ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/trunk/OOPSE/libmdtools/NPTf.cpp
Revision: 580
Committed: Wed Jul 9 13:56:36 2003 UTC (20 years, 11 months ago) by gezelter
File size: 9485 byte(s)
Log Message:
Fixes and merging NPTf

File Contents

# Content
1 #include "Atom.hpp"
2 #include "SRI.hpp"
3 #include "AbstractClasses.hpp"
4 #include "SimInfo.hpp"
5 #include "ForceFields.hpp"
6 #include "Thermo.hpp"
7 #include "ReadWrite.hpp"
8 #include "Integrator.hpp"
9 #include "simError.h"
10
11
12 // Basic non-isotropic thermostating and barostating via the Melchionna
13 // modification of the Hoover algorithm:
14 //
15 // Melchionna, S., Ciccotti, G., and Holian, B. L., 1993,
16 // Molec. Phys., 78, 533.
17 //
18 // and
19 //
20 // Hoover, W. G., 1986, Phys. Rev. A, 34, 2499.
21
22 NPTf::NPTf ( SimInfo *theInfo, ForceFields* the_ff):
23 Integrator( theInfo, the_ff )
24 {
25 int i;
26 chi = 0.0;
27 for(i = 0; i < 9; i++) eta[i] = 0.0;
28 have_tau_thermostat = 0;
29 have_tau_barostat = 0;
30 have_target_temp = 0;
31 have_target_pressure = 0;
32 }
33
34 void NPTf::moveA() {
35
36 int i,j,k;
37 int atomIndex, aMatIndex;
38 DirectionalAtom* dAtom;
39 double Tb[3];
40 double ji[3];
41 double rj[3];
42 double ident[3][3], eta1[3][3], eta2[3][3], hmnew[3][3];
43 double hm[9];
44 double vx, vy, vz;
45 double scx, scy, scz;
46 double instaTemp, instaPress, instaVol;
47 double tt2, tb2;
48 double angle;
49 double press[9];
50 const double p_convert = 1.63882576e8;
51
52 tt2 = tauThermostat * tauThermostat;
53 tb2 = tauBarostat * tauBarostat;
54
55 instaTemp = tStats->getTemperature();
56 tStats->getPressureTensor(press);
57
58 for (i=0; i < 9; i++) press[i] *= p_convert;
59
60 instaVol = tStats->getVolume();
61
62 // first evolve chi a half step
63
64 chi += dt2 * ( instaTemp / targetTemp - 1.0) / tt2;
65
66 eta[0] += dt2 * instaVol * (press[0] - targetPressure) / (NkBT*tb2);
67 eta[1] += dt2 * instaVol * press[1] / (NkBT*tb2);
68 eta[2] += dt2 * instaVol * press[2] / (NkBT*tb2);
69 eta[3] += dt2 * instaVol * press[3] / (NkBT*tb2);
70 eta[4] += dt2 * instaVol * (press[4] - targetPressure) / (NkBT*tb2);
71 eta[5] += dt2 * instaVol * press[5] / (NkBT*tb2);
72 eta[6] += dt2 * instaVol * press[6] / (NkBT*tb2);
73 eta[7] += dt2 * instaVol * press[7] / (NkBT*tb2);
74 eta[8] += dt2 * instaVol * (press[8] - targetPressure) / (NkBT*tb2);
75
76 for( i=0; i<nAtoms; i++ ){
77 atomIndex = i * 3;
78 aMatIndex = i * 9;
79
80 // velocity half step
81
82 vx = vel[atomIndex];
83 vy = vel[atomIndex+1];
84 vz = vel[atomIndex+2];
85
86 scx = (chi + eta[0])*vx + eta[1]*vy + eta[2]*vz;
87 scy = eta[3]*vx + (chi + eta[4])*vy + eta[5]*vz;
88 scz = eta[6]*vx + eta[7]*vy + (chi + eta[8])*vz;
89
90 vx += dt2 * ((frc[atomIndex] /atoms[i]->getMass())*eConvert - scx);
91 vy += dt2 * ((frc[atomIndex+1]/atoms[i]->getMass())*eConvert - scy);
92 vz += dt2 * ((frc[atomIndex+2]/atoms[i]->getMass())*eConvert - scz);
93
94 vel[atomIndex] = vx;
95 vel[atomIndex+1] = vy;
96 vel[atomIndex+2] = vz;
97
98 // position whole step
99
100 rj[0] = pos[atomIndex];
101 rj[1] = pos[atomIndex+1];
102 rj[2] = pos[atomIndex+2];
103
104 info->wrapVector(rj);
105
106 scx = eta[0]*rj[0] + eta[1]*rj[1] + eta[2]*rj[2];
107 scy = eta[3]*rj[0] + eta[4]*rj[1] + eta[5]*rj[2];
108 scz = eta[6]*rj[0] + eta[7]*rj[1] + eta[8]*rj[2];
109
110 pos[atomIndex] += dt * (vel[atomIndex] + scx);
111 pos[atomIndex+1] += dt * (vel[atomIndex+1] + scy);
112 pos[atomIndex+2] += dt * (vel[atomIndex+2] + scz);
113
114 if( atoms[i]->isDirectional() ){
115
116 dAtom = (DirectionalAtom *)atoms[i];
117
118 // get and convert the torque to body frame
119
120 Tb[0] = dAtom->getTx();
121 Tb[1] = dAtom->getTy();
122 Tb[2] = dAtom->getTz();
123
124 dAtom->lab2Body( Tb );
125
126 // get the angular momentum, and propagate a half step
127
128 ji[0] = dAtom->getJx();
129 ji[1] = dAtom->getJy();
130 ji[2] = dAtom->getJz();
131
132 ji[0] += dt2 * (Tb[0] * eConvert - ji[0]*chi);
133 ji[1] += dt2 * (Tb[1] * eConvert - ji[1]*chi);
134 ji[2] += dt2 * (Tb[2] * eConvert - ji[2]*chi);
135
136 // use the angular velocities to propagate the rotation matrix a
137 // full time step
138
139 // rotate about the x-axis
140 angle = dt2 * ji[0] / dAtom->getIxx();
141 this->rotate( 1, 2, angle, ji, &Amat[aMatIndex] );
142
143 // rotate about the y-axis
144 angle = dt2 * ji[1] / dAtom->getIyy();
145 this->rotate( 2, 0, angle, ji, &Amat[aMatIndex] );
146
147 // rotate about the z-axis
148 angle = dt * ji[2] / dAtom->getIzz();
149 this->rotate( 0, 1, angle, ji, &Amat[aMatIndex] );
150
151 // rotate about the y-axis
152 angle = dt2 * ji[1] / dAtom->getIyy();
153 this->rotate( 2, 0, angle, ji, &Amat[aMatIndex] );
154
155 // rotate about the x-axis
156 angle = dt2 * ji[0] / dAtom->getIxx();
157 this->rotate( 1, 2, angle, ji, &Amat[aMatIndex] );
158
159 dAtom->setJx( ji[0] );
160 dAtom->setJy( ji[1] );
161 dAtom->setJz( ji[2] );
162 }
163
164 }
165
166 // Scale the box after all the positions have been moved:
167
168 // Use a taylor expansion for eta products: Hmat = Hmat . exp(dt * etaMat)
169 // Hmat = Hmat . ( Ident + dt * etaMat + dt^2 * etaMat*etaMat / 2)
170
171
172 for(i=0; i<3; i++){
173 for(j=0; j<3; j++){
174 ident[i][j] = 0.0;
175 eta1[i][j] = eta[3*i+j];
176 eta2[i][j] = 0.0;
177 for(k=0; k<3; k++){
178 eta2[i][j] += eta[3*i+k] * eta[3*k+j];
179 }
180 }
181 ident[i][i] = 1.0;
182 }
183
184
185 info->getBoxM(hm);
186
187 for(i=0; i<3; i++){
188 for(j=0; j<3; j++){
189 hmnew[i][j] = 0.0;
190 for(k=0; k<3; k++){
191 // remember that hmat has transpose ordering for Fortran compat:
192 hmnew[i][j] += hm[3*k+i] * (ident[k][j]
193 + dt * eta1[k][j]
194 + 0.5 * dt * dt * eta2[k][j]);
195 }
196 }
197 }
198
199 for (i = 0; i < 3; i++) {
200 for (j = 0; j < 3; j++) {
201 // remember that hmat has transpose ordering for Fortran compat:
202 hm[3*j + 1] = hmnew[i][j];
203 }
204 }
205
206 info->setBoxM(hm);
207
208 }
209
210 void NPTf::moveB( void ){
211 int i,j,k;
212 int atomIndex;
213 DirectionalAtom* dAtom;
214 double Tb[3];
215 double ji[3];
216 double press[9];
217 double instaTemp, instaVol;
218 double tt2, tb2;
219 double vx, vy, vz;
220 double scx, scy, scz;
221 const double p_convert = 1.63882576e8;
222
223 tt2 = tauThermostat * tauThermostat;
224 tb2 = tauBarostat * tauBarostat;
225
226 instaTemp = tStats->getTemperature();
227 tStats->getPressureTensor(press);
228
229 for (i=0; i < 9; i++) press[i] *= p_convert;
230
231 instaVol = tStats->getVolume();
232
233 // first evolve chi a half step
234
235 chi += dt2 * ( instaTemp / targetTemp - 1.0) / tt2;
236
237 eta[0] += dt2 * instaVol * (press[0] - targetPressure) / (NkBT*tb2);
238 eta[1] += dt2 * instaVol * press[1] / (NkBT*tb2);
239 eta[2] += dt2 * instaVol * press[2] / (NkBT*tb2);
240 eta[3] += dt2 * instaVol * press[3] / (NkBT*tb2);
241 eta[4] += dt2 * instaVol * (press[4] - targetPressure) / (NkBT*tb2);
242 eta[5] += dt2 * instaVol * press[5] / (NkBT*tb2);
243 eta[6] += dt2 * instaVol * press[6] / (NkBT*tb2);
244 eta[7] += dt2 * instaVol * press[7] / (NkBT*tb2);
245 eta[8] += dt2 * instaVol * (press[8] - targetPressure) / (NkBT*tb2);
246
247 for( i=0; i<nAtoms; i++ ){
248 atomIndex = i * 3;
249
250 // velocity half step
251
252 vx = vel[atomIndex];
253 vy = vel[atomIndex+1];
254 vz = vel[atomIndex+2];
255
256 scx = (chi + eta[0])*vx + eta[1]*vy + eta[2]*vz;
257 scy = eta[3]*vx + (chi + eta[4])*vy + eta[5]*vz;
258 scz = eta[6]*vx + eta[7]*vy + (chi + eta[8])*vz;
259
260 vx += dt2 * ((frc[atomIndex] /atoms[i]->getMass())*eConvert - scx);
261 vy += dt2 * ((frc[atomIndex+1]/atoms[i]->getMass())*eConvert - scy);
262 vz += dt2 * ((frc[atomIndex+2]/atoms[i]->getMass())*eConvert - scz);
263
264 vel[atomIndex] = vx;
265 vel[atomIndex+1] = vy;
266 vel[atomIndex+2] = vz;
267
268 if( atoms[i]->isDirectional() ){
269
270 dAtom = (DirectionalAtom *)atoms[i];
271
272 // get and convert the torque to body frame
273
274 Tb[0] = dAtom->getTx();
275 Tb[1] = dAtom->getTy();
276 Tb[2] = dAtom->getTz();
277
278 dAtom->lab2Body( Tb );
279
280 // get the angular momentum, and complete the angular momentum
281 // half step
282
283 ji[0] = dAtom->getJx();
284 ji[1] = dAtom->getJy();
285 ji[2] = dAtom->getJz();
286
287 ji[0] += dt2 * (Tb[0] * eConvert - ji[0]*chi);
288 ji[1] += dt2 * (Tb[1] * eConvert - ji[1]*chi);
289 ji[2] += dt2 * (Tb[2] * eConvert - ji[2]*chi);
290
291 dAtom->setJx( ji[0] );
292 dAtom->setJy( ji[1] );
293 dAtom->setJz( ji[2] );
294 }
295 }
296 }
297
298 int NPTf::readyCheck() {
299
300 // First check to see if we have a target temperature.
301 // Not having one is fatal.
302
303 if (!have_target_temp) {
304 sprintf( painCave.errMsg,
305 "NPTf error: You can't use the NPTf integrator\n"
306 " without a targetTemp!\n"
307 );
308 painCave.isFatal = 1;
309 simError();
310 return -1;
311 }
312
313 if (!have_target_pressure) {
314 sprintf( painCave.errMsg,
315 "NPTf error: You can't use the NPTf integrator\n"
316 " without a targetPressure!\n"
317 );
318 painCave.isFatal = 1;
319 simError();
320 return -1;
321 }
322
323 // We must set tauThermostat.
324
325 if (!have_tau_thermostat) {
326 sprintf( painCave.errMsg,
327 "NPTf error: If you use the NPTf\n"
328 " integrator, you must set tauThermostat.\n");
329 painCave.isFatal = 1;
330 simError();
331 return -1;
332 }
333
334 // We must set tauBarostat.
335
336 if (!have_tau_barostat) {
337 sprintf( painCave.errMsg,
338 "NPTf error: If you use the NPTf\n"
339 " integrator, you must set tauBarostat.\n");
340 painCave.isFatal = 1;
341 simError();
342 return -1;
343 }
344
345 // We need NkBT a lot, so just set it here:
346
347 NkBT = (double)info->ndf * kB * targetTemp;
348
349 return 1;
350 }