ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/trunk/OOPSE/libmdtools/NPTf.cpp
(Generate patch)

Comparing trunk/OOPSE/libmdtools/NPTf.cpp (file contents):
Revision 767 by tim, Tue Sep 16 20:02:11 2003 UTC vs.
Revision 778 by mmeineke, Fri Sep 19 20:00:27 2003 UTC

# Line 9 | Line 9
9   #include "Integrator.hpp"
10   #include "simError.h"
11  
12 + #ifdef IS_MPI
13 + #include "mpiSimulation.hpp"
14 + #endif
15  
16   // Basic non-isotropic thermostating and barostating via the Melchionna
17   // modification of the Hoover algorithm:
# Line 48 | Line 51 | template<typename T> NPTf<T>::NPTf ( SimInfo *theInfo,
51   #else
52    Nparticles = theInfo->n_atoms;
53   #endif
54 +
55   }
56  
57   template<typename T> NPTf<T>::~NPTf() {
# Line 57 | Line 61 | template<typename T> void NPTf<T>::moveA() {
61   }
62  
63   template<typename T> void NPTf<T>::moveA() {
64 <  
64 >
65 >  // new version of NPTf
66    int i, j, k;
67    DirectionalAtom* dAtom;
68    double Tb[3], ji[3];
69 <  double A[3][3], I[3][3];
70 <  double angle, mass;
69 >
70 >  double mass;
71    double vel[3], pos[3], frc[3];
72  
73    double rj[3];
# Line 105 | Line 110 | template<typename T> void NPTf<T>::moveA() {
110      info->matVecMul3( vScale, vel, sc );
111  
112      for (j=0; j < 3; j++) {
113 <      // velocity half step  (use chi from previous step here):
113 >      // velocity half step
114        vel[j] += dt2 * ((frc[j]  / mass) * eConvert - sc[j]);
110  
115      }
116  
117      atoms[i]->setVel( vel );
# Line 128 | Line 132 | template<typename T> void NPTf<T>::moveA() {
132        for (j=0; j < 3; j++)
133          ji[j] += dt2 * (Tb[j] * eConvert - ji[j]*chi);
134        
135 <      // use the angular velocities to propagate the rotation matrix a
136 <      // full time step
133 <
134 <      dAtom->getA(A);
135 <      dAtom->getI(I);
136 <    
137 <      // rotate about the x-axis      
138 <      angle = dt2 * ji[0] / I[0][0];
139 <      this->rotate( 1, 2, angle, ji, A );
140 <
141 <      // rotate about the y-axis
142 <      angle = dt2 * ji[1] / I[1][1];
143 <      this->rotate( 2, 0, angle, ji, A );
144 <      
145 <      // rotate about the z-axis
146 <      angle = dt * ji[2] / I[2][2];
147 <      this->rotate( 0, 1, angle, ji, A);
148 <      
149 <      // rotate about the y-axis
150 <      angle = dt2 * ji[1] / I[1][1];
151 <      this->rotate( 2, 0, angle, ji, A );
152 <      
153 <       // rotate about the x-axis
154 <      angle = dt2 * ji[0] / I[0][0];
155 <      this->rotate( 1, 2, angle, ji, A );
156 <      
135 >      this->rotationPropagation( dAtom, ji );
136 >  
137        dAtom->setJ( ji );
158      dAtom->setA( A  );    
138      }    
139    }
140  
141    // advance chi half step
142    chi += dt2 * ( instaTemp / targetTemp - 1.0) / tt2;
143  
144 <  //calculate the integral of chidt
144 >  // calculate the integral of chidt
145    integralOfChidt += dt2*chi;
146  
147 <  //advance eta half step
147 >  // advance eta half step
148 >
149    for(i = 0; i < 3; i ++)
150      for(j = 0; j < 3; j++){
151        if( i == j)
152          eta[i][j] += dt2 *  instaVol *
153            (press[i][j] - targetPressure/p_convert) / (NkBT*tb2);
154        else
155 <        eta[i][j] += dt2 * instaVol * press[i][j] / ( NkBT*tb2);
155 >        eta[i][j] += dt2 * instaVol * press[i][j] / (NkBT*tb2);
156      }
157      
158    //save the old positions
# Line 203 | Line 183 | template<typename T> void NPTf<T>::moveA() {
183  
184      }
185  
186 +    if (nConstrained) {
187 +      constrainA();
188 +    }
189    }  
190  
191  
# Line 275 | Line 258 | template<typename T> void NPTf<T>::moveB( void ){
258  
259   template<typename T> void NPTf<T>::moveB( void ){
260  
261 +  //new version of NPTf
262    int i, j, k;
263    DirectionalAtom* dAtom;
264    double Tb[3], ji[3];
265 <  double vel[3], frc[3];
265 >  double vel[3], myVel[3], frc[3];
266    double mass;
267  
268    double instaTemp, instaPress, instaVol;
# Line 286 | Line 270 | template<typename T> void NPTf<T>::moveB( void ){
270    double sc[3];
271    double press[3][3], vScale[3][3];
272    double oldChi, prevChi;
273 <  double oldEta[3][3], preEta[3][3], diffEta;
273 >  double oldEta[3][3], prevEta[3][3], diffEta;
274    
275    tt2 = tauThermostat * tauThermostat;
276    tb2 = tauBarostat * tauBarostat;
277  
294
278    // Set things up for the iteration:
279  
280    oldChi = chi;
# Line 335 | Line 318 | template<typename T> void NPTf<T>::moveB( void ){
318      
319      for(i = 0; i < 3; i++)
320        for(j = 0; j < 3; j++)
321 <        preEta[i][j] = eta[i][j];
321 >        prevEta[i][j] = eta[i][j];
322  
323      //advance eta half step and calculate scale factor for velocity
324 +
325      for(i = 0; i < 3; i ++)
326        for(j = 0; j < 3; j++){
327 <        if( i == j){
327 >        if( i == j) {
328            eta[i][j] = oldEta[i][j] + dt2 *  instaVol *
329 <            (press[i][j] - targetPressure/p_convert) / (NkBT*tb2);
329 >            (press[i][j] - targetPressure/p_convert) / (NkBT*tb2);
330            vScale[i][j] = eta[i][j] + chi;
331 <        }
348 <        else
349 <        {
331 >        } else {
332            eta[i][j] = oldEta[i][j] + dt2 * instaVol * press[i][j] / (NkBT*tb2);
333            vScale[i][j] = eta[i][j];
334          }
335 <    }      
336 <
355 <    //advance velocity half step
335 >      }  
336 >    
337      for( i=0; i<nAtoms; i++ ){
338  
339        atoms[i]->getFrc( frc );
340        atoms[i]->getVel(vel);
341        
342        mass = atoms[i]->getMass();
343 +    
344 +      for (j = 0; j < 3; j++)
345 +        myVel[j] = oldVel[3*i + j];
346        
347 <      info->matVecMul3( vScale, vel, sc );
348 <
347 >      info->matVecMul3( vScale, myVel, sc );
348 >      
349 >      // velocity half step
350        for (j=0; j < 3; j++) {
351          // velocity half step  (use chi from previous step here):
352          vel[j] = oldVel[3*i+j] + dt2 * ((frc[j]  / mass) * eConvert - sc[j]);
# Line 385 | Line 370 | template<typename T> void NPTf<T>::moveB( void ){
370        }
371      }
372  
373 +    if (nConstrained) {
374 +      constrainB();
375 +    }
376      
377      diffEta = 0;
378      for(i = 0; i < 3; i++)
379 <      diffEta += pow(preEta[i][i] - eta[i][i], 2);    
379 >      diffEta += pow(prevEta[i][i] - eta[i][i], 2);    
380      
381      if (fabs(prevChi - chi) <= chiTolerance && sqrt(diffEta / 3) <= etaTolerance)
382        break;
383    }
384  
385 <  //calculate integral of chida
385 >  //calculate integral of chidt
386    integralOfChidt += dt2*chi;
399
387    
388   }
389  
# Line 462 | Line 449 | template<typename T> int NPTf<T>::readyCheck() {
449      return -1;
450    }    
451  
452 <  // We need NkBT a lot, so just set it here:
453 <
452 >  
453 >  // We need NkBT a lot, so just set it here: This is the RAW number
454 >  // of particles, so no subtraction or addition of constraints or
455 >  // orientational degrees of freedom:
456 >  
457    NkBT = (double)Nparticles * kB * targetTemp;
458 +  
459 +  // fkBT is used because the thermostat operates on more degrees of freedom
460 +  // than the barostat (when there are particles with orientational degrees
461 +  // of freedom).  ndf = 3 * (n_atoms + n_oriented -1) - n_constraint - nZcons
462 +  
463    fkBT = (double)info->ndf * kB * targetTemp;
464  
465    return 1;
# Line 473 | Line 468 | template<typename T> double NPTf<T>::getConservedQuant
468   template<typename T> double NPTf<T>::getConservedQuantity(void){
469  
470    double conservedQuantity;
471 <  double tb2;
472 <  double trEta;  
473 <  double U;
474 <  double thermo;
475 <  double integral;
476 <  double baro;
477 <  double PV;
471 >  double Energy;
472 >  double thermostat_kinetic;
473 >  double thermostat_potential;
474 >  double barostat_kinetic;
475 >  double barostat_potential;
476 >  double trEta;
477 >  double a[3][3], b[3][3];
478  
479 <  U = tStats->getTotalE();
485 <  thermo = (fkBT * tauThermostat * tauThermostat * chi * chi / 2.0) / eConvert;
479 >  Energy = tStats->getTotalE();
480  
481 <  tb2 = tauBarostat * tauBarostat;
482 <  trEta = info->matTrace3(eta);
489 <  baro = ((double)info->ndfTrans * kB * targetTemp * tb2 * trEta * trEta / 2.0) / eConvert;
481 >  thermostat_kinetic = fkBT* tauThermostat * tauThermostat * chi * chi /
482 >    (2.0 * eConvert);
483  
484 <  integral = ((double)(info->ndf + 1) * kB * targetTemp * integralOfChidt) /eConvert;
484 >  thermostat_potential = fkBT* integralOfChidt / eConvert;
485  
486 <  PV = (targetPressure * tStats->getVolume() / p_convert) / eConvert;
486 >  info->transposeMat3(eta, a);
487 >  info->matMul3(a, eta, b);
488 >  trEta = info->matTrace3(b);
489  
490 +  barostat_kinetic = NkBT * tauBarostat * tauBarostat * trEta /
491 +    (2.0 * eConvert);
492 +  
493 +  barostat_potential = (targetPressure * tStats->getVolume() / p_convert) /
494 +    eConvert;
495  
496 +  conservedQuantity = Energy + thermostat_kinetic + thermostat_potential +
497 +    barostat_kinetic + barostat_potential;
498 +  
499    cout.width(8);
500    cout.precision(8);
498  
499  cout << info->getTime() << "\t"
500       << chi << "\t"
501       << trEta << "\t"
502       << U << "\t"
503       << thermo << "\t"
504       << baro << "\t"
505       << integral << "\t"
506       << PV << "\t"
507       << U+thermo+integral+PV+baro << endl;
501  
502 <  conservedQuantity = U+thermo+integral+PV+baro;
503 <  return conservedQuantity;
504 <  
502 >  cerr << info->getTime() << "\t" << Energy << "\t" << thermostat_kinetic <<
503 >      "\t" << thermostat_potential << "\t" << barostat_kinetic <<
504 >      "\t" << barostat_potential << "\t" << conservedQuantity << endl;
505 >
506 >  return conservedQuantity;
507   }

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines