular velocities to propagate the rotation matrix a |
| 108 |
< |
// full time step |
| 109 |
< |
|
| 110 |
< |
// rotate about the x-axis |
| 111 |
< |
angle = dt2 * ji[0] / dAtom->getIxx(); |
| 112 |
< |
this->rotate( 1, 2, angle, ji, &Amat[aMatIndex] ); |
| 113 |
< |
|
| 114 |
< |
// rotate about the y-axis |
| 143 |
< |
angle = dt2 * ji[1] / dAtom->getIyy(); |
| 144 |
< |
this->rotate( 2, 0, angle, ji, &Amat[aMatIndex] ); |
| 145 |
< |
|
| 146 |
< |
// rotate about the z-axis |
| 147 |
< |
angle = dt * ji[2] / dAtom->getIzz(); |
| 148 |
< |
this->rotate( 0, 1, angle, ji, &Amat[aMatIndex] ); |
| 149 |
< |
|
| 150 |
< |
// rotate about the y-axis |
| 151 |
< |
angle = dt2 * ji[1] / dAtom->getIyy(); |
| 152 |
< |
this->rotate( 2, 0, angle, ji, &Amat[aMatIndex] ); |
| 153 |
< |
|
| 154 |
< |
// rotate about the x-axis |
| 155 |
< |
angle = dt2 * ji[0] / dAtom->getIxx(); |
| 156 |
< |
this->rotate( 1, 2, angle, ji, &Amat[aMatIndex] ); |
| 157 |
< |
|
| 158 |
< |
dAtom->setJx( ji[0] ); |
| 159 |
< |
dAtom->setJy( ji[1] ); |
| 160 |
< |
dAtom->setJz( ji[2] ); |
| 99 |
> |
template<typename T> void NPTf<T>::evolveEtaB() { |
| 100 |
> |
|
| 101 |
> |
int i,j; |
| 102 |
> |
|
| 103 |
> |
for(i = 0; i < 3; i++) |
| 104 |
> |
for (j = 0; j < 3; j++) |
| 105 |
> |
prevEta[i][j] = eta[i][j]; |
| 106 |
> |
|
| 107 |
> |
for(i = 0; i < 3; i ++){ |
| 108 |
> |
for(j = 0; j < 3; j++){ |
| 109 |
> |
if( i == j) { |
| 110 |
> |
eta[i][j] = oldEta[i][j] + dt2 * instaVol * |
| 111 |
> |
(press[i][j] - targetPressure/p_convert) / (NkBT*tb2); |
| 112 |
> |
} else { |
| 113 |
> |
eta[i][j] = oldEta[i][j] + dt2 * instaVol * press[i][j] / (NkBT*tb2); |
| 114 |
> |
} |
| 115 |
|
} |
| 162 |
– |
|
| 116 |
|
} |
| 117 |
+ |
} |
| 118 |
+ |
|
| 119 |
+ |
template<typename T> void NPTf<T>::getVelScaleA(double sc[3], double vel[3]) { |
| 120 |
+ |
int i,j; |
| 121 |
+ |
double vScale[3][3]; |
| 122 |
+ |
|
| 123 |
+ |
for (i = 0; i < 3; i++ ) { |
| 124 |
+ |
for (j = 0; j < 3; j++ ) { |
| 125 |
+ |
vScale[i][j] = eta[i][j]; |
| 126 |
+ |
|
| 127 |
+ |
if (i == j) { |
| 128 |
+ |
vScale[i][j] += chi; |
| 129 |
+ |
} |
| 130 |
+ |
} |
| 131 |
+ |
} |
| 132 |
+ |
|
| 133 |
+ |
info->matVecMul3( vScale, vel, sc ); |
| 134 |
+ |
} |
| 135 |
+ |
|
| 136 |
+ |
template<typename T> void NPTf<T>::getVelScaleB(double sc[3], int index ){ |
| 137 |
+ |
int i,j; |
| 138 |
+ |
double myVel[3]; |
| 139 |
+ |
double vScale[3][3]; |
| 140 |
+ |
|
| 141 |
+ |
for (i = 0; i < 3; i++ ) { |
| 142 |
+ |
for (j = 0; j < 3; j++ ) { |
| 143 |
+ |
vScale[i][j] = eta[i][j]; |
| 144 |
+ |
|
| 145 |
+ |
if (i == j) { |
| 146 |
+ |
vScale[i][j] += chi; |
| 147 |
+ |
} |
| 148 |
+ |
} |
| 149 |
+ |
} |
| 150 |
+ |
|
| 151 |
+ |
for (j = 0; j < 3; j++) |
| 152 |
+ |
myVel[j] = oldVel[3*index + j]; |
| 153 |
+ |
|
| 154 |
+ |
info->matVecMul3( vScale, myVel, sc ); |
| 155 |
+ |
} |
| 156 |
+ |
|
| 157 |
+ |
template<typename T> void NPTf<T>::getPosScale(double pos[3], double COM[3], |
| 158 |
+ |
int index, double sc[3]){ |
| 159 |
+ |
int j; |
| 160 |
+ |
double rj[3]; |
| 161 |
+ |
|
| 162 |
+ |
for(j=0; j<3; j++) |
| 163 |
+ |
rj[j] = ( oldPos[index*3+j] + pos[j]) / 2.0 - COM[j]; |
| 164 |
+ |
|
| 165 |
+ |
info->matVecMul3( eta, rj, sc ); |
| 166 |
+ |
} |
| 167 |
+ |
|
| 168 |
+ |
template<typename T> void NPTf<T>::scaleSimBox( void ){ |
| 169 |
+ |
|
| 170 |
+ |
int i,j,k; |
| 171 |
+ |
double scaleMat[3][3]; |
| 172 |
+ |
double eta2ij; |
| 173 |
+ |
double bigScale, smallScale, offDiagMax; |
| 174 |
+ |
double hm[3][3], hmnew[3][3]; |
| 175 |
+ |
|
| 176 |
|
|
| 177 |
+ |
|
| 178 |
|
// Scale the box after all the positions have been moved: |
| 179 |
|
|
| 180 |
|
// Use a taylor expansion for eta products: Hmat = Hmat . exp(dt * etaMat) |
| 181 |
|
// Hmat = Hmat . ( Ident + dt * etaMat + dt^2 * etaMat*etaMat / 2) |
| 182 |
|
|
| 183 |
+ |
bigScale = 1.0; |
| 184 |
+ |
smallScale = 1.0; |
| 185 |
+ |
offDiagMax = 0.0; |
| 186 |
|
|
| 187 |
|
for(i=0; i<3; i++){ |
| 188 |
|
for(j=0; j<3; j++){ |
| 173 |
– |
ident[i][j] = 0.0; |
| 174 |
– |
eta1[i][j] = eta[3*i+j]; |
| 175 |
– |
eta2[i][j] = 0.0; |
| 176 |
– |
for(k=0; k<3; k++){ |
| 177 |
– |
eta2[i][j] += eta[3*i+k] * eta[3*k+j]; |
| 178 |
– |
} |
| 179 |
– |
} |
| 180 |
– |
ident[i][i] = 1.0; |
| 181 |
– |
} |
| 189 |
|
|
| 190 |
< |
|
| 191 |
< |
info->getBoxM(hm); |
| 192 |
< |
|
| 193 |
< |
for(i=0; i<3; i++){ |
| 187 |
< |
for(j=0; j<3; j++){ |
| 188 |
< |
hmnew[i][j] = 0.0; |
| 190 |
> |
// Calculate the matrix Product of the eta array (we only need |
| 191 |
> |
// the ij element right now): |
| 192 |
> |
|
| 193 |
> |
eta2ij = 0.0; |
| 194 |
|
for(k=0; k<3; k++){ |
| 195 |
< |
// remember that hmat has transpose ordering for Fortran compat: |
| 191 |
< |
hmnew[i][j] += hm[3*k+i] * (ident[k][j] |
| 192 |
< |
+ dt * eta1[k][j] |
| 193 |
< |
+ 0.5 * dt * dt * eta2[k][j]); |
| 195 |
> |
eta2ij += eta[i][k] * eta[k][j]; |
| 196 |
|
} |
| 195 |
– |
} |
| 196 |
– |
} |
| 197 |
– |
|
| 198 |
– |
for (i = 0; i < 3; i++) { |
| 199 |
– |
for (j = 0; j < 3; j++) { |
| 200 |
– |
// remember that hmat has transpose ordering for Fortran compat: |
| 201 |
– |
hm[3*j + i] = hmnew[i][j]; |
| 202 |
– |
} |
| 203 |
– |
} |
| 197 |
|
|
| 198 |
< |
info->setBoxM(hm); |
| 199 |
< |
|
| 200 |
< |
} |
| 198 |
> |
scaleMat[i][j] = 0.0; |
| 199 |
> |
// identity matrix (see above): |
| 200 |
> |
if (i == j) scaleMat[i][j] = 1.0; |
| 201 |
> |
// Taylor expansion for the exponential truncated at second order: |
| 202 |
> |
scaleMat[i][j] += dt*eta[i][j] + 0.5*dt*dt*eta2ij; |
| 203 |
|
|
| 204 |
< |
void NPTf::moveB( void ){ |
| 205 |
< |
int i,j,k; |
| 206 |
< |
int atomIndex; |
| 212 |
< |
DirectionalAtom* dAtom; |
| 213 |
< |
double Tb[3]; |
| 214 |
< |
double ji[3]; |
| 215 |
< |
double press[9]; |
| 216 |
< |
double instaTemp, instaVol; |
| 217 |
< |
double tt2, tb2; |
| 218 |
< |
double vx, vy, vz; |
| 219 |
< |
double scx, scy, scz; |
| 220 |
< |
const double p_convert = 1.63882576e8; |
| 221 |
< |
|
| 222 |
< |
tt2 = tauThermostat * tauThermostat; |
| 223 |
< |
tb2 = tauBarostat * tauBarostat; |
| 224 |
< |
|
| 225 |
< |
instaTemp = tStats->getTemperature(); |
| 226 |
< |
tStats->getPressureTensor(press); |
| 227 |
< |
instaVol = tStats->getVolume(); |
| 228 |
< |
|
| 229 |
< |
// first evolve chi a half step |
| 230 |
< |
|
| 231 |
< |
chi += dt2 * ( instaTemp / targetTemp - 1.0) / tt2; |
| 232 |
< |
|
| 233 |
< |
eta[0] += dt2 * instaVol * (press[0] - targetPressure/p_convert) / |
| 234 |
< |
(NkBT*tb2); |
| 235 |
< |
eta[1] += dt2 * instaVol * press[1] / (NkBT*tb2); |
| 236 |
< |
eta[2] += dt2 * instaVol * press[2] / (NkBT*tb2); |
| 237 |
< |
eta[3] += dt2 * instaVol * press[3] / (NkBT*tb2); |
| 238 |
< |
eta[4] += dt2 * instaVol * (press[4] - targetPressure/p_convert) / |
| 239 |
< |
(NkBT*tb2); |
| 240 |
< |
eta[5] += dt2 * instaVol * press[5] / (NkBT*tb2); |
| 241 |
< |
eta[6] += dt2 * instaVol * press[6] / (NkBT*tb2); |
| 242 |
< |
eta[7] += dt2 * instaVol * press[7] / (NkBT*tb2); |
| 243 |
< |
eta[8] += dt2 * instaVol * (press[8] - targetPressure/p_convert) / |
| 244 |
< |
(NkBT*tb2); |
| 245 |
< |
|
| 246 |
< |
for( i=0; i<nAtoms; i++ ){ |
| 247 |
< |
atomIndex = i * 3; |
| 248 |
< |
|
| 249 |
< |
// velocity half step |
| 250 |
< |
|
| 251 |
< |
vx = vel[atomIndex]; |
| 252 |
< |
vy = vel[atomIndex+1]; |
| 253 |
< |
vz = vel[atomIndex+2]; |
| 254 |
< |
|
| 255 |
< |
scx = (chi + eta[0])*vx + eta[1]*vy + eta[2]*vz; |
| 256 |
< |
scy = eta[3]*vx + (chi + eta[4])*vy + eta[5]*vz; |
| 257 |
< |
scz = eta[6]*vx + eta[7]*vy + (chi + eta[8])*vz; |
| 258 |
< |
|
| 259 |
< |
vx += dt2 * ((frc[atomIndex] /atoms[i]->getMass())*eConvert - scx); |
| 260 |
< |
vy += dt2 * ((frc[atomIndex+1]/atoms[i]->getMass())*eConvert - scy); |
| 261 |
< |
vz += dt2 * ((frc[atomIndex+2]/atoms[i]->getMass())*eConvert - scz); |
| 262 |
< |
|
| 263 |
< |
vel[atomIndex] = vx; |
| 264 |
< |
vel[atomIndex+1] = vy; |
| 265 |
< |
vel[atomIndex+2] = vz; |
| 266 |
< |
|
| 267 |
< |
if( atoms[i]->isDirectional() ){ |
| 268 |
< |
|
| 269 |
< |
dAtom = (DirectionalAtom *)atoms[i]; |
| 270 |
< |
|
| 271 |
< |
// get and convert the torque to body frame |
| 272 |
< |
|
| 273 |
< |
Tb[0] = dAtom->getTx(); |
| 274 |
< |
Tb[1] = dAtom->getTy(); |
| 275 |
< |
Tb[2] = dAtom->getTz(); |
| 276 |
< |
|
| 277 |
< |
dAtom->lab2Body( Tb ); |
| 278 |
< |
|
| 279 |
< |
// get the angular momentum, and complete the angular momentum |
| 280 |
< |
// half step |
| 281 |
< |
|
| 282 |
< |
ji[0] = dAtom->getJx(); |
| 283 |
< |
ji[1] = dAtom->getJy(); |
| 284 |
< |
ji[2] = dAtom->getJz(); |
| 285 |
< |
|
| 286 |
< |
ji[0] += dt2 * (Tb[0] * eConvert - ji[0]*chi); |
| 287 |
< |
ji[1] += dt2 * (Tb[1] * eConvert - ji[1]*chi); |
| 288 |
< |
ji[2] += dt2 * (Tb[2] * eConvert - ji[2]*chi); |
| 289 |
< |
|
| 290 |
< |
dAtom->setJx( ji[0] ); |
| 291 |
< |
dAtom->setJy( ji[1] ); |
| 292 |
< |
dAtom->setJz( ji[2] ); |
| 204 |
> |
if (i != j) |
| 205 |
> |
if (fabs(scaleMat[i][j]) > offDiagMax) |
| 206 |
> |
offDiagMax = fabs(scaleMat[i][j]); |
| 207 |
|
} |
| 294 |
– |
} |
| 295 |
– |
} |
| 208 |
|
|
| 209 |
< |
int NPTf::readyCheck() { |
| 210 |
< |
|
| 299 |
< |
// First check to see if we have a target temperature. |
| 300 |
< |
// Not having one is fatal. |
| 301 |
< |
|
| 302 |
< |
if (!have_target_temp) { |
| 303 |
< |
sprintf( painCave.errMsg, |
| 304 |
< |
"NPTf error: You can't use the NPTf integrator\n" |
| 305 |
< |
" without a targetTemp!\n" |
| 306 |
< |
); |
| 307 |
< |
painCave.isFatal = 1; |
| 308 |
< |
simError(); |
| 309 |
< |
return -1; |
| 209 |
> |
if (scaleMat[i][i] > bigScale) bigScale = scaleMat[i][i]; |
| 210 |
> |
if (scaleMat[i][i] < smallScale) smallScale = scaleMat[i][i]; |
| 211 |
|
} |
| 212 |
|
|
| 213 |
< |
if (!have_target_pressure) { |
| 213 |
> |
if ((bigScale > 1.01) || (smallScale < 0.99)) { |
| 214 |
|
sprintf( painCave.errMsg, |
| 215 |
< |
"NPTf error: You can't use the NPTf integrator\n" |
| 216 |
< |
" without a targetPressure!\n" |
| 217 |
< |
); |
| 215 |
> |
"NPTf error: Attempting a Box scaling of more than 1 percent.\n" |
| 216 |
> |
" Check your tauBarostat, as it is probably too small!\n\n" |
| 217 |
> |
" scaleMat = [%lf\t%lf\t%lf]\n" |
| 218 |
> |
" [%lf\t%lf\t%lf]\n" |
| 219 |
> |
" [%lf\t%lf\t%lf]\n", |
| 220 |
> |
scaleMat[0][0],scaleMat[0][1],scaleMat[0][2], |
| 221 |
> |
scaleMat[1][0],scaleMat[1][1],scaleMat[1][2], |
| 222 |
> |
scaleMat[2][0],scaleMat[2][1],scaleMat[2][2]); |
| 223 |
|
painCave.isFatal = 1; |
| 224 |
|
simError(); |
| 225 |
< |
return -1; |
| 320 |
< |
} |
| 321 |
< |
|
| 322 |
< |
// We must set tauThermostat. |
| 323 |
< |
|
| 324 |
< |
if (!have_tau_thermostat) { |
| 225 |
> |
} else if (offDiagMax > 0.01) { |
| 226 |
|
sprintf( painCave.errMsg, |
| 227 |
< |
"NPTf error: If you use the NPTf\n" |
| 228 |
< |
" integrator, you must set tauThermostat.\n"); |
| 227 |
> |
"NPTf error: Attempting an off-diagonal Box scaling of more than 1 percent.\n" |
| 228 |
> |
" Check your tauBarostat, as it is probably too small!\n\n" |
| 229 |
> |
" scaleMat = [%lf\t%lf\t%lf]\n" |
| 230 |
> |
" [%lf\t%lf\t%lf]\n" |
| 231 |
> |
" [%lf\t%lf\t%lf]\n", |
| 232 |
> |
scaleMat[0][0],scaleMat[0][1],scaleMat[0][2], |
| 233 |
> |
scaleMat[1][0],scaleMat[1][1],scaleMat[1][2], |
| 234 |
> |
scaleMat[2][0],scaleMat[2][1],scaleMat[2][2]); |
| 235 |
|
painCave.isFatal = 1; |
| 236 |
|
simError(); |
| 237 |
< |
return -1; |
| 238 |
< |
} |
| 237 |
> |
} else { |
| 238 |
> |
info->getBoxM(hm); |
| 239 |
> |
info->matMul3(hm, scaleMat, hmnew); |
| 240 |
> |
info->setBoxM(hmnew); |
| 241 |
> |
} |
| 242 |
> |
} |
| 243 |
|
|
| 244 |
< |
// We must set tauBarostat. |
| 245 |
< |
|
| 246 |
< |
if (!have_tau_barostat) { |
| 336 |
< |
sprintf( painCave.errMsg, |
| 337 |
< |
"NPTf error: If you use the NPTf\n" |
| 338 |
< |
" integrator, you must set tauBarostat.\n"); |
| 339 |
< |
painCave.isFatal = 1; |
| 340 |
< |
simError(); |
| 341 |
< |
return -1; |
| 342 |
< |
} |
| 244 |
> |
template<typename T> bool NPTf<T>::etaConverged() { |
| 245 |
> |
int i; |
| 246 |
> |
double diffEta, sumEta; |
| 247 |
|
|
| 248 |
< |
// We need NkBT a lot, so just set it here: |
| 248 |
> |
sumEta = 0; |
| 249 |
> |
for(i = 0; i < 3; i++) |
| 250 |
> |
sumEta += pow(prevEta[i][i] - eta[i][i], 2); |
| 251 |
|
|
| 252 |
< |
NkBT = (double)info->ndf * kB * targetTemp; |
| 252 |
> |
diffEta = sqrt( sumEta / 3.0 ); |
| 253 |
|
|
| 254 |
< |
return 1; |
| 254 |
> |
return ( diffEta <= etaTolerance ); |
| 255 |
|
} |
| 256 |
+ |
|
| 257 |
+ |
template<typename T> double NPTf<T>::getConservedQuantity(void){ |
| 258 |
+ |
|
| 259 |
+ |
double conservedQuantity; |
| 260 |
+ |
double totalEnergy; |
| 261 |
+ |
double thermostat_kinetic; |
| 262 |
+ |
double thermostat_potential; |
| 263 |
+ |
double barostat_kinetic; |
| 264 |
+ |
double barostat_potential; |
| 265 |
+ |
double trEta; |
| 266 |
+ |
double a[3][3], b[3][3]; |
| 267 |
+ |
|
| 268 |
+ |
totalEnergy = tStats->getTotalE(); |
| 269 |
+ |
|
| 270 |
+ |
thermostat_kinetic = fkBT * tt2 * chi * chi / |
| 271 |
+ |
(2.0 * eConvert); |
| 272 |
+ |
|
| 273 |
+ |
thermostat_potential = fkBT* integralOfChidt / eConvert; |
| 274 |
+ |
|
| 275 |
+ |
info->transposeMat3(eta, a); |
| 276 |
+ |
info->matMul3(a, eta, b); |
| 277 |
+ |
trEta = info->matTrace3(b); |
| 278 |
+ |
|
| 279 |
+ |
barostat_kinetic = NkBT * tb2 * trEta / |
| 280 |
+ |
(2.0 * eConvert); |
| 281 |
+ |
|
| 282 |
+ |
barostat_potential = (targetPressure * tStats->getVolume() / p_convert) / |
| 283 |
+ |
eConvert; |
| 284 |
+ |
|
| 285 |
+ |
conservedQuantity = totalEnergy + thermostat_kinetic + thermostat_potential + |
| 286 |
+ |
barostat_kinetic + barostat_potential; |
| 287 |
+ |
|
| 288 |
+ |
return conservedQuantity; |
| 289 |
+ |
|
| 290 |
+ |
} |
| 291 |
+ |
|
| 292 |
+ |
template<typename T> string NPTf<T>::getAdditionalParameters(void){ |
| 293 |
+ |
string parameters; |
| 294 |
+ |
const int BUFFERSIZE = 2000; // size of the read buffer |
| 295 |
+ |
char buffer[BUFFERSIZE]; |
| 296 |
+ |
|
| 297 |
+ |
sprintf(buffer,"\t%G\t%G;", chi, integralOfChidt); |
| 298 |
+ |
parameters += buffer; |
| 299 |
+ |
|
| 300 |
+ |
for(int i = 0; i < 3; i++){ |
| 301 |
+ |
sprintf(buffer,"\t%G\t%G\t%G;", eta[i][0], eta[i][1], eta[i][2]); |
| 302 |
+ |
parameters += buffer; |
| 303 |
+ |
} |
| 304 |
+ |
|
| 305 |
+ |
return parameters; |
| 306 |
+ |
|
| 307 |
+ |
} |