ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/trunk/OOPSE/libmdtools/NPTf.cpp
(Generate patch)

Comparing trunk/OOPSE/libmdtools/NPTf.cpp (file contents):
Revision 576 by gezelter, Tue Jul 8 21:10:16 2003 UTC vs.
Revision 853 by mmeineke, Thu Nov 6 19:11:38 2003 UTC

# Line 1 | Line 1
1 + #include <math.h>
2   #include "Atom.hpp"
3   #include "SRI.hpp"
4   #include "AbstractClasses.hpp"
# Line 6 | Line 7
7   #include "Thermo.hpp"
8   #include "ReadWrite.hpp"
9   #include "Integrator.hpp"
10 < #include "simError.h"
10 > #include "simError.h"
11  
12 + #ifdef IS_MPI
13 + #include "mpiSimulation.hpp"
14 + #endif
15  
16 < // Basic isotropic thermostating and barostating via the Melchionna
16 > // Basic non-isotropic thermostating and barostating via the Melchionna
17   // modification of the Hoover algorithm:
18   //
19   //    Melchionna, S., Ciccotti, G., and Holian, B. L., 1993,
20 < //       Molec. Phys., 78, 533.
20 > //       Molec. Phys., 78, 533.
21   //
22   //           and
23 < //
23 > //
24   //    Hoover, W. G., 1986, Phys. Rev. A, 34, 2499.
25  
26 < NPTi::NPTi ( SimInfo *theInfo, ForceFields* the_ff):
27 <  Integrator( theInfo, the_ff )
26 > template<typename T> NPTf<T>::NPTf ( SimInfo *theInfo, ForceFields* the_ff):
27 >  T( theInfo, the_ff )
28   {
29 <  int i;
30 <  chi = 0.0;
31 <  for(i = 0; i < 9; i++) eta[i] = 0.0;
32 <  have_tau_thermostat = 0;
29 <  have_tau_barostat = 0;
30 <  have_target_temp = 0;
31 <  have_target_pressure = 0;
32 < }
29 >  GenericData* data;
30 >  DoubleArrayData * etaValue;
31 >  vector<double> etaArray;
32 >  int i,j;
33  
34 < void NPTi::moveA() {
35 <  
36 <  int i,j,k;
37 <  int atomIndex, aMatIndex;
38 <  DirectionalAtom* dAtom;
39 <  double Tb[3];
40 <  double ji[3];
41 <  double rj[3];
42 <  double instaTemp, instaPress, instaVol;
43 <  double tt2, tb2;
44 <  double angle;
34 >  for(i = 0; i < 3; i++){
35 >    for (j = 0; j < 3; j++){
36  
37 <  tt2 = tauThermostat * tauThermostat;
38 <  tb2 = tauBarostat * tauBarostat;
37 >      eta[i][j] = 0.0;
38 >      oldEta[i][j] = 0.0;
39 >    }
40 >  }
41  
42 <  instaTemp = tStats->getTemperature();
43 <  instaPress = tStats->getPressure();
44 <  instaVol = tStats->getVolume();
45 <  
46 <  // first evolve chi a half step
47 <  
48 <  chi += dt2 * ( instaTemp / targetTemp - 1.0) / tt2;
49 <  
50 <  for (i = 0; i < 9; i++) {
51 <    eta[i] += dt2 * ( instaVol * (sigma[i] - targetPressure*identMat[i]))
52 <      / (NkBT*tb2));
42 >    // retrieve eta array from simInfo if it exists
43 >    data = info->getProperty(ETAVALUE_ID);
44 >    if(data){
45 >      etaValue = dynamic_cast<DoubleArrayData*>(data);
46 >
47 >      if(etaValue){
48 >        etaArray = etaValue->getData();
49 >
50 >        for(i = 0; i < 3; i++){
51 >          for (j = 0; j < 3; j++){
52 >            eta[i][j] = etaArray[3*i+j];
53 >            oldEta[i][j] = eta[i][j];
54 >          }
55 >        }
56 >
57 >      }
58 >    }
59 >
60   }
61  
62 <  for( i=0; i<nAtoms; i++ ){
63 <    atomIndex = i * 3;
64 <    aMatIndex = i * 9;
65 <    
66 <    // velocity half step
67 <    for( j=atomIndex; j<(atomIndex+3); j++ )
68 <      vel[j] += dt2 * ((frc[j]/atoms[i]->getMass())*eConvert
69 <                       - vel[j]*(chi+eta));
62 > template<typename T> NPTf<T>::~NPTf() {
63  
64 <    // position whole step    
64 >  // empty for now
65 > }
66  
67 <    for( j=atomIndex; j<(atomIndex+3); j=j+3 ) {
74 <      rj[0] = pos[j];
75 <      rj[1] = pos[j+1];
76 <      rj[2] = pos[j+2];
67 > template<typename T> void NPTf<T>::resetIntegrator() {
68  
69 <      info->wrapVector(rj);
69 >  int i, j;
70  
71 <      pos[j] += dt * (vel[j] + eta*rj[0]);
72 <      pos[j+1] += dt * (vel[j+1] + eta*rj[1]);
73 <      pos[j+2] += dt * (vel[j+2] + eta*rj[2]);
71 >  for(i = 0; i < 3; i++)
72 >    for (j = 0; j < 3; j++)
73 >      eta[i][j] = 0.0;
74 >
75 >  T::resetIntegrator();
76 > }
77 >
78 > template<typename T> void NPTf<T>::evolveEtaA() {
79 >
80 >  int i, j;
81 >
82 >  for(i = 0; i < 3; i ++){
83 >    for(j = 0; j < 3; j++){
84 >      if( i == j)
85 >        eta[i][j] += dt2 *  instaVol *
86 >          (press[i][j] - targetPressure/p_convert) / (NkBT*tb2);
87 >      else
88 >        eta[i][j] += dt2 * instaVol * press[i][j] / (NkBT*tb2);
89      }
90 +  }
91  
92 <    // Scale the box after all the positions have been moved:
92 >  for(i = 0; i < 3; i++)
93 >    for (j = 0; j < 3; j++)
94 >      oldEta[i][j] = eta[i][j];
95 > }
96  
97 <    info->scaleBox(exp(dt*eta));
88 <  
89 <    if( atoms[i]->isDirectional() ){
97 > template<typename T> void NPTf<T>::evolveEtaB() {
98  
99 <      dAtom = (DirectionalAtom *)atoms[i];
92 <          
93 <      // get and convert the torque to body frame
94 <      
95 <      Tb[0] = dAtom->getTx();
96 <      Tb[1] = dAtom->getTy();
97 <      Tb[2] = dAtom->getTz();
98 <      
99 <      dAtom->lab2Body( Tb );
100 <      
101 <      // get the angular momentum, and propagate a half step
99 >  int i,j;
100  
101 <      ji[0] = dAtom->getJx();
102 <      ji[1] = dAtom->getJy();
103 <      ji[2] = dAtom->getJz();
104 <      
105 <      ji[0] += dt2 * (Tb[0] * eConvert - ji[0]*chi);
106 <      ji[1] += dt2 * (Tb[1] * eConvert - ji[1]*chi);
107 <      ji[2] += dt2 * (Tb[2] * eConvert - ji[2]*chi);
108 <      
109 <      // use the angular velocities to propagate the rotation matrix a
110 <      // full time step
111 <      
112 <      // rotate about the x-axis      
115 <      angle = dt2 * ji[0] / dAtom->getIxx();
116 <      this->rotate( 1, 2, angle, ji, &Amat[aMatIndex] );
117 <      
118 <      // rotate about the y-axis
119 <      angle = dt2 * ji[1] / dAtom->getIyy();
120 <      this->rotate( 2, 0, angle, ji, &Amat[aMatIndex] );
121 <      
122 <      // rotate about the z-axis
123 <      angle = dt * ji[2] / dAtom->getIzz();
124 <      this->rotate( 0, 1, angle, ji, &Amat[aMatIndex] );
125 <      
126 <      // rotate about the y-axis
127 <      angle = dt2 * ji[1] / dAtom->getIyy();
128 <      this->rotate( 2, 0, angle, ji, &Amat[aMatIndex] );
129 <      
130 <       // rotate about the x-axis
131 <      angle = dt2 * ji[0] / dAtom->getIxx();
132 <      this->rotate( 1, 2, angle, ji, &Amat[aMatIndex] );
133 <      
134 <      dAtom->setJx( ji[0] );
135 <      dAtom->setJy( ji[1] );
136 <      dAtom->setJz( ji[2] );
101 >  for(i = 0; i < 3; i++)
102 >    for (j = 0; j < 3; j++)
103 >      prevEta[i][j] = eta[i][j];
104 >
105 >  for(i = 0; i < 3; i ++){
106 >    for(j = 0; j < 3; j++){
107 >      if( i == j) {
108 >        eta[i][j] = oldEta[i][j] + dt2 *  instaVol *
109 >          (press[i][j] - targetPressure/p_convert) / (NkBT*tb2);
110 >      } else {
111 >        eta[i][j] = oldEta[i][j] + dt2 * instaVol * press[i][j] / (NkBT*tb2);
112 >      }
113      }
138    
114    }
115   }
116  
117 < void NPTi::moveB( void ){
118 <  int i,j,k;
119 <  int atomIndex;
145 <  DirectionalAtom* dAtom;
146 <  double Tb[3];
147 <  double ji[3];
148 <  double instaTemp, instaPress, instaVol;
149 <  double tt2, tb2;
150 <  
151 <  tt2 = tauThermostat * tauThermostat;
152 <  tb2 = tauBarostat * tauBarostat;
117 > template<typename T> void NPTf<T>::getVelScaleA(double sc[3], double vel[3]) {
118 >  int i,j;
119 >  double vScale[3][3];
120  
121 <  instaTemp = tStats->getTemperature();
122 <  instaPress = tStats->getPressure();
123 <  instaVol = tStats->getVolume();
121 >  for (i = 0; i < 3; i++ ) {
122 >    for (j = 0; j < 3; j++ ) {
123 >      vScale[i][j] = eta[i][j];
124  
125 <  chi += dt2 * ( instaTemp / targetTemp - 1.0) / tt2;
126 <  eta += dt2 * ( instaVol * (instaPress - targetPressure) / (NkBT*tb2));
127 <  
161 <  for( i=0; i<nAtoms; i++ ){
162 <    atomIndex = i * 3;
163 <    
164 <    // velocity half step
165 <    for( j=atomIndex; j<(atomIndex+3); j++ )
166 <    for( j=atomIndex; j<(atomIndex+3); j++ )
167 <      vel[j] += dt2 * ((frc[j]/atoms[i]->getMass())*eConvert
168 <                       - vel[j]*(chi+eta));
169 <    
170 <    if( atoms[i]->isDirectional() ){
171 <      
172 <      dAtom = (DirectionalAtom *)atoms[i];
173 <      
174 <      // get and convert the torque to body frame
175 <      
176 <      Tb[0] = dAtom->getTx();
177 <      Tb[1] = dAtom->getTy();
178 <      Tb[2] = dAtom->getTz();
179 <      
180 <      dAtom->lab2Body( Tb );
181 <      
182 <      // get the angular momentum, and complete the angular momentum
183 <      // half step
184 <      
185 <      ji[0] = dAtom->getJx();
186 <      ji[1] = dAtom->getJy();
187 <      ji[2] = dAtom->getJz();
188 <      
189 <      ji[0] += dt2 * (Tb[0] * eConvert - ji[0]*chi);
190 <      ji[1] += dt2 * (Tb[1] * eConvert - ji[1]*chi);
191 <      ji[2] += dt2 * (Tb[2] * eConvert - ji[2]*chi);
192 <      
193 <      dAtom->setJx( ji[0] );
194 <      dAtom->setJy( ji[1] );
195 <      dAtom->setJz( ji[2] );
125 >      if (i == j) {
126 >        vScale[i][j] += chi;
127 >      }
128      }
129    }
130 +
131 +  info->matVecMul3( vScale, vel, sc );
132   }
133  
134 < int NPTi::readyCheck() {
135 <
136 <  // First check to see if we have a target temperature.
137 <  // Not having one is fatal.
138 <  
139 <  if (!have_target_temp) {
140 <    sprintf( painCave.errMsg,
141 <             "NPTi error: You can't use the NPTi integrator\n"
142 <             "   without a targetTemp!\n"
143 <             );
144 <    painCave.isFatal = 1;
145 <    simError();
146 <    return -1;
134 > template<typename T> void NPTf<T>::getVelScaleB(double sc[3], int index ){
135 >  int i,j;
136 >  double myVel[3];
137 >  double vScale[3][3];
138 >
139 >  for (i = 0; i < 3; i++ ) {
140 >    for (j = 0; j < 3; j++ ) {
141 >      vScale[i][j] = eta[i][j];
142 >
143 >      if (i == j) {
144 >        vScale[i][j] += chi;
145 >      }
146 >    }
147    }
148  
149 <  if (!have_target_pressure) {
150 <    sprintf( painCave.errMsg,
151 <             "NPTi error: You can't use the NPTi integrator\n"
152 <             "   without a targetPressure!\n"
153 <             );
154 <    painCave.isFatal = 1;
155 <    simError();
156 <    return -1;
149 >  for (j = 0; j < 3; j++)
150 >    myVel[j] = oldVel[3*index + j];
151 >
152 >  info->matVecMul3( vScale, myVel, sc );
153 > }
154 >
155 > template<typename T> void NPTf<T>::getPosScale(double pos[3], double COM[3],
156 >                                               int index, double sc[3]){
157 >  int j;
158 >  double rj[3];
159 >
160 >  for(j=0; j<3; j++)
161 >    rj[j] = ( oldPos[index*3+j] + pos[j]) / 2.0 - COM[j];
162 >
163 >  info->matVecMul3( eta, rj, sc );
164 > }
165 >
166 > template<typename T> void NPTf<T>::scaleSimBox( void ){
167 >
168 >  int i,j,k;
169 >  double scaleMat[3][3];
170 >  double eta2ij;
171 >  double bigScale, smallScale, offDiagMax;
172 >  double hm[3][3], hmnew[3][3];
173 >
174 >
175 >
176 >  // Scale the box after all the positions have been moved:
177 >
178 >  // Use a taylor expansion for eta products:  Hmat = Hmat . exp(dt * etaMat)
179 >  //  Hmat = Hmat . ( Ident + dt * etaMat  + dt^2 * etaMat*etaMat / 2)
180 >
181 >  bigScale = 1.0;
182 >  smallScale = 1.0;
183 >  offDiagMax = 0.0;
184 >
185 >  for(i=0; i<3; i++){
186 >    for(j=0; j<3; j++){
187 >
188 >      // Calculate the matrix Product of the eta array (we only need
189 >      // the ij element right now):
190 >
191 >      eta2ij = 0.0;
192 >      for(k=0; k<3; k++){
193 >        eta2ij += eta[i][k] * eta[k][j];
194 >      }
195 >
196 >      scaleMat[i][j] = 0.0;
197 >      // identity matrix (see above):
198 >      if (i == j) scaleMat[i][j] = 1.0;
199 >      // Taylor expansion for the exponential truncated at second order:
200 >      scaleMat[i][j] += dt*eta[i][j]  + 0.5*dt*dt*eta2ij;
201 >
202 >      if (i != j)
203 >        if (fabs(scaleMat[i][j]) > offDiagMax)
204 >          offDiagMax = fabs(scaleMat[i][j]);
205 >    }
206 >
207 >    if (scaleMat[i][i] > bigScale) bigScale = scaleMat[i][i];
208 >    if (scaleMat[i][i] < smallScale) smallScale = scaleMat[i][i];
209    }
210 <  
211 <  // We must set tauThermostat.
226 <  
227 <  if (!have_tau_thermostat) {
210 >
211 >  if ((bigScale > 1.01) || (smallScale < 0.99)) {
212      sprintf( painCave.errMsg,
213 <             "NPTi error: If you use the NPTi\n"
214 <             "   integrator, you must set tauThermostat.\n");
213 >             "NPTf error: Attempting a Box scaling of more than 1 percent.\n"
214 >             " Check your tauBarostat, as it is probably too small!\n\n"
215 >             " scaleMat = [%lf\t%lf\t%lf]\n"
216 >             "            [%lf\t%lf\t%lf]\n"
217 >             "            [%lf\t%lf\t%lf]\n",
218 >             scaleMat[0][0],scaleMat[0][1],scaleMat[0][2],
219 >             scaleMat[1][0],scaleMat[1][1],scaleMat[1][2],
220 >             scaleMat[2][0],scaleMat[2][1],scaleMat[2][2]);
221      painCave.isFatal = 1;
222      simError();
223 <    return -1;
234 <  }    
235 <
236 <  // We must set tauBarostat.
237 <  
238 <  if (!have_tau_barostat) {
223 >  } else if (offDiagMax > 0.01) {
224      sprintf( painCave.errMsg,
225 <             "NPTi error: If you use the NPTi\n"
226 <             "   integrator, you must set tauBarostat.\n");
225 >             "NPTf error: Attempting an off-diagonal Box scaling of more than 1 percent.\n"
226 >             " Check your tauBarostat, as it is probably too small!\n\n"
227 >             " scaleMat = [%lf\t%lf\t%lf]\n"
228 >             "            [%lf\t%lf\t%lf]\n"
229 >             "            [%lf\t%lf\t%lf]\n",
230 >             scaleMat[0][0],scaleMat[0][1],scaleMat[0][2],
231 >             scaleMat[1][0],scaleMat[1][1],scaleMat[1][2],
232 >             scaleMat[2][0],scaleMat[2][1],scaleMat[2][2]);
233      painCave.isFatal = 1;
234      simError();
235 <    return -1;
236 <  }    
235 >  } else {
236 >    info->getBoxM(hm);
237 >    info->matMul3(hm, scaleMat, hmnew);
238 >    info->setBoxM(hmnew);
239 >  }
240 > }
241  
242 <  // We need NkBT a lot, so just set it here:
242 > template<typename T> bool NPTf<T>::etaConverged() {
243 >  int i;
244 >  double diffEta, sumEta;
245  
246 <  NkBT = (double)info->ndf * kB * targetTemp;
246 >  sumEta = 0;
247 >  for(i = 0; i < 3; i++)
248 >    sumEta += pow(prevEta[i][i] - eta[i][i], 2);
249  
250 <  return 1;
250 >  diffEta = sqrt( sumEta / 3.0 );
251 >
252 >  return ( diffEta <= etaTolerance );
253   }
254 +
255 + template<typename T> double NPTf<T>::getConservedQuantity(void){
256 +
257 +  double conservedQuantity;
258 +  double totalEnergy;
259 +  double thermostat_kinetic;
260 +  double thermostat_potential;
261 +  double barostat_kinetic;
262 +  double barostat_potential;
263 +  double trEta;
264 +  double a[3][3], b[3][3];
265 +
266 +  totalEnergy = tStats->getTotalE();
267 +
268 +  thermostat_kinetic = fkBT * tt2 * chi * chi /
269 +    (2.0 * eConvert);
270 +
271 +  thermostat_potential = fkBT* integralOfChidt / eConvert;
272 +
273 +  info->transposeMat3(eta, a);
274 +  info->matMul3(a, eta, b);
275 +  trEta = info->matTrace3(b);
276 +
277 +  barostat_kinetic = NkBT * tb2 * trEta /
278 +    (2.0 * eConvert);
279 +
280 +  barostat_potential = (targetPressure * tStats->getVolume() / p_convert) /
281 +    eConvert;
282 +
283 +  conservedQuantity = totalEnergy + thermostat_kinetic + thermostat_potential +
284 +    barostat_kinetic + barostat_potential;
285 +
286 +  return conservedQuantity;
287 +
288 + }
289 +
290 + template<typename T> string NPTf<T>::getAdditionalParameters(void){
291 +  string parameters;
292 +  const int BUFFERSIZE = 2000; // size of the read buffer
293 +  char buffer[BUFFERSIZE];
294 +
295 +  sprintf(buffer,"\t%G\t%G;", chi, integralOfChidt);
296 +  parameters += buffer;
297 +
298 +  for(int i = 0; i < 3; i++){
299 +    sprintf(buffer,"\t%G\t%G\t%G;", eta[i][0], eta[i][1], eta[i][2]);
300 +    parameters += buffer;
301 +  }
302 +
303 +  return parameters;
304 +
305 + }

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines