ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/trunk/OOPSE/libmdtools/NPTf.cpp
(Generate patch)

Comparing trunk/OOPSE/libmdtools/NPTf.cpp (file contents):
Revision 767 by tim, Tue Sep 16 20:02:11 2003 UTC vs.
Revision 847 by mmeineke, Fri Oct 31 18:28:52 2003 UTC

# Line 1 | Line 1
1 < #include <cmath>
1 > #include <math.h>
2   #include "Atom.hpp"
3   #include "SRI.hpp"
4   #include "AbstractClasses.hpp"
# Line 7 | Line 7
7   #include "Thermo.hpp"
8   #include "ReadWrite.hpp"
9   #include "Integrator.hpp"
10 < #include "simError.h"
10 > #include "simError.h"
11  
12 + #ifdef IS_MPI
13 + #include "mpiSimulation.hpp"
14 + #endif
15  
16   // Basic non-isotropic thermostating and barostating via the Melchionna
17   // modification of the Hoover algorithm:
18   //
19   //    Melchionna, S., Ciccotti, G., and Holian, B. L., 1993,
20 < //       Molec. Phys., 78, 533.
20 > //       Molec. Phys., 78, 533.
21   //
22   //           and
23 < //
23 > //
24   //    Hoover, W. G., 1986, Phys. Rev. A, 34, 2499.
25  
26   template<typename T> NPTf<T>::NPTf ( SimInfo *theInfo, ForceFields* the_ff):
27    T( theInfo, the_ff )
28   {
29 <  int i, j;
30 <  chi = 0.0;
31 <  integralOfChidt = 0.0;
29 >  GenericData* data;
30 >  DoubleArrayData * etaValue;
31 >  vector<double> etaArray;
32 >  int i,j;
33  
34 <  for(i = 0; i < 3; i++)
35 <    for (j = 0; j < 3; j++)
34 >  for(i = 0; i < 3; i++){
35 >    for (j = 0; j < 3; j++){
36 >
37        eta[i][j] = 0.0;
38 +      oldEta[i][j] = 0.0;
39 +    }
40 +  }
41  
42 <  have_tau_thermostat = 0;
43 <  have_tau_barostat = 0;
44 <  have_target_temp = 0;
45 <  have_target_pressure = 0;
42 >    // retrieve eta array from simInfo if it exists
43 >    data = info->getProperty(ETAVALUE_ID);
44 >    if(data){
45 >      etaValue = dynamic_cast<DoubleArrayData*>(data);
46  
47 <  have_chi_tolerance = 0;
48 <  have_eta_tolerance = 0;
41 <  have_pos_iter_tolerance = 0;
47 >      if(etaValue){
48 >        etaArray = etaValue->getData();
49  
50 <  oldPos = new double[3*nAtoms];
51 <  oldVel = new double[3*nAtoms];
52 <  oldJi = new double[3*nAtoms];
53 < #ifdef IS_MPI
54 <  Nparticles = mpiSim->getTotAtoms();
55 < #else
56 <  Nparticles = theInfo->n_atoms;
57 < #endif
50 >        for(i = 0; i < 3; i++){
51 >          for (j = 0; j < 3; j++){
52 >            eta[i][j] = etaArray[3*i+j];
53 >            oldEta[i][j] = eta[i][j];
54 >          }
55 >        }
56 >
57 >      }
58 >    }
59 >
60   }
61  
62   template<typename T> NPTf<T>::~NPTf() {
63 <  delete[] oldPos;
64 <  delete[] oldVel;
56 <  delete[] oldJi;
63 >
64 >  // empty for now
65   }
66  
67 < template<typename T> void NPTf<T>::moveA() {
60 <  
61 <  int i, j, k;
62 <  DirectionalAtom* dAtom;
63 <  double Tb[3], ji[3];
64 <  double A[3][3], I[3][3];
65 <  double angle, mass;
66 <  double vel[3], pos[3], frc[3];
67 > template<typename T> void NPTf<T>::resetIntegrator() {
68  
69 <  double rj[3];
69 <  double instaTemp, instaPress, instaVol;
70 <  double tt2, tb2;
71 <  double sc[3];
72 <  double eta2ij;
73 <  double press[3][3], vScale[3][3], hm[3][3], hmnew[3][3], scaleMat[3][3];
74 <  double bigScale, smallScale, offDiagMax;
75 <  double COM[3];
69 >  int i, j;
70  
71 <  tt2 = tauThermostat * tauThermostat;
72 <  tb2 = tauBarostat * tauBarostat;
71 >  for(i = 0; i < 3; i++)
72 >    for (j = 0; j < 3; j++)
73 >      eta[i][j] = 0.0;
74  
75 <  instaTemp = tStats->getTemperature();
76 <  tStats->getPressureTensor(press);
82 <  instaVol = tStats->getVolume();
83 <  
84 <  tStats->getCOM(COM);
75 >  T::resetIntegrator();
76 > }
77  
78 <  //calculate scale factor of veloity
87 <  for (i = 0; i < 3; i++ ) {
88 <    for (j = 0; j < 3; j++ ) {
89 <      vScale[i][j] = eta[i][j];
90 <      
91 <      if (i == j) {
92 <        vScale[i][j] += chi;          
93 <      }              
94 <    }
95 <  }
96 <  
97 <  //evolve velocity half step
98 <  for( i=0; i<nAtoms; i++ ){
78 > template<typename T> void NPTf<T>::evolveEtaA() {
79  
80 <    atoms[i]->getVel( vel );
101 <    atoms[i]->getFrc( frc );
80 >  int i, j;
81  
82 <    mass = atoms[i]->getMass();
83 <    
84 <    info->matVecMul3( vScale, vel, sc );
85 <
86 <    for (j=0; j < 3; j++) {
87 <      // velocity half step  (use chi from previous step here):
88 <      vel[j] += dt2 * ((frc[j]  / mass) * eConvert - sc[j]);
110 <  
82 >  for(i = 0; i < 3; i ++){
83 >    for(j = 0; j < 3; j++){
84 >      if( i == j)
85 >        eta[i][j] += dt2 *  instaVol *
86 >          (press[i][j] - targetPressure/p_convert) / (NkBT*tb2);
87 >      else
88 >        eta[i][j] += dt2 * instaVol * press[i][j] / (NkBT*tb2);
89      }
90 +  }
91  
92 <    atoms[i]->setVel( vel );
93 <  
94 <    if( atoms[i]->isDirectional() ){
92 >  for(i = 0; i < 3; i++)
93 >    for (j = 0; j < 3; j++)
94 >      oldEta[i][j] = eta[i][j];
95 > }
96  
97 <      dAtom = (DirectionalAtom *)atoms[i];
97 > template<typename T> void NPTf<T>::evolveEtaB() {
98  
99 <      // get and convert the torque to body frame
120 <      
121 <      dAtom->getTrq( Tb );
122 <      dAtom->lab2Body( Tb );
123 <      
124 <      // get the angular momentum, and propagate a half step
99 >  int i,j;
100  
101 <      dAtom->getJ( ji );
101 >  for(i = 0; i < 3; i++)
102 >    for (j = 0; j < 3; j++)
103 >      prevEta[i][j] = eta[i][j];
104  
105 <      for (j=0; j < 3; j++)
106 <        ji[j] += dt2 * (Tb[j] * eConvert - ji[j]*chi);
107 <      
108 <      // use the angular velocities to propagate the rotation matrix a
109 <      // full time step
110 <
111 <      dAtom->getA(A);
112 <      dAtom->getI(I);
113 <    
114 <      // rotate about the x-axis      
115 <      angle = dt2 * ji[0] / I[0][0];
139 <      this->rotate( 1, 2, angle, ji, A );
105 >  for(i = 0; i < 3; i ++){
106 >    for(j = 0; j < 3; j++){
107 >      if( i == j) {
108 >        eta[i][j] = oldEta[i][j] + dt2 *  instaVol *
109 >          (press[i][j] - targetPressure/p_convert) / (NkBT*tb2);
110 >      } else {
111 >        eta[i][j] = oldEta[i][j] + dt2 * instaVol * press[i][j] / (NkBT*tb2);
112 >      }
113 >    }
114 >  }
115 > }
116  
117 <      // rotate about the y-axis
118 <      angle = dt2 * ji[1] / I[1][1];
119 <      this->rotate( 2, 0, angle, ji, A );
120 <      
121 <      // rotate about the z-axis
122 <      angle = dt * ji[2] / I[2][2];
123 <      this->rotate( 0, 1, angle, ji, A);
124 <      
125 <      // rotate about the y-axis
126 <      angle = dt2 * ji[1] / I[1][1];
127 <      this->rotate( 2, 0, angle, ji, A );
128 <      
153 <       // rotate about the x-axis
154 <      angle = dt2 * ji[0] / I[0][0];
155 <      this->rotate( 1, 2, angle, ji, A );
156 <      
157 <      dAtom->setJ( ji );
158 <      dAtom->setA( A  );    
159 <    }    
117 > template<typename T> void NPTf<T>::getVelScaleA(double sc[3], double vel[3]) {
118 >  int i,j;
119 >  double vScale[3][3];
120 >
121 >  for (i = 0; i < 3; i++ ) {
122 >    for (j = 0; j < 3; j++ ) {
123 >      vScale[i][j] = eta[i][j];
124 >
125 >      if (i == j) {
126 >        vScale[i][j] += chi;
127 >      }
128 >    }
129    }
130  
131 <  // advance chi half step
132 <  chi += dt2 * ( instaTemp / targetTemp - 1.0) / tt2;
131 >  info->matVecMul3( vScale, vel, sc );
132 > }
133  
134 <  //calculate the integral of chidt
135 <  integralOfChidt += dt2*chi;
134 > template<typename T> void NPTf<T>::getVelScaleB(double sc[3], int index ){
135 >  int i,j;
136 >  double myVel[3];
137 >  double vScale[3][3];
138  
139 <  //advance eta half step
140 <  for(i = 0; i < 3; i ++)
141 <    for(j = 0; j < 3; j++){
142 <      if( i == j)
143 <        eta[i][j] += dt2 *  instaVol *
144 <          (press[i][j] - targetPressure/p_convert) / (NkBT*tb2);
145 <      else
175 <        eta[i][j] += dt2 * instaVol * press[i][j] / ( NkBT*tb2);
139 >  for (i = 0; i < 3; i++ ) {
140 >    for (j = 0; j < 3; j++ ) {
141 >      vScale[i][j] = eta[i][j];
142 >
143 >      if (i == j) {
144 >        vScale[i][j] += chi;
145 >      }
146      }
177    
178  //save the old positions
179  for(i = 0; i < nAtoms; i++){
180    atoms[i]->getPos(pos);
181    for(j = 0; j < 3; j++)
182      oldPos[i*3 + j] = pos[j];
147    }
184  
185  //the first estimation of r(t+dt) is equal to  r(t)
186    
187  for(k = 0; k < 4; k ++){
148  
149 <    for(i =0 ; i < nAtoms; i++){
149 >  for (j = 0; j < 3; j++)
150 >    myVel[j] = oldVel[3*index + j];
151  
152 <      atoms[i]->getVel(vel);
153 <      atoms[i]->getPos(pos);
152 >  info->matVecMul3( vScale, myVel, sc );
153 > }
154  
155 <      for(j = 0; j < 3; j++)
156 <        rj[j] = (oldPos[i*3 + j] + pos[j])/2 - COM[j];
157 <      
158 <      info->matVecMul3( eta, rj, sc );
198 <      
199 <      for(j = 0; j < 3; j++)
200 <        pos[j] = oldPos[i*3 + j] + dt*(vel[j] + sc[j]);
155 > template<typename T> void NPTf<T>::getPosScale(double pos[3], double COM[3],
156 >                                               int index, double sc[3]){
157 >  int j;
158 >  double rj[3];
159  
160 <      atoms[i]->setPos( pos );
160 >  for(j=0; j<3; j++)
161 >    rj[j] = ( oldPos[index*3+j] + pos[j]) / 2.0 - COM[j];
162  
163 <    }
163 >  info->matVecMul3( eta, rj, sc );
164 > }
165  
166 <  }  
166 > template<typename T> void NPTf<T>::scaleSimBox( void ){
167  
168 <
168 >  int i,j,k;
169 >  double scaleMat[3][3];
170 >  double eta2ij;
171 >  double bigScale, smallScale, offDiagMax;
172 >  double hm[3][3], hmnew[3][3];
173 >
174 >
175 >
176    // Scale the box after all the positions have been moved:
177 <  
177 >
178    // Use a taylor expansion for eta products:  Hmat = Hmat . exp(dt * etaMat)
179    //  Hmat = Hmat . ( Ident + dt * etaMat  + dt^2 * etaMat*etaMat / 2)
180 <  
180 >
181    bigScale = 1.0;
182    smallScale = 1.0;
183    offDiagMax = 0.0;
184 <  
184 >
185    for(i=0; i<3; i++){
186      for(j=0; j<3; j++){
187 <      
187 >
188        // Calculate the matrix Product of the eta array (we only need
189        // the ij element right now):
190 <      
190 >
191        eta2ij = 0.0;
192        for(k=0; k<3; k++){
193          eta2ij += eta[i][k] * eta[k][j];
194        }
195 <      
195 >
196        scaleMat[i][j] = 0.0;
197        // identity matrix (see above):
198        if (i == j) scaleMat[i][j] = 1.0;
# Line 233 | Line 200 | template<typename T> void NPTf<T>::moveA() {
200        scaleMat[i][j] += dt*eta[i][j]  + 0.5*dt*dt*eta2ij;
201  
202        if (i != j)
203 <        if (fabs(scaleMat[i][j]) > offDiagMax)
203 >        if (fabs(scaleMat[i][j]) > offDiagMax)
204            offDiagMax = fabs(scaleMat[i][j]);
205      }
206  
207      if (scaleMat[i][i] > bigScale) bigScale = scaleMat[i][i];
208      if (scaleMat[i][i] < smallScale) smallScale = scaleMat[i][i];
209    }
210 <  
210 >
211    if ((bigScale > 1.1) || (smallScale < 0.9)) {
212      sprintf( painCave.errMsg,
213               "NPTf error: Attempting a Box scaling of more than 10 percent.\n"
# Line 270 | Line 237 | template<typename T> void NPTf<T>::moveA() {
237      info->matMul3(hm, scaleMat, hmnew);
238      info->setBoxM(hmnew);
239    }
273  
240   }
241  
242 < template<typename T> void NPTf<T>::moveB( void ){
243 <
244 <  int i, j, k;
279 <  DirectionalAtom* dAtom;
280 <  double Tb[3], ji[3];
281 <  double vel[3], frc[3];
282 <  double mass;
242 > template<typename T> bool NPTf<T>::etaConverged() {
243 >  int i;
244 >  double diffEta, sumEta;
245  
246 <  double instaTemp, instaPress, instaVol;
285 <  double tt2, tb2;
286 <  double sc[3];
287 <  double press[3][3], vScale[3][3];
288 <  double oldChi, prevChi;
289 <  double oldEta[3][3], preEta[3][3], diffEta;
290 <  
291 <  tt2 = tauThermostat * tauThermostat;
292 <  tb2 = tauBarostat * tauBarostat;
293 <
294 <
295 <  // Set things up for the iteration:
296 <
297 <  oldChi = chi;
298 <  
246 >  sumEta = 0;
247    for(i = 0; i < 3; i++)
248 <    for(j = 0; j < 3; j++)
301 <      oldEta[i][j] = eta[i][j];
248 >    sumEta += pow(prevEta[i][i] - eta[i][i], 2);
249  
250 <  for( i=0; i<nAtoms; i++ ){
250 >  diffEta = sqrt( sumEta / 3.0 );
251  
252 <    atoms[i]->getVel( vel );
252 >  return ( diffEta <= etaTolerance );
253 > }
254  
255 <    for (j=0; j < 3; j++)
308 <      oldVel[3*i + j]  = vel[j];
255 > template<typename T> double NPTf<T>::getConservedQuantity(void){
256  
257 <    if( atoms[i]->isDirectional() ){
257 >  double conservedQuantity;
258 >  double totalEnergy;
259 >  double thermostat_kinetic;
260 >  double thermostat_potential;
261 >  double barostat_kinetic;
262 >  double barostat_potential;
263 >  double trEta;
264 >  double a[3][3], b[3][3];
265  
266 <      dAtom = (DirectionalAtom *)atoms[i];
266 >  totalEnergy = tStats->getTotalE();
267  
268 <      dAtom->getJ( ji );
268 >  thermostat_kinetic = fkBT * tt2 * chi * chi /
269 >    (2.0 * eConvert);
270  
271 <      for (j=0; j < 3; j++)
317 <        oldJi[3*i + j] = ji[j];
271 >  thermostat_potential = fkBT* integralOfChidt / eConvert;
272  
273 <    }
274 <  }
273 >  info->transposeMat3(eta, a);
274 >  info->matMul3(a, eta, b);
275 >  trEta = info->matTrace3(b);
276  
277 <  // do the iteration:
277 >  barostat_kinetic = NkBT * tb2 * trEta /
278 >    (2.0 * eConvert);
279  
280 <  instaVol = tStats->getVolume();
281 <  
326 <  for (k=0; k < 4; k++) {
327 <    
328 <    instaTemp = tStats->getTemperature();
329 <    tStats->getPressureTensor(press);
280 >  barostat_potential = (targetPressure * tStats->getVolume() / p_convert) /
281 >    eConvert;
282  
283 <    // evolve chi another half step using the temperature at t + dt/2
283 >  conservedQuantity = totalEnergy + thermostat_kinetic + thermostat_potential +
284 >    barostat_kinetic + barostat_potential;
285  
286 <    prevChi = chi;
287 <    chi = oldChi + dt2 * ( instaTemp / targetTemp - 1.0) / tt2;
335 <    
336 <    for(i = 0; i < 3; i++)
337 <      for(j = 0; j < 3; j++)
338 <        preEta[i][j] = eta[i][j];
286 > //   cout.width(8);
287 > //   cout.precision(8);
288  
289 <    //advance eta half step and calculate scale factor for velocity
290 <    for(i = 0; i < 3; i ++)
291 <      for(j = 0; j < 3; j++){
343 <        if( i == j){
344 <          eta[i][j] = oldEta[i][j] + dt2 *  instaVol *
345 <            (press[i][j] - targetPressure/p_convert) / (NkBT*tb2);
346 <          vScale[i][j] = eta[i][j] + chi;
347 <        }
348 <        else
349 <        {
350 <          eta[i][j] = oldEta[i][j] + dt2 * instaVol * press[i][j] / (NkBT*tb2);
351 <          vScale[i][j] = eta[i][j];
352 <        }
353 <    }      
289 > //   cerr << info->getTime() << "\t" << Energy << "\t" << thermostat_kinetic <<
290 > //       "\t" << thermostat_potential << "\t" << barostat_kinetic <<
291 > //       "\t" << barostat_potential << "\t" << conservedQuantity << endl;
292  
293 <    //advance velocity half step
356 <    for( i=0; i<nAtoms; i++ ){
293 >  return conservedQuantity;
294  
358      atoms[i]->getFrc( frc );
359      atoms[i]->getVel(vel);
360      
361      mass = atoms[i]->getMass();
362      
363      info->matVecMul3( vScale, vel, sc );
364
365      for (j=0; j < 3; j++) {
366        // velocity half step  (use chi from previous step here):
367        vel[j] = oldVel[3*i+j] + dt2 * ((frc[j]  / mass) * eConvert - sc[j]);
368      }
369      
370      atoms[i]->setVel( vel );
371      
372      if( atoms[i]->isDirectional() ){
373
374        dAtom = (DirectionalAtom *)atoms[i];
375  
376        // get and convert the torque to body frame      
377  
378        dAtom->getTrq( Tb );
379        dAtom->lab2Body( Tb );      
380            
381        for (j=0; j < 3; j++)
382          ji[j] = oldJi[3*i + j] + dt2 * (Tb[j] * eConvert - oldJi[3*i+j]*chi);
383      
384          dAtom->setJ( ji );
385      }
386    }
387
388    
389    diffEta = 0;
390    for(i = 0; i < 3; i++)
391      diffEta += pow(preEta[i][i] - eta[i][i], 2);    
392    
393    if (fabs(prevChi - chi) <= chiTolerance && sqrt(diffEta / 3) <= etaTolerance)
394      break;
395  }
396
397  //calculate integral of chida
398  integralOfChidt += dt2*chi;
399
400  
295   }
296  
297 < template<typename T> void NPTf<T>::resetIntegrator() {
298 <  int i,j;
299 <  
300 <  chi = 0.0;
297 > template<typename T> string NPTf<T>::getAdditionalParameters(void){
298 >  string parameters;
299 >  const int BUFFERSIZE = 2000; // size of the read buffer
300 >  char buffer[BUFFERSIZE];
301  
302 <  for(i = 0; i < 3; i++)
303 <    for (j = 0; j < 3; j++)
410 <      eta[i][j] = 0.0;
302 >  sprintf(buffer,"\t%lf\t%lf;", chi, integralOfChidt);
303 >  parameters += buffer;
304  
305 < }
306 <
307 < template<typename T> int NPTf<T>::readyCheck() {
415 <
416 <  //check parent's readyCheck() first
417 <  if (T::readyCheck() == -1)
418 <    return -1;
419 <
420 <  // First check to see if we have a target temperature.
421 <  // Not having one is fatal.
422 <  
423 <  if (!have_target_temp) {
424 <    sprintf( painCave.errMsg,
425 <             "NPTf error: You can't use the NPTf integrator\n"
426 <             "   without a targetTemp!\n"
427 <             );
428 <    painCave.isFatal = 1;
429 <    simError();
430 <    return -1;
305 >  for(int i = 0; i < 3; i++){
306 >    sprintf(buffer,"\t%lf\t%lf\t%lf;", eta[3*i], eta[3*i+1], eta[3*i+2]);
307 >    parameters += buffer;
308    }
309  
310 <  if (!have_target_pressure) {
434 <    sprintf( painCave.errMsg,
435 <             "NPTf error: You can't use the NPTf integrator\n"
436 <             "   without a targetPressure!\n"
437 <             );
438 <    painCave.isFatal = 1;
439 <    simError();
440 <    return -1;
441 <  }
442 <  
443 <  // We must set tauThermostat.
444 <  
445 <  if (!have_tau_thermostat) {
446 <    sprintf( painCave.errMsg,
447 <             "NPTf error: If you use the NPTf\n"
448 <             "   integrator, you must set tauThermostat.\n");
449 <    painCave.isFatal = 1;
450 <    simError();
451 <    return -1;
452 <  }    
310 >  return parameters;
311  
454  // We must set tauBarostat.
455  
456  if (!have_tau_barostat) {
457    sprintf( painCave.errMsg,
458             "NPTf error: If you use the NPTf\n"
459             "   integrator, you must set tauBarostat.\n");
460    painCave.isFatal = 1;
461    simError();
462    return -1;
463  }    
464
465  // We need NkBT a lot, so just set it here:
466
467  NkBT = (double)Nparticles * kB * targetTemp;
468  fkBT = (double)info->ndf * kB * targetTemp;
469
470  return 1;
312   }
472
473 template<typename T> double NPTf<T>::getConservedQuantity(void){
474
475  double conservedQuantity;
476  double tb2;
477  double trEta;  
478  double U;
479  double thermo;
480  double integral;
481  double baro;
482  double PV;
483
484  U = tStats->getTotalE();
485  thermo = (fkBT * tauThermostat * tauThermostat * chi * chi / 2.0) / eConvert;
486
487  tb2 = tauBarostat * tauBarostat;
488  trEta = info->matTrace3(eta);
489  baro = ((double)info->ndfTrans * kB * targetTemp * tb2 * trEta * trEta / 2.0) / eConvert;
490
491  integral = ((double)(info->ndf + 1) * kB * targetTemp * integralOfChidt) /eConvert;
492
493  PV = (targetPressure * tStats->getVolume() / p_convert) / eConvert;
494
495
496  cout.width(8);
497  cout.precision(8);
498  
499  cout << info->getTime() << "\t"
500       << chi << "\t"
501       << trEta << "\t"
502       << U << "\t"
503       << thermo << "\t"
504       << baro << "\t"
505       << integral << "\t"
506       << PV << "\t"
507       << U+thermo+integral+PV+baro << endl;
508
509  conservedQuantity = U+thermo+integral+PV+baro;
510  return conservedQuantity;
511  
512 }

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines