ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/trunk/OOPSE/libmdtools/NPTf.cpp
(Generate patch)

Comparing trunk/OOPSE/libmdtools/NPTf.cpp (file contents):
Revision 576 by gezelter, Tue Jul 8 21:10:16 2003 UTC vs.
Revision 787 by mmeineke, Thu Sep 25 19:27:15 2003 UTC

# Line 1 | Line 1
1 + #include <cmath>
2   #include "Atom.hpp"
3   #include "SRI.hpp"
4   #include "AbstractClasses.hpp"
# Line 8 | Line 9
9   #include "Integrator.hpp"
10   #include "simError.h"
11  
12 + #ifdef IS_MPI
13 + #include "mpiSimulation.hpp"
14 + #endif
15  
16 < // Basic isotropic thermostating and barostating via the Melchionna
16 > // Basic non-isotropic thermostating and barostating via the Melchionna
17   // modification of the Hoover algorithm:
18   //
19   //    Melchionna, S., Ciccotti, G., and Holian, B. L., 1993,
# Line 19 | Line 23 | NPTi::NPTi ( SimInfo *theInfo, ForceFields* the_ff):
23   //
24   //    Hoover, W. G., 1986, Phys. Rev. A, 34, 2499.
25  
26 < NPTi::NPTi ( SimInfo *theInfo, ForceFields* the_ff):
27 <  Integrator( theInfo, the_ff )
26 > template<typename T> NPTf<T>::NPTf ( SimInfo *theInfo, ForceFields* the_ff):
27 >  T( theInfo, the_ff )
28   {
29 <  int i;
30 <  chi = 0.0;
31 <  for(i = 0; i < 9; i++) eta[i] = 0.0;
32 <  have_tau_thermostat = 0;
33 <  have_tau_barostat = 0;
34 <  have_target_temp = 0;
35 <  have_target_pressure = 0;
29 >  
30 >  int i,j;
31 >  
32 >  for(i = 0; i < 3; i++){
33 >    for (j = 0; j < 3; j++){
34 >      
35 >      eta[i][j] = 0.0;
36 >      oldEta[i][j] = 0.0;
37 >    }
38 >  }
39   }
40  
41 < void NPTi::moveA() {
35 <  
36 <  int i,j,k;
37 <  int atomIndex, aMatIndex;
38 <  DirectionalAtom* dAtom;
39 <  double Tb[3];
40 <  double ji[3];
41 <  double rj[3];
42 <  double instaTemp, instaPress, instaVol;
43 <  double tt2, tb2;
44 <  double angle;
41 > template<typename T> NPTf<T>::~NPTf() {
42  
43 <  tt2 = tauThermostat * tauThermostat;
44 <  tb2 = tauBarostat * tauBarostat;
43 >  // empty for now
44 > }
45  
46 <  instaTemp = tStats->getTemperature();
50 <  instaPress = tStats->getPressure();
51 <  instaVol = tStats->getVolume();
52 <  
53 <  // first evolve chi a half step
46 > template<typename T> void NPTf<T>::resetIntegrator() {
47    
48 <  chi += dt2 * ( instaTemp / targetTemp - 1.0) / tt2;
48 >  int i, j;
49    
50 <  for (i = 0; i < 9; i++) {
51 <    eta[i] += dt2 * ( instaVol * (sigma[i] - targetPressure*identMat[i]))
52 <      / (NkBT*tb2));
50 >  for(i = 0; i < 3; i++)
51 >    for (j = 0; j < 3; j++)
52 >      eta[i][j] = 0.0;
53 >  
54 >  T::resetIntegrator();
55   }
56  
57 <  for( i=0; i<nAtoms; i++ ){
58 <    atomIndex = i * 3;
59 <    aMatIndex = i * 9;
60 <    
61 <    // velocity half step
62 <    for( j=atomIndex; j<(atomIndex+3); j++ )
63 <      vel[j] += dt2 * ((frc[j]/atoms[i]->getMass())*eConvert
64 <                       - vel[j]*(chi+eta));
57 > template<typename T> void NPTf<T>::evolveEtaA() {
58 >  
59 >  int i, j;
60 >  
61 >  for(i = 0; i < 3; i ++){
62 >    for(j = 0; j < 3; j++){
63 >      if( i == j)
64 >        eta[i][j] += dt2 *  instaVol *
65 >          (press[i][j] - targetPressure/p_convert) / (NkBT*tb2);
66 >      else
67 >        eta[i][j] += dt2 * instaVol * press[i][j] / (NkBT*tb2);
68 >    }
69 >  }
70 >  
71 >  for(i = 0; i < 3; i++)
72 >    for (j = 0; j < 3; j++)
73 >      oldEta[i][j] = eta[i][j];
74 > }
75  
76 <    // position whole step    
76 > template<typename T> void NPTf<T>::evolveEtaB() {
77 >  
78 >  int i,j;
79  
80 <    for( j=atomIndex; j<(atomIndex+3); j=j+3 ) {
81 <      rj[0] = pos[j];
82 <      rj[1] = pos[j+1];
76 <      rj[2] = pos[j+2];
80 >  for(i = 0; i < 3; i++)
81 >    for (j = 0; j < 3; j++)
82 >      prevEta[i][j] = eta[i][j];
83  
84 <      info->wrapVector(rj);
85 <
86 <      pos[j] += dt * (vel[j] + eta*rj[0]);
87 <      pos[j+1] += dt * (vel[j+1] + eta*rj[1]);
88 <      pos[j+2] += dt * (vel[j+2] + eta*rj[2]);
84 >  for(i = 0; i < 3; i ++){
85 >    for(j = 0; j < 3; j++){
86 >      if( i == j) {
87 >        eta[i][j] = oldEta[i][j] + dt2 *  instaVol *
88 >          (press[i][j] - targetPressure/p_convert) / (NkBT*tb2);
89 >      } else {
90 >        eta[i][j] = oldEta[i][j] + dt2 * instaVol * press[i][j] / (NkBT*tb2);
91 >      }
92      }
93 +  }
94 + }
95  
96 <    // Scale the box after all the positions have been moved:
96 > template<typename T> void NPTf<T>::getVelScaleA(double sc[3], double vel[3]) {
97 >  int i,j;
98 >  double vScale[3][3];
99  
100 <    info->scaleBox(exp(dt*eta));
101 <  
102 <    if( atoms[i]->isDirectional() ){
90 <
91 <      dAtom = (DirectionalAtom *)atoms[i];
92 <          
93 <      // get and convert the torque to body frame
100 >  for (i = 0; i < 3; i++ ) {
101 >    for (j = 0; j < 3; j++ ) {
102 >      vScale[i][j] = eta[i][j];
103        
104 <      Tb[0] = dAtom->getTx();
105 <      Tb[1] = dAtom->getTy();
106 <      Tb[2] = dAtom->getTz();
98 <      
99 <      dAtom->lab2Body( Tb );
100 <      
101 <      // get the angular momentum, and propagate a half step
102 <
103 <      ji[0] = dAtom->getJx();
104 <      ji[1] = dAtom->getJy();
105 <      ji[2] = dAtom->getJz();
106 <      
107 <      ji[0] += dt2 * (Tb[0] * eConvert - ji[0]*chi);
108 <      ji[1] += dt2 * (Tb[1] * eConvert - ji[1]*chi);
109 <      ji[2] += dt2 * (Tb[2] * eConvert - ji[2]*chi);
110 <      
111 <      // use the angular velocities to propagate the rotation matrix a
112 <      // full time step
113 <      
114 <      // rotate about the x-axis      
115 <      angle = dt2 * ji[0] / dAtom->getIxx();
116 <      this->rotate( 1, 2, angle, ji, &Amat[aMatIndex] );
117 <      
118 <      // rotate about the y-axis
119 <      angle = dt2 * ji[1] / dAtom->getIyy();
120 <      this->rotate( 2, 0, angle, ji, &Amat[aMatIndex] );
121 <      
122 <      // rotate about the z-axis
123 <      angle = dt * ji[2] / dAtom->getIzz();
124 <      this->rotate( 0, 1, angle, ji, &Amat[aMatIndex] );
125 <      
126 <      // rotate about the y-axis
127 <      angle = dt2 * ji[1] / dAtom->getIyy();
128 <      this->rotate( 2, 0, angle, ji, &Amat[aMatIndex] );
129 <      
130 <       // rotate about the x-axis
131 <      angle = dt2 * ji[0] / dAtom->getIxx();
132 <      this->rotate( 1, 2, angle, ji, &Amat[aMatIndex] );
133 <      
134 <      dAtom->setJx( ji[0] );
135 <      dAtom->setJy( ji[1] );
136 <      dAtom->setJz( ji[2] );
104 >      if (i == j) {
105 >        vScale[i][j] += chi;          
106 >      }              
107      }
138    
108    }
109 +  
110 +  info->matVecMul3( vScale, vel, sc );
111   }
112  
113 < void NPTi::moveB( void ){
114 <  int i,j,k;
115 <  int atomIndex;
116 <  DirectionalAtom* dAtom;
117 <  double Tb[3];
118 <  double ji[3];
119 <  double instaTemp, instaPress, instaVol;
120 <  double tt2, tb2;
113 > template<typename T> void NPTf<T>::getVelScaleB(double sc[3], int index ){
114 >  int i,j;
115 >  double myVel[3];
116 >  double vScale[3][3];
117 >
118 >  for (i = 0; i < 3; i++ ) {
119 >    for (j = 0; j < 3; j++ ) {
120 >      vScale[i][j] = eta[i][j];
121 >      
122 >      if (i == j) {
123 >        vScale[i][j] += chi;          
124 >      }              
125 >    }
126 >  }
127    
128 <  tt2 = tauThermostat * tauThermostat;
129 <  tb2 = tauBarostat * tauBarostat;
128 >  for (j = 0; j < 3; j++)
129 >    myVel[j] = oldVel[3*index + j];
130  
131 <  instaTemp = tStats->getTemperature();
132 <  instaPress = tStats->getPressure();
156 <  instaVol = tStats->getVolume();
131 >  info->matVecMul3( vScale, myVel, sc );
132 > }
133  
134 <  chi += dt2 * ( instaTemp / targetTemp - 1.0) / tt2;
135 <  eta += dt2 * ( instaVol * (instaPress - targetPressure) / (NkBT*tb2));
134 > template<typename T> void NPTf<T>::getPosScale(double pos[3], double COM[3],
135 >                                               int index, double sc[3]){
136 >  int j;
137 >  double rj[3];
138 >
139 >  for(j=0; j<3; j++)
140 >    rj[j] = ( oldPos[index*3+j] + pos[j]) / 2.0 - COM[j];
141 >
142 >  info->matVecMul3( eta, rj, sc );
143 > }
144 >
145 > template<typename T> void NPTf<T>::scaleSimBox( void ){
146 >
147 >  int i,j,k;
148 >  double scaleMat[3][3];
149 >  double eta2ij;
150 >  double bigScale, smallScale, offDiagMax;
151 >  double hm[3][3], hmnew[3][3];
152    
153 <  for( i=0; i<nAtoms; i++ ){
154 <    atomIndex = i * 3;
155 <    
156 <    // velocity half step
157 <    for( j=atomIndex; j<(atomIndex+3); j++ )
158 <    for( j=atomIndex; j<(atomIndex+3); j++ )
159 <      vel[j] += dt2 * ((frc[j]/atoms[i]->getMass())*eConvert
160 <                       - vel[j]*(chi+eta));
161 <    
162 <    if( atoms[i]->isDirectional() ){
153 >
154 >
155 >  // Scale the box after all the positions have been moved:
156 >  
157 >  // Use a taylor expansion for eta products:  Hmat = Hmat . exp(dt * etaMat)
158 >  //  Hmat = Hmat . ( Ident + dt * etaMat  + dt^2 * etaMat*etaMat / 2)
159 >  
160 >  bigScale = 1.0;
161 >  smallScale = 1.0;
162 >  offDiagMax = 0.0;
163 >  
164 >  for(i=0; i<3; i++){
165 >    for(j=0; j<3; j++){
166        
167 <      dAtom = (DirectionalAtom *)atoms[i];
167 >      // Calculate the matrix Product of the eta array (we only need
168 >      // the ij element right now):
169        
170 <      // get and convert the torque to body frame
170 >      eta2ij = 0.0;
171 >      for(k=0; k<3; k++){
172 >        eta2ij += eta[i][k] * eta[k][j];
173 >      }
174        
175 <      Tb[0] = dAtom->getTx();
176 <      Tb[1] = dAtom->getTy();
177 <      Tb[2] = dAtom->getTz();
178 <      
179 <      dAtom->lab2Body( Tb );
180 <      
181 <      // get the angular momentum, and complete the angular momentum
182 <      // half step
183 <      
185 <      ji[0] = dAtom->getJx();
186 <      ji[1] = dAtom->getJy();
187 <      ji[2] = dAtom->getJz();
188 <      
189 <      ji[0] += dt2 * (Tb[0] * eConvert - ji[0]*chi);
190 <      ji[1] += dt2 * (Tb[1] * eConvert - ji[1]*chi);
191 <      ji[2] += dt2 * (Tb[2] * eConvert - ji[2]*chi);
192 <      
193 <      dAtom->setJx( ji[0] );
194 <      dAtom->setJy( ji[1] );
195 <      dAtom->setJz( ji[2] );
175 >      scaleMat[i][j] = 0.0;
176 >      // identity matrix (see above):
177 >      if (i == j) scaleMat[i][j] = 1.0;
178 >      // Taylor expansion for the exponential truncated at second order:
179 >      scaleMat[i][j] += dt*eta[i][j]  + 0.5*dt*dt*eta2ij;
180 >
181 >      if (i != j)
182 >        if (fabs(scaleMat[i][j]) > offDiagMax)
183 >          offDiagMax = fabs(scaleMat[i][j]);
184      }
197  }
198 }
185  
186 < int NPTi::readyCheck() {
187 <
188 <  // First check to see if we have a target temperature.
203 <  // Not having one is fatal.
186 >    if (scaleMat[i][i] > bigScale) bigScale = scaleMat[i][i];
187 >    if (scaleMat[i][i] < smallScale) smallScale = scaleMat[i][i];
188 >  }
189    
190 <  if (!have_target_temp) {
190 >  if ((bigScale > 1.1) || (smallScale < 0.9)) {
191      sprintf( painCave.errMsg,
192 <             "NPTi error: You can't use the NPTi integrator\n"
193 <             "   without a targetTemp!\n"
194 <             );
192 >             "NPTf error: Attempting a Box scaling of more than 10 percent.\n"
193 >             " Check your tauBarostat, as it is probably too small!\n\n"
194 >             " scaleMat = [%lf\t%lf\t%lf]\n"
195 >             "            [%lf\t%lf\t%lf]\n"
196 >             "            [%lf\t%lf\t%lf]\n",
197 >             scaleMat[0][0],scaleMat[0][1],scaleMat[0][2],
198 >             scaleMat[1][0],scaleMat[1][1],scaleMat[1][2],
199 >             scaleMat[2][0],scaleMat[2][1],scaleMat[2][2]);
200      painCave.isFatal = 1;
201      simError();
202 <    return -1;
213 <  }
214 <
215 <  if (!have_target_pressure) {
202 >  } else if (offDiagMax > 0.1) {
203      sprintf( painCave.errMsg,
204 <             "NPTi error: You can't use the NPTi integrator\n"
205 <             "   without a targetPressure!\n"
206 <             );
204 >             "NPTf error: Attempting an off-diagonal Box scaling of more than 10 percent.\n"
205 >             " Check your tauBarostat, as it is probably too small!\n\n"
206 >             " scaleMat = [%lf\t%lf\t%lf]\n"
207 >             "            [%lf\t%lf\t%lf]\n"
208 >             "            [%lf\t%lf\t%lf]\n",
209 >             scaleMat[0][0],scaleMat[0][1],scaleMat[0][2],
210 >             scaleMat[1][0],scaleMat[1][1],scaleMat[1][2],
211 >             scaleMat[2][0],scaleMat[2][1],scaleMat[2][2]);
212      painCave.isFatal = 1;
213      simError();
214 <    return -1;
214 >  } else {
215 >    info->getBoxM(hm);
216 >    info->matMul3(hm, scaleMat, hmnew);
217 >    info->setBoxM(hmnew);
218    }
219 + }
220 +
221 + template<typename T> bool NPTf<T>::etaConverged() {
222 +  int i;
223 +  double diffEta, sumEta;
224 +
225 +  sumEta = 0;
226 +  for(i = 0; i < 3; i++)
227 +    sumEta += pow(prevEta[i][i] - eta[i][i], 2);    
228    
229 <  // We must set tauThermostat.
230 <  
231 <  if (!have_tau_thermostat) {
232 <    sprintf( painCave.errMsg,
229 <             "NPTi error: If you use the NPTi\n"
230 <             "   integrator, you must set tauThermostat.\n");
231 <    painCave.isFatal = 1;
232 <    simError();
233 <    return -1;
234 <  }    
229 >  diffEta = sqrt( sumEta / 3.0 );
230 >  
231 >  return ( diffEta <= etaTolerance );
232 > }
233  
234 <  // We must set tauBarostat.
235 <  
236 <  if (!have_tau_barostat) {
237 <    sprintf( painCave.errMsg,
238 <             "NPTi error: If you use the NPTi\n"
239 <             "   integrator, you must set tauBarostat.\n");
240 <    painCave.isFatal = 1;
241 <    simError();
242 <    return -1;
243 <  }    
234 > template<typename T> double NPTf<T>::getConservedQuantity(void){
235 >  
236 >  double conservedQuantity;
237 >  double totalEnergy;
238 >  double thermostat_kinetic;
239 >  double thermostat_potential;
240 >  double barostat_kinetic;
241 >  double barostat_potential;
242 >  double trEta;
243 >  double a[3][3], b[3][3];
244  
245 <  // We need NkBT a lot, so just set it here:
245 >  totalEnergy = tStats->getTotalE();
246  
247 <  NkBT = (double)info->ndf * kB * targetTemp;
247 >  thermostat_kinetic = fkBT * tt2 * chi * chi /
248 >    (2.0 * eConvert);
249  
250 <  return 1;
250 >  thermostat_potential = fkBT* integralOfChidt / eConvert;
251 >
252 >  info->transposeMat3(eta, a);
253 >  info->matMul3(a, eta, b);
254 >  trEta = info->matTrace3(b);
255 >
256 >  barostat_kinetic = NkBT * tb2 * trEta /
257 >    (2.0 * eConvert);
258 >  
259 >  barostat_potential = (targetPressure * tStats->getVolume() / p_convert) /
260 >    eConvert;
261 >
262 >  conservedQuantity = totalEnergy + thermostat_kinetic + thermostat_potential +
263 >    barostat_kinetic + barostat_potential;
264 >  
265 > //   cout.width(8);
266 > //   cout.precision(8);
267 >
268 > //   cerr << info->getTime() << "\t" << Energy << "\t" << thermostat_kinetic <<
269 > //       "\t" << thermostat_potential << "\t" << barostat_kinetic <<
270 > //       "\t" << barostat_potential << "\t" << conservedQuantity << endl;
271 >
272 >  return conservedQuantity;
273 >  
274   }

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines