ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/trunk/OOPSE/libmdtools/NPTf.cpp
(Generate patch)

Comparing trunk/OOPSE/libmdtools/NPTf.cpp (file contents):
Revision 576 by gezelter, Tue Jul 8 21:10:16 2003 UTC vs.
Revision 857 by mmeineke, Fri Nov 7 17:09:48 2003 UTC

# Line 1 | Line 1
1 + #include <math.h>
2 +
3   #include "Atom.hpp"
4   #include "SRI.hpp"
5   #include "AbstractClasses.hpp"
# Line 6 | Line 8
8   #include "Thermo.hpp"
9   #include "ReadWrite.hpp"
10   #include "Integrator.hpp"
11 < #include "simError.h"
11 > #include "simError.h"
12  
13 + #ifdef IS_MPI
14 + #include "mpiSimulation.hpp"
15 + #endif
16  
17 < // Basic isotropic thermostating and barostating via the Melchionna
17 > // Basic non-isotropic thermostating and barostating via the Melchionna
18   // modification of the Hoover algorithm:
19   //
20   //    Melchionna, S., Ciccotti, G., and Holian, B. L., 1993,
21 < //       Molec. Phys., 78, 533.
21 > //       Molec. Phys., 78, 533.
22   //
23   //           and
24 < //
24 > //
25   //    Hoover, W. G., 1986, Phys. Rev. A, 34, 2499.
26  
27 < NPTi::NPTi ( SimInfo *theInfo, ForceFields* the_ff):
28 <  Integrator( theInfo, the_ff )
27 > template<typename T> NPTf<T>::NPTf ( SimInfo *theInfo, ForceFields* the_ff):
28 >  T( theInfo, the_ff )
29   {
30 <  int i;
31 <  chi = 0.0;
32 <  for(i = 0; i < 9; i++) eta[i] = 0.0;
33 <  have_tau_thermostat = 0;
29 <  have_tau_barostat = 0;
30 <  have_target_temp = 0;
31 <  have_target_pressure = 0;
32 < }
30 >  GenericData* data;
31 >  DoubleArrayData * etaValue;
32 >  vector<double> etaArray;
33 >  int i,j;
34  
35 < void NPTi::moveA() {
36 <  
36 <  int i,j,k;
37 <  int atomIndex, aMatIndex;
38 <  DirectionalAtom* dAtom;
39 <  double Tb[3];
40 <  double ji[3];
41 <  double rj[3];
42 <  double instaTemp, instaPress, instaVol;
43 <  double tt2, tb2;
44 <  double angle;
35 >  for(i = 0; i < 3; i++){
36 >    for (j = 0; j < 3; j++){
37  
38 <  tt2 = tauThermostat * tauThermostat;
39 <  tb2 = tauBarostat * tauBarostat;
38 >      eta[i][j] = 0.0;
39 >      oldEta[i][j] = 0.0;
40 >    }
41 >  }
42  
43 <  instaTemp = tStats->getTemperature();
44 <  instaPress = tStats->getPressure();
45 <  instaVol = tStats->getVolume();
46 <  
47 <  // first evolve chi a half step
48 <  
49 <  chi += dt2 * ( instaTemp / targetTemp - 1.0) / tt2;
50 <  
51 <  for (i = 0; i < 9; i++) {
52 <    eta[i] += dt2 * ( instaVol * (sigma[i] - targetPressure*identMat[i]))
53 <      / (NkBT*tb2));
43 >
44 >  if( theInfo->useInitXSstate ){
45 >    // retrieve eta array from simInfo if it exists
46 >    data = info->getProperty(ETAVALUE_ID);
47 >    if(data){
48 >      etaValue = dynamic_cast<DoubleArrayData*>(data);
49 >      
50 >      if(etaValue){
51 >        etaArray = etaValue->getData();
52 >        
53 >        for(i = 0; i < 3; i++){
54 >          for (j = 0; j < 3; j++){
55 >            eta[i][j] = etaArray[3*i+j];
56 >            oldEta[i][j] = eta[i][j];
57 >          }
58 >        }
59 >      }
60 >    }
61 >  }
62 >
63   }
64  
65 <  for( i=0; i<nAtoms; i++ ){
63 <    atomIndex = i * 3;
64 <    aMatIndex = i * 9;
65 <    
66 <    // velocity half step
67 <    for( j=atomIndex; j<(atomIndex+3); j++ )
68 <      vel[j] += dt2 * ((frc[j]/atoms[i]->getMass())*eConvert
69 <                       - vel[j]*(chi+eta));
65 > template<typename T> NPTf<T>::~NPTf() {
66  
67 <    // position whole step    
67 >  // empty for now
68 > }
69  
70 <    for( j=atomIndex; j<(atomIndex+3); j=j+3 ) {
74 <      rj[0] = pos[j];
75 <      rj[1] = pos[j+1];
76 <      rj[2] = pos[j+2];
70 > template<typename T> void NPTf<T>::resetIntegrator() {
71  
72 <      info->wrapVector(rj);
72 >  int i, j;
73  
74 <      pos[j] += dt * (vel[j] + eta*rj[0]);
75 <      pos[j+1] += dt * (vel[j+1] + eta*rj[1]);
76 <      pos[j+2] += dt * (vel[j+2] + eta*rj[2]);
74 >  for(i = 0; i < 3; i++)
75 >    for (j = 0; j < 3; j++)
76 >      eta[i][j] = 0.0;
77 >
78 >  T::resetIntegrator();
79 > }
80 >
81 > template<typename T> void NPTf<T>::evolveEtaA() {
82 >
83 >  int i, j;
84 >
85 >  for(i = 0; i < 3; i ++){
86 >    for(j = 0; j < 3; j++){
87 >      if( i == j)
88 >        eta[i][j] += dt2 *  instaVol *
89 >          (press[i][j] - targetPressure/p_convert) / (NkBT*tb2);
90 >      else
91 >        eta[i][j] += dt2 * instaVol * press[i][j] / (NkBT*tb2);
92      }
93 +  }
94  
95 <    // Scale the box after all the positions have been moved:
95 >  for(i = 0; i < 3; i++)
96 >    for (j = 0; j < 3; j++)
97 >      oldEta[i][j] = eta[i][j];
98 > }
99  
100 <    info->scaleBox(exp(dt*eta));
88 <  
89 <    if( atoms[i]->isDirectional() ){
100 > template<typename T> void NPTf<T>::evolveEtaB() {
101  
102 <      dAtom = (DirectionalAtom *)atoms[i];
92 <          
93 <      // get and convert the torque to body frame
94 <      
95 <      Tb[0] = dAtom->getTx();
96 <      Tb[1] = dAtom->getTy();
97 <      Tb[2] = dAtom->getTz();
98 <      
99 <      dAtom->lab2Body( Tb );
100 <      
101 <      // get the angular momentum, and propagate a half step
102 >  int i,j;
103  
104 <      ji[0] = dAtom->getJx();
105 <      ji[1] = dAtom->getJy();
106 <      ji[2] = dAtom->getJz();
107 <      
108 <      ji[0] += dt2 * (Tb[0] * eConvert - ji[0]*chi);
109 <      ji[1] += dt2 * (Tb[1] * eConvert - ji[1]*chi);
110 <      ji[2] += dt2 * (Tb[2] * eConvert - ji[2]*chi);
111 <      
112 <      // use the angular velocities to propagate the rotation matrix a
113 <      // full time step
114 <      
115 <      // rotate about the x-axis      
115 <      angle = dt2 * ji[0] / dAtom->getIxx();
116 <      this->rotate( 1, 2, angle, ji, &Amat[aMatIndex] );
117 <      
118 <      // rotate about the y-axis
119 <      angle = dt2 * ji[1] / dAtom->getIyy();
120 <      this->rotate( 2, 0, angle, ji, &Amat[aMatIndex] );
121 <      
122 <      // rotate about the z-axis
123 <      angle = dt * ji[2] / dAtom->getIzz();
124 <      this->rotate( 0, 1, angle, ji, &Amat[aMatIndex] );
125 <      
126 <      // rotate about the y-axis
127 <      angle = dt2 * ji[1] / dAtom->getIyy();
128 <      this->rotate( 2, 0, angle, ji, &Amat[aMatIndex] );
129 <      
130 <       // rotate about the x-axis
131 <      angle = dt2 * ji[0] / dAtom->getIxx();
132 <      this->rotate( 1, 2, angle, ji, &Amat[aMatIndex] );
133 <      
134 <      dAtom->setJx( ji[0] );
135 <      dAtom->setJy( ji[1] );
136 <      dAtom->setJz( ji[2] );
104 >  for(i = 0; i < 3; i++)
105 >    for (j = 0; j < 3; j++)
106 >      prevEta[i][j] = eta[i][j];
107 >
108 >  for(i = 0; i < 3; i ++){
109 >    for(j = 0; j < 3; j++){
110 >      if( i == j) {
111 >        eta[i][j] = oldEta[i][j] + dt2 *  instaVol *
112 >          (press[i][j] - targetPressure/p_convert) / (NkBT*tb2);
113 >      } else {
114 >        eta[i][j] = oldEta[i][j] + dt2 * instaVol * press[i][j] / (NkBT*tb2);
115 >      }
116      }
138    
117    }
118   }
119  
120 < void NPTi::moveB( void ){
121 <  int i,j,k;
144 <  int atomIndex;
145 <  DirectionalAtom* dAtom;
146 <  double Tb[3];
147 <  double ji[3];
148 <  double instaTemp, instaPress, instaVol;
149 <  double tt2, tb2;
150 <  
151 <  tt2 = tauThermostat * tauThermostat;
152 <  tb2 = tauBarostat * tauBarostat;
120 > template<typename T> void NPTf<T>::calcVelScale(void){
121 >  int i,j;
122  
123 <  instaTemp = tStats->getTemperature();
124 <  instaPress = tStats->getPressure();
125 <  instaVol = tStats->getVolume();
123 >  for (i = 0; i < 3; i++ ) {
124 >    for (j = 0; j < 3; j++ ) {
125 >      vScale[i][j] = eta[i][j];
126  
127 <  chi += dt2 * ( instaTemp / targetTemp - 1.0) / tt2;
128 <  eta += dt2 * ( instaVol * (instaPress - targetPressure) / (NkBT*tb2));
129 <  
161 <  for( i=0; i<nAtoms; i++ ){
162 <    atomIndex = i * 3;
163 <    
164 <    // velocity half step
165 <    for( j=atomIndex; j<(atomIndex+3); j++ )
166 <    for( j=atomIndex; j<(atomIndex+3); j++ )
167 <      vel[j] += dt2 * ((frc[j]/atoms[i]->getMass())*eConvert
168 <                       - vel[j]*(chi+eta));
169 <    
170 <    if( atoms[i]->isDirectional() ){
171 <      
172 <      dAtom = (DirectionalAtom *)atoms[i];
173 <      
174 <      // get and convert the torque to body frame
175 <      
176 <      Tb[0] = dAtom->getTx();
177 <      Tb[1] = dAtom->getTy();
178 <      Tb[2] = dAtom->getTz();
179 <      
180 <      dAtom->lab2Body( Tb );
181 <      
182 <      // get the angular momentum, and complete the angular momentum
183 <      // half step
184 <      
185 <      ji[0] = dAtom->getJx();
186 <      ji[1] = dAtom->getJy();
187 <      ji[2] = dAtom->getJz();
188 <      
189 <      ji[0] += dt2 * (Tb[0] * eConvert - ji[0]*chi);
190 <      ji[1] += dt2 * (Tb[1] * eConvert - ji[1]*chi);
191 <      ji[2] += dt2 * (Tb[2] * eConvert - ji[2]*chi);
192 <      
193 <      dAtom->setJx( ji[0] );
194 <      dAtom->setJy( ji[1] );
195 <      dAtom->setJz( ji[2] );
127 >      if (i == j) {
128 >        vScale[i][j] += chi;
129 >      }
130      }
131    }
132   }
133  
134 < int NPTi::readyCheck() {
134 > template<typename T> void NPTf<T>::getVelScaleA(double sc[3], double vel[3]) {
135  
136 <  // First check to see if we have a target temperature.
137 <  // Not having one is fatal.
138 <  
139 <  if (!have_target_temp) {
140 <    sprintf( painCave.errMsg,
141 <             "NPTi error: You can't use the NPTi integrator\n"
142 <             "   without a targetTemp!\n"
143 <             );
144 <    painCave.isFatal = 1;
145 <    simError();
146 <    return -1;
136 >  info->matVecMul3( vScale, vel, sc );
137 > }
138 >
139 > template<typename T> void NPTf<T>::getVelScaleB(double sc[3], int index ){
140 >  int j;
141 >  double myVel[3];
142 >  double vScale[3][3];
143 >
144 >  for (j = 0; j < 3; j++)
145 >    myVel[j] = oldVel[3*index + j];
146 >
147 >  info->matVecMul3( vScale, myVel, sc );
148 > }
149 >
150 > template<typename T> void NPTf<T>::getPosScale(double pos[3], double COM[3],
151 >                                               int index, double sc[3]){
152 >  int j;
153 >  double rj[3];
154 >
155 >  for(j=0; j<3; j++)
156 >    rj[j] = ( oldPos[index*3+j] + pos[j]) / 2.0 - COM[j];
157 >
158 >  info->matVecMul3( eta, rj, sc );
159 > }
160 >
161 > template<typename T> void NPTf<T>::scaleSimBox( void ){
162 >
163 >  int i,j,k;
164 >  double scaleMat[3][3];
165 >  double eta2ij;
166 >  double bigScale, smallScale, offDiagMax;
167 >  double hm[3][3], hmnew[3][3];
168 >
169 >
170 >
171 >  // Scale the box after all the positions have been moved:
172 >
173 >  // Use a taylor expansion for eta products:  Hmat = Hmat . exp(dt * etaMat)
174 >  //  Hmat = Hmat . ( Ident + dt * etaMat  + dt^2 * etaMat*etaMat / 2)
175 >
176 >  bigScale = 1.0;
177 >  smallScale = 1.0;
178 >  offDiagMax = 0.0;
179 >
180 >  for(i=0; i<3; i++){
181 >    for(j=0; j<3; j++){
182 >
183 >      // Calculate the matrix Product of the eta array (we only need
184 >      // the ij element right now):
185 >
186 >      eta2ij = 0.0;
187 >      for(k=0; k<3; k++){
188 >        eta2ij += eta[i][k] * eta[k][j];
189 >      }
190 >
191 >      scaleMat[i][j] = 0.0;
192 >      // identity matrix (see above):
193 >      if (i == j) scaleMat[i][j] = 1.0;
194 >      // Taylor expansion for the exponential truncated at second order:
195 >      scaleMat[i][j] += dt*eta[i][j]  + 0.5*dt*dt*eta2ij;
196 >
197 >      if (i != j)
198 >        if (fabs(scaleMat[i][j]) > offDiagMax)
199 >          offDiagMax = fabs(scaleMat[i][j]);
200 >    }
201 >
202 >    if (scaleMat[i][i] > bigScale) bigScale = scaleMat[i][i];
203 >    if (scaleMat[i][i] < smallScale) smallScale = scaleMat[i][i];
204    }
205  
206 <  if (!have_target_pressure) {
206 >  if ((bigScale > 1.01) || (smallScale < 0.99)) {
207      sprintf( painCave.errMsg,
208 <             "NPTi error: You can't use the NPTi integrator\n"
209 <             "   without a targetPressure!\n"
210 <             );
208 >             "NPTf error: Attempting a Box scaling of more than 1 percent.\n"
209 >             " Check your tauBarostat, as it is probably too small!\n\n"
210 >             " scaleMat = [%lf\t%lf\t%lf]\n"
211 >             "            [%lf\t%lf\t%lf]\n"
212 >             "            [%lf\t%lf\t%lf]\n",
213 >             scaleMat[0][0],scaleMat[0][1],scaleMat[0][2],
214 >             scaleMat[1][0],scaleMat[1][1],scaleMat[1][2],
215 >             scaleMat[2][0],scaleMat[2][1],scaleMat[2][2]);
216      painCave.isFatal = 1;
217      simError();
218 <    return -1;
223 <  }
224 <  
225 <  // We must set tauThermostat.
226 <  
227 <  if (!have_tau_thermostat) {
218 >  } else if (offDiagMax > 0.01) {
219      sprintf( painCave.errMsg,
220 <             "NPTi error: If you use the NPTi\n"
221 <             "   integrator, you must set tauThermostat.\n");
220 >             "NPTf error: Attempting an off-diagonal Box scaling of more than 1 percent.\n"
221 >             " Check your tauBarostat, as it is probably too small!\n\n"
222 >             " scaleMat = [%lf\t%lf\t%lf]\n"
223 >             "            [%lf\t%lf\t%lf]\n"
224 >             "            [%lf\t%lf\t%lf]\n",
225 >             scaleMat[0][0],scaleMat[0][1],scaleMat[0][2],
226 >             scaleMat[1][0],scaleMat[1][1],scaleMat[1][2],
227 >             scaleMat[2][0],scaleMat[2][1],scaleMat[2][2]);
228      painCave.isFatal = 1;
229      simError();
230 <    return -1;
231 <  }    
230 >  } else {
231 >    info->getBoxM(hm);
232 >    info->matMul3(hm, scaleMat, hmnew);
233 >    info->setBoxM(hmnew);
234 >  }
235 > }
236  
237 <  // We must set tauBarostat.
238 <  
239 <  if (!have_tau_barostat) {
239 <    sprintf( painCave.errMsg,
240 <             "NPTi error: If you use the NPTi\n"
241 <             "   integrator, you must set tauBarostat.\n");
242 <    painCave.isFatal = 1;
243 <    simError();
244 <    return -1;
245 <  }    
237 > template<typename T> bool NPTf<T>::etaConverged() {
238 >  int i;
239 >  double diffEta, sumEta;
240  
241 <  // We need NkBT a lot, so just set it here:
241 >  sumEta = 0;
242 >  for(i = 0; i < 3; i++)
243 >    sumEta += pow(prevEta[i][i] - eta[i][i], 2);
244  
245 <  NkBT = (double)info->ndf * kB * targetTemp;
245 >  diffEta = sqrt( sumEta / 3.0 );
246  
247 <  return 1;
247 >  return ( diffEta <= etaTolerance );
248   }
249 +
250 + template<typename T> double NPTf<T>::getConservedQuantity(void){
251 +
252 +  double conservedQuantity;
253 +  double totalEnergy;
254 +  double thermostat_kinetic;
255 +  double thermostat_potential;
256 +  double barostat_kinetic;
257 +  double barostat_potential;
258 +  double trEta;
259 +  double a[3][3], b[3][3];
260 +
261 +  totalEnergy = tStats->getTotalE();
262 +
263 +  thermostat_kinetic = fkBT * tt2 * chi * chi /
264 +    (2.0 * eConvert);
265 +
266 +  thermostat_potential = fkBT* integralOfChidt / eConvert;
267 +
268 +  info->transposeMat3(eta, a);
269 +  info->matMul3(a, eta, b);
270 +  trEta = info->matTrace3(b);
271 +
272 +  barostat_kinetic = NkBT * tb2 * trEta /
273 +    (2.0 * eConvert);
274 +
275 +  barostat_potential = (targetPressure * tStats->getVolume() / p_convert) /
276 +    eConvert;
277 +
278 +  conservedQuantity = totalEnergy + thermostat_kinetic + thermostat_potential +
279 +    barostat_kinetic + barostat_potential;
280 +
281 +  return conservedQuantity;
282 +
283 + }
284 +
285 + template<typename T> string NPTf<T>::getAdditionalParameters(void){
286 +  string parameters;
287 +  const int BUFFERSIZE = 2000; // size of the read buffer
288 +  char buffer[BUFFERSIZE];
289 +
290 +  sprintf(buffer,"\t%G\t%G;", chi, integralOfChidt);
291 +  parameters += buffer;
292 +
293 +  for(int i = 0; i < 3; i++){
294 +    sprintf(buffer,"\t%G\t%G\t%G;", eta[i][0], eta[i][1], eta[i][2]);
295 +    parameters += buffer;
296 +  }
297 +
298 +  return parameters;
299 +
300 + }

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines