| 1 |
#include "Atom.hpp" |
| 2 |
#include "SRI.hpp" |
| 3 |
#include "AbstractClasses.hpp" |
| 4 |
#include "SimInfo.hpp" |
| 5 |
#include "ForceFields.hpp" |
| 6 |
#include "Thermo.hpp" |
| 7 |
#include "ReadWrite.hpp" |
| 8 |
#include "Integrator.hpp" |
| 9 |
#include "simError.h" |
| 10 |
|
| 11 |
|
| 12 |
// Basic non-isotropic thermostating and barostating via the Melchionna |
| 13 |
// modification of the Hoover algorithm: |
| 14 |
// |
| 15 |
// Melchionna, S., Ciccotti, G., and Holian, B. L., 1993, |
| 16 |
// Molec. Phys., 78, 533. |
| 17 |
// |
| 18 |
// and |
| 19 |
// |
| 20 |
// Hoover, W. G., 1986, Phys. Rev. A, 34, 2499. |
| 21 |
|
| 22 |
NPTf::NPTf ( SimInfo *theInfo, ForceFields* the_ff): |
| 23 |
Integrator( theInfo, the_ff ) |
| 24 |
{ |
| 25 |
int i; |
| 26 |
chi = 0.0; |
| 27 |
for(i = 0; i < 9; i++) eta[i] = 0.0; |
| 28 |
have_tau_thermostat = 0; |
| 29 |
have_tau_barostat = 0; |
| 30 |
have_target_temp = 0; |
| 31 |
have_target_pressure = 0; |
| 32 |
} |
| 33 |
|
| 34 |
void NPTf::moveA() { |
| 35 |
|
| 36 |
int i,j,k; |
| 37 |
int atomIndex, aMatIndex; |
| 38 |
DirectionalAtom* dAtom; |
| 39 |
double Tb[3]; |
| 40 |
double ji[3]; |
| 41 |
double rj[3]; |
| 42 |
double ident[3][3], eta1[3][3], eta2[3][3], hmnew[3][3]; |
| 43 |
double hm[9]; |
| 44 |
double vx, vy, vz; |
| 45 |
double scx, scy, scz; |
| 46 |
double instaTemp, instaPress, instaVol; |
| 47 |
double tt2, tb2; |
| 48 |
double angle; |
| 49 |
double press[9]; |
| 50 |
const double p_convert = 1.63882576e8; |
| 51 |
|
| 52 |
tt2 = tauThermostat * tauThermostat; |
| 53 |
tb2 = tauBarostat * tauBarostat; |
| 54 |
|
| 55 |
instaTemp = tStats->getTemperature(); |
| 56 |
tStats->getPressureTensor(press); |
| 57 |
|
| 58 |
for (i=0; i < 9; i++) press[i] *= p_convert; |
| 59 |
|
| 60 |
instaVol = tStats->getVolume(); |
| 61 |
|
| 62 |
// first evolve chi a half step |
| 63 |
|
| 64 |
chi += dt2 * ( instaTemp / targetTemp - 1.0) / tt2; |
| 65 |
|
| 66 |
eta[0] += dt2 * instaVol * (press[0] - targetPressure) / (NkBT*tb2); |
| 67 |
eta[1] += dt2 * instaVol * press[1] / (NkBT*tb2); |
| 68 |
eta[2] += dt2 * instaVol * press[2] / (NkBT*tb2); |
| 69 |
eta[3] += dt2 * instaVol * press[3] / (NkBT*tb2); |
| 70 |
eta[4] += dt2 * instaVol * (press[4] - targetPressure) / (NkBT*tb2); |
| 71 |
eta[5] += dt2 * instaVol * press[5] / (NkBT*tb2); |
| 72 |
eta[6] += dt2 * instaVol * press[6] / (NkBT*tb2); |
| 73 |
eta[7] += dt2 * instaVol * press[7] / (NkBT*tb2); |
| 74 |
eta[8] += dt2 * instaVol * (press[8] - targetPressure) / (NkBT*tb2); |
| 75 |
|
| 76 |
for( i=0; i<nAtoms; i++ ){ |
| 77 |
atomIndex = i * 3; |
| 78 |
aMatIndex = i * 9; |
| 79 |
|
| 80 |
// velocity half step |
| 81 |
|
| 82 |
vx = vel[atomIndex]; |
| 83 |
vy = vel[atomIndex+1]; |
| 84 |
vz = vel[atomIndex+2]; |
| 85 |
|
| 86 |
scx = (chi + eta[0])*vx + eta[1]*vy + eta[2]*vz; |
| 87 |
scy = eta[3]*vx + (chi + eta[4])*vy + eta[5]*vz; |
| 88 |
scz = eta[6]*vx + eta[7]*vy + (chi + eta[8])*vz; |
| 89 |
|
| 90 |
vx += dt2 * ((frc[atomIndex] /atoms[i]->getMass())*eConvert - scx); |
| 91 |
vy += dt2 * ((frc[atomIndex+1]/atoms[i]->getMass())*eConvert - scy); |
| 92 |
vz += dt2 * ((frc[atomIndex+2]/atoms[i]->getMass())*eConvert - scz); |
| 93 |
|
| 94 |
vel[atomIndex] = vx; |
| 95 |
vel[atomIndex+1] = vy; |
| 96 |
vel[atomIndex+2] = vz; |
| 97 |
|
| 98 |
// position whole step |
| 99 |
|
| 100 |
rj[0] = pos[atomIndex]; |
| 101 |
rj[1] = pos[atomIndex+1]; |
| 102 |
rj[2] = pos[atomIndex+2]; |
| 103 |
|
| 104 |
info->wrapVector(rj); |
| 105 |
|
| 106 |
scx = eta[0]*rj[0] + eta[1]*rj[1] + eta[2]*rj[2]; |
| 107 |
scy = eta[3]*rj[0] + eta[4]*rj[1] + eta[5]*rj[2]; |
| 108 |
scz = eta[6]*rj[0] + eta[7]*rj[1] + eta[8]*rj[2]; |
| 109 |
|
| 110 |
pos[atomIndex] += dt * (vel[atomIndex] + scx); |
| 111 |
pos[atomIndex+1] += dt * (vel[atomIndex+1] + scy); |
| 112 |
pos[atomIndex+2] += dt * (vel[atomIndex+2] + scz); |
| 113 |
|
| 114 |
if( atoms[i]->isDirectional() ){ |
| 115 |
|
| 116 |
dAtom = (DirectionalAtom *)atoms[i]; |
| 117 |
|
| 118 |
// get and convert the torque to body frame |
| 119 |
|
| 120 |
Tb[0] = dAtom->getTx(); |
| 121 |
Tb[1] = dAtom->getTy(); |
| 122 |
Tb[2] = dAtom->getTz(); |
| 123 |
|
| 124 |
dAtom->lab2Body( Tb ); |
| 125 |
|
| 126 |
// get the angular momentum, and propagate a half step |
| 127 |
|
| 128 |
ji[0] = dAtom->getJx(); |
| 129 |
ji[1] = dAtom->getJy(); |
| 130 |
ji[2] = dAtom->getJz(); |
| 131 |
|
| 132 |
ji[0] += dt2 * (Tb[0] * eConvert - ji[0]*chi); |
| 133 |
ji[1] += dt2 * (Tb[1] * eConvert - ji[1]*chi); |
| 134 |
ji[2] += dt2 * (Tb[2] * eConvert - ji[2]*chi); |
| 135 |
|
| 136 |
// use the angular velocities to propagate the rotation matrix a |
| 137 |
// full time step |
| 138 |
|
| 139 |
// rotate about the x-axis |
| 140 |
angle = dt2 * ji[0] / dAtom->getIxx(); |
| 141 |
this->rotate( 1, 2, angle, ji, &Amat[aMatIndex] ); |
| 142 |
|
| 143 |
// rotate about the y-axis |
| 144 |
angle = dt2 * ji[1] / dAtom->getIyy(); |
| 145 |
this->rotate( 2, 0, angle, ji, &Amat[aMatIndex] ); |
| 146 |
|
| 147 |
// rotate about the z-axis |
| 148 |
angle = dt * ji[2] / dAtom->getIzz(); |
| 149 |
this->rotate( 0, 1, angle, ji, &Amat[aMatIndex] ); |
| 150 |
|
| 151 |
// rotate about the y-axis |
| 152 |
angle = dt2 * ji[1] / dAtom->getIyy(); |
| 153 |
this->rotate( 2, 0, angle, ji, &Amat[aMatIndex] ); |
| 154 |
|
| 155 |
// rotate about the x-axis |
| 156 |
angle = dt2 * ji[0] / dAtom->getIxx(); |
| 157 |
this->rotate( 1, 2, angle, ji, &Amat[aMatIndex] ); |
| 158 |
|
| 159 |
dAtom->setJx( ji[0] ); |
| 160 |
dAtom->setJy( ji[1] ); |
| 161 |
dAtom->setJz( ji[2] ); |
| 162 |
} |
| 163 |
|
| 164 |
} |
| 165 |
|
| 166 |
// Scale the box after all the positions have been moved: |
| 167 |
|
| 168 |
// Use a taylor expansion for eta products: Hmat = Hmat . exp(dt * etaMat) |
| 169 |
// Hmat = Hmat . ( Ident + dt * etaMat + dt^2 * etaMat*etaMat / 2) |
| 170 |
|
| 171 |
|
| 172 |
for(i=0; i<3; i++){ |
| 173 |
for(j=0; j<3; j++){ |
| 174 |
ident[i][j] = 0.0; |
| 175 |
eta1[i][j] = eta[3*i+j]; |
| 176 |
eta2[i][j] = 0.0; |
| 177 |
for(k=0; k<3; k++){ |
| 178 |
eta2[i][j] += eta[3*i+k] * eta[3*k+j]; |
| 179 |
} |
| 180 |
} |
| 181 |
ident[i][i] = 1.0; |
| 182 |
} |
| 183 |
|
| 184 |
|
| 185 |
info->getBoxM(hm); |
| 186 |
|
| 187 |
for(i=0; i<3; i++){ |
| 188 |
for(j=0; j<3; j++){ |
| 189 |
hmnew[i][j] = 0.0; |
| 190 |
for(k=0; k<3; k++){ |
| 191 |
// remember that hmat has transpose ordering for Fortran compat: |
| 192 |
hmnew[i][j] += hm[3*k+i] * (ident[k][j] |
| 193 |
+ dt * eta1[k][j] |
| 194 |
+ 0.5 * dt * dt * eta2[k][j]); |
| 195 |
} |
| 196 |
} |
| 197 |
} |
| 198 |
|
| 199 |
for (i = 0; i < 3; i++) { |
| 200 |
for (j = 0; j < 3; j++) { |
| 201 |
// remember that hmat has transpose ordering for Fortran compat: |
| 202 |
hm[3*j + 1] = hmnew[i][j]; |
| 203 |
} |
| 204 |
} |
| 205 |
|
| 206 |
info->setBoxM(hm); |
| 207 |
|
| 208 |
} |
| 209 |
|
| 210 |
void NPTf::moveB( void ){ |
| 211 |
int i,j,k; |
| 212 |
int atomIndex; |
| 213 |
DirectionalAtom* dAtom; |
| 214 |
double Tb[3]; |
| 215 |
double ji[3]; |
| 216 |
double press[9]; |
| 217 |
double instaTemp, instaVol; |
| 218 |
double tt2, tb2; |
| 219 |
double vx, vy, vz; |
| 220 |
double scx, scy, scz; |
| 221 |
const double p_convert = 1.63882576e8; |
| 222 |
|
| 223 |
tt2 = tauThermostat * tauThermostat; |
| 224 |
tb2 = tauBarostat * tauBarostat; |
| 225 |
|
| 226 |
instaTemp = tStats->getTemperature(); |
| 227 |
tStats->getPressureTensor(press); |
| 228 |
|
| 229 |
for (i=0; i < 9; i++) press[i] *= p_convert; |
| 230 |
|
| 231 |
instaVol = tStats->getVolume(); |
| 232 |
|
| 233 |
// first evolve chi a half step |
| 234 |
|
| 235 |
chi += dt2 * ( instaTemp / targetTemp - 1.0) / tt2; |
| 236 |
|
| 237 |
eta[0] += dt2 * instaVol * (press[0] - targetPressure) / (NkBT*tb2); |
| 238 |
eta[1] += dt2 * instaVol * press[1] / (NkBT*tb2); |
| 239 |
eta[2] += dt2 * instaVol * press[2] / (NkBT*tb2); |
| 240 |
eta[3] += dt2 * instaVol * press[3] / (NkBT*tb2); |
| 241 |
eta[4] += dt2 * instaVol * (press[4] - targetPressure) / (NkBT*tb2); |
| 242 |
eta[5] += dt2 * instaVol * press[5] / (NkBT*tb2); |
| 243 |
eta[6] += dt2 * instaVol * press[6] / (NkBT*tb2); |
| 244 |
eta[7] += dt2 * instaVol * press[7] / (NkBT*tb2); |
| 245 |
eta[8] += dt2 * instaVol * (press[8] - targetPressure) / (NkBT*tb2); |
| 246 |
|
| 247 |
for( i=0; i<nAtoms; i++ ){ |
| 248 |
atomIndex = i * 3; |
| 249 |
|
| 250 |
// velocity half step |
| 251 |
|
| 252 |
vx = vel[atomIndex]; |
| 253 |
vy = vel[atomIndex+1]; |
| 254 |
vz = vel[atomIndex+2]; |
| 255 |
|
| 256 |
scx = (chi + eta[0])*vx + eta[1]*vy + eta[2]*vz; |
| 257 |
scy = eta[3]*vx + (chi + eta[4])*vy + eta[5]*vz; |
| 258 |
scz = eta[6]*vx + eta[7]*vy + (chi + eta[8])*vz; |
| 259 |
|
| 260 |
vx += dt2 * ((frc[atomIndex] /atoms[i]->getMass())*eConvert - scx); |
| 261 |
vy += dt2 * ((frc[atomIndex+1]/atoms[i]->getMass())*eConvert - scy); |
| 262 |
vz += dt2 * ((frc[atomIndex+2]/atoms[i]->getMass())*eConvert - scz); |
| 263 |
|
| 264 |
vel[atomIndex] = vx; |
| 265 |
vel[atomIndex+1] = vy; |
| 266 |
vel[atomIndex+2] = vz; |
| 267 |
|
| 268 |
if( atoms[i]->isDirectional() ){ |
| 269 |
|
| 270 |
dAtom = (DirectionalAtom *)atoms[i]; |
| 271 |
|
| 272 |
// get and convert the torque to body frame |
| 273 |
|
| 274 |
Tb[0] = dAtom->getTx(); |
| 275 |
Tb[1] = dAtom->getTy(); |
| 276 |
Tb[2] = dAtom->getTz(); |
| 277 |
|
| 278 |
dAtom->lab2Body( Tb ); |
| 279 |
|
| 280 |
// get the angular momentum, and complete the angular momentum |
| 281 |
// half step |
| 282 |
|
| 283 |
ji[0] = dAtom->getJx(); |
| 284 |
ji[1] = dAtom->getJy(); |
| 285 |
ji[2] = dAtom->getJz(); |
| 286 |
|
| 287 |
ji[0] += dt2 * (Tb[0] * eConvert - ji[0]*chi); |
| 288 |
ji[1] += dt2 * (Tb[1] * eConvert - ji[1]*chi); |
| 289 |
ji[2] += dt2 * (Tb[2] * eConvert - ji[2]*chi); |
| 290 |
|
| 291 |
dAtom->setJx( ji[0] ); |
| 292 |
dAtom->setJy( ji[1] ); |
| 293 |
dAtom->setJz( ji[2] ); |
| 294 |
} |
| 295 |
} |
| 296 |
} |
| 297 |
|
| 298 |
int NPTf::readyCheck() { |
| 299 |
|
| 300 |
// First check to see if we have a target temperature. |
| 301 |
// Not having one is fatal. |
| 302 |
|
| 303 |
if (!have_target_temp) { |
| 304 |
sprintf( painCave.errMsg, |
| 305 |
"NPTf error: You can't use the NPTf integrator\n" |
| 306 |
" without a targetTemp!\n" |
| 307 |
); |
| 308 |
painCave.isFatal = 1; |
| 309 |
simError(); |
| 310 |
return -1; |
| 311 |
} |
| 312 |
|
| 313 |
if (!have_target_pressure) { |
| 314 |
sprintf( painCave.errMsg, |
| 315 |
"NPTf error: You can't use the NPTf integrator\n" |
| 316 |
" without a targetPressure!\n" |
| 317 |
); |
| 318 |
painCave.isFatal = 1; |
| 319 |
simError(); |
| 320 |
return -1; |
| 321 |
} |
| 322 |
|
| 323 |
// We must set tauThermostat. |
| 324 |
|
| 325 |
if (!have_tau_thermostat) { |
| 326 |
sprintf( painCave.errMsg, |
| 327 |
"NPTf error: If you use the NPTf\n" |
| 328 |
" integrator, you must set tauThermostat.\n"); |
| 329 |
painCave.isFatal = 1; |
| 330 |
simError(); |
| 331 |
return -1; |
| 332 |
} |
| 333 |
|
| 334 |
// We must set tauBarostat. |
| 335 |
|
| 336 |
if (!have_tau_barostat) { |
| 337 |
sprintf( painCave.errMsg, |
| 338 |
"NPTf error: If you use the NPTf\n" |
| 339 |
" integrator, you must set tauBarostat.\n"); |
| 340 |
painCave.isFatal = 1; |
| 341 |
simError(); |
| 342 |
return -1; |
| 343 |
} |
| 344 |
|
| 345 |
// We need NkBT a lot, so just set it here: |
| 346 |
|
| 347 |
NkBT = (double)info->ndf * kB * targetTemp; |
| 348 |
|
| 349 |
return 1; |
| 350 |
} |