ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/trunk/OOPSE/libmdtools/NPTf.cpp
Revision: 855
Committed: Thu Nov 6 22:01:37 2003 UTC (20 years, 8 months ago) by mmeineke
File size: 7322 byte(s)
Log Message:
added the following parameters to BASS:
   * useInitialExtendedSystemState
   * orthoBoxTolerance
   * useIntiTime => useInitialTime

File Contents

# Content
1 #include <math.h>
2 #include "Atom.hpp"
3 #include "SRI.hpp"
4 #include "AbstractClasses.hpp"
5 #include "SimInfo.hpp"
6 #include "ForceFields.hpp"
7 #include "Thermo.hpp"
8 #include "ReadWrite.hpp"
9 #include "Integrator.hpp"
10 #include "simError.h"
11
12 #ifdef IS_MPI
13 #include "mpiSimulation.hpp"
14 #endif
15
16 // Basic non-isotropic thermostating and barostating via the Melchionna
17 // modification of the Hoover algorithm:
18 //
19 // Melchionna, S., Ciccotti, G., and Holian, B. L., 1993,
20 // Molec. Phys., 78, 533.
21 //
22 // and
23 //
24 // Hoover, W. G., 1986, Phys. Rev. A, 34, 2499.
25
26 template<typename T> NPTf<T>::NPTf ( SimInfo *theInfo, ForceFields* the_ff):
27 T( theInfo, the_ff )
28 {
29 GenericData* data;
30 DoubleArrayData * etaValue;
31 vector<double> etaArray;
32 int i,j;
33
34 for(i = 0; i < 3; i++){
35 for (j = 0; j < 3; j++){
36
37 eta[i][j] = 0.0;
38 oldEta[i][j] = 0.0;
39 }
40 }
41
42
43 if( theInfo->useInitXSstate ){
44 // retrieve eta array from simInfo if it exists
45 data = info->getProperty(ETAVALUE_ID);
46 if(data){
47 etaValue = dynamic_cast<DoubleArrayData*>(data);
48
49 if(etaValue){
50 etaArray = etaValue->getData();
51
52 for(i = 0; i < 3; i++){
53 for (j = 0; j < 3; j++){
54 eta[i][j] = etaArray[3*i+j];
55 oldEta[i][j] = eta[i][j];
56 }
57 }
58 }
59 }
60 }
61
62 }
63
64 template<typename T> NPTf<T>::~NPTf() {
65
66 // empty for now
67 }
68
69 template<typename T> void NPTf<T>::resetIntegrator() {
70
71 int i, j;
72
73 for(i = 0; i < 3; i++)
74 for (j = 0; j < 3; j++)
75 eta[i][j] = 0.0;
76
77 T::resetIntegrator();
78 }
79
80 template<typename T> void NPTf<T>::evolveEtaA() {
81
82 int i, j;
83
84 for(i = 0; i < 3; i ++){
85 for(j = 0; j < 3; j++){
86 if( i == j)
87 eta[i][j] += dt2 * instaVol *
88 (press[i][j] - targetPressure/p_convert) / (NkBT*tb2);
89 else
90 eta[i][j] += dt2 * instaVol * press[i][j] / (NkBT*tb2);
91 }
92 }
93
94 for(i = 0; i < 3; i++)
95 for (j = 0; j < 3; j++)
96 oldEta[i][j] = eta[i][j];
97 }
98
99 template<typename T> void NPTf<T>::evolveEtaB() {
100
101 int i,j;
102
103 for(i = 0; i < 3; i++)
104 for (j = 0; j < 3; j++)
105 prevEta[i][j] = eta[i][j];
106
107 for(i = 0; i < 3; i ++){
108 for(j = 0; j < 3; j++){
109 if( i == j) {
110 eta[i][j] = oldEta[i][j] + dt2 * instaVol *
111 (press[i][j] - targetPressure/p_convert) / (NkBT*tb2);
112 } else {
113 eta[i][j] = oldEta[i][j] + dt2 * instaVol * press[i][j] / (NkBT*tb2);
114 }
115 }
116 }
117 }
118
119 template<typename T> void NPTf<T>::getVelScaleA(double sc[3], double vel[3]) {
120 int i,j;
121 double vScale[3][3];
122
123 for (i = 0; i < 3; i++ ) {
124 for (j = 0; j < 3; j++ ) {
125 vScale[i][j] = eta[i][j];
126
127 if (i == j) {
128 vScale[i][j] += chi;
129 }
130 }
131 }
132
133 info->matVecMul3( vScale, vel, sc );
134 }
135
136 template<typename T> void NPTf<T>::getVelScaleB(double sc[3], int index ){
137 int i,j;
138 double myVel[3];
139 double vScale[3][3];
140
141 for (i = 0; i < 3; i++ ) {
142 for (j = 0; j < 3; j++ ) {
143 vScale[i][j] = eta[i][j];
144
145 if (i == j) {
146 vScale[i][j] += chi;
147 }
148 }
149 }
150
151 for (j = 0; j < 3; j++)
152 myVel[j] = oldVel[3*index + j];
153
154 info->matVecMul3( vScale, myVel, sc );
155 }
156
157 template<typename T> void NPTf<T>::getPosScale(double pos[3], double COM[3],
158 int index, double sc[3]){
159 int j;
160 double rj[3];
161
162 for(j=0; j<3; j++)
163 rj[j] = ( oldPos[index*3+j] + pos[j]) / 2.0 - COM[j];
164
165 info->matVecMul3( eta, rj, sc );
166 }
167
168 template<typename T> void NPTf<T>::scaleSimBox( void ){
169
170 int i,j,k;
171 double scaleMat[3][3];
172 double eta2ij;
173 double bigScale, smallScale, offDiagMax;
174 double hm[3][3], hmnew[3][3];
175
176
177
178 // Scale the box after all the positions have been moved:
179
180 // Use a taylor expansion for eta products: Hmat = Hmat . exp(dt * etaMat)
181 // Hmat = Hmat . ( Ident + dt * etaMat + dt^2 * etaMat*etaMat / 2)
182
183 bigScale = 1.0;
184 smallScale = 1.0;
185 offDiagMax = 0.0;
186
187 for(i=0; i<3; i++){
188 for(j=0; j<3; j++){
189
190 // Calculate the matrix Product of the eta array (we only need
191 // the ij element right now):
192
193 eta2ij = 0.0;
194 for(k=0; k<3; k++){
195 eta2ij += eta[i][k] * eta[k][j];
196 }
197
198 scaleMat[i][j] = 0.0;
199 // identity matrix (see above):
200 if (i == j) scaleMat[i][j] = 1.0;
201 // Taylor expansion for the exponential truncated at second order:
202 scaleMat[i][j] += dt*eta[i][j] + 0.5*dt*dt*eta2ij;
203
204 if (i != j)
205 if (fabs(scaleMat[i][j]) > offDiagMax)
206 offDiagMax = fabs(scaleMat[i][j]);
207 }
208
209 if (scaleMat[i][i] > bigScale) bigScale = scaleMat[i][i];
210 if (scaleMat[i][i] < smallScale) smallScale = scaleMat[i][i];
211 }
212
213 if ((bigScale > 1.01) || (smallScale < 0.99)) {
214 sprintf( painCave.errMsg,
215 "NPTf error: Attempting a Box scaling of more than 1 percent.\n"
216 " Check your tauBarostat, as it is probably too small!\n\n"
217 " scaleMat = [%lf\t%lf\t%lf]\n"
218 " [%lf\t%lf\t%lf]\n"
219 " [%lf\t%lf\t%lf]\n",
220 scaleMat[0][0],scaleMat[0][1],scaleMat[0][2],
221 scaleMat[1][0],scaleMat[1][1],scaleMat[1][2],
222 scaleMat[2][0],scaleMat[2][1],scaleMat[2][2]);
223 painCave.isFatal = 1;
224 simError();
225 } else if (offDiagMax > 0.01) {
226 sprintf( painCave.errMsg,
227 "NPTf error: Attempting an off-diagonal Box scaling of more than 1 percent.\n"
228 " Check your tauBarostat, as it is probably too small!\n\n"
229 " scaleMat = [%lf\t%lf\t%lf]\n"
230 " [%lf\t%lf\t%lf]\n"
231 " [%lf\t%lf\t%lf]\n",
232 scaleMat[0][0],scaleMat[0][1],scaleMat[0][2],
233 scaleMat[1][0],scaleMat[1][1],scaleMat[1][2],
234 scaleMat[2][0],scaleMat[2][1],scaleMat[2][2]);
235 painCave.isFatal = 1;
236 simError();
237 } else {
238 info->getBoxM(hm);
239 info->matMul3(hm, scaleMat, hmnew);
240 info->setBoxM(hmnew);
241 }
242 }
243
244 template<typename T> bool NPTf<T>::etaConverged() {
245 int i;
246 double diffEta, sumEta;
247
248 sumEta = 0;
249 for(i = 0; i < 3; i++)
250 sumEta += pow(prevEta[i][i] - eta[i][i], 2);
251
252 diffEta = sqrt( sumEta / 3.0 );
253
254 return ( diffEta <= etaTolerance );
255 }
256
257 template<typename T> double NPTf<T>::getConservedQuantity(void){
258
259 double conservedQuantity;
260 double totalEnergy;
261 double thermostat_kinetic;
262 double thermostat_potential;
263 double barostat_kinetic;
264 double barostat_potential;
265 double trEta;
266 double a[3][3], b[3][3];
267
268 totalEnergy = tStats->getTotalE();
269
270 thermostat_kinetic = fkBT * tt2 * chi * chi /
271 (2.0 * eConvert);
272
273 thermostat_potential = fkBT* integralOfChidt / eConvert;
274
275 info->transposeMat3(eta, a);
276 info->matMul3(a, eta, b);
277 trEta = info->matTrace3(b);
278
279 barostat_kinetic = NkBT * tb2 * trEta /
280 (2.0 * eConvert);
281
282 barostat_potential = (targetPressure * tStats->getVolume() / p_convert) /
283 eConvert;
284
285 conservedQuantity = totalEnergy + thermostat_kinetic + thermostat_potential +
286 barostat_kinetic + barostat_potential;
287
288 return conservedQuantity;
289
290 }
291
292 template<typename T> string NPTf<T>::getAdditionalParameters(void){
293 string parameters;
294 const int BUFFERSIZE = 2000; // size of the read buffer
295 char buffer[BUFFERSIZE];
296
297 sprintf(buffer,"\t%G\t%G;", chi, integralOfChidt);
298 parameters += buffer;
299
300 for(int i = 0; i < 3; i++){
301 sprintf(buffer,"\t%G\t%G\t%G;", eta[i][0], eta[i][1], eta[i][2]);
302 parameters += buffer;
303 }
304
305 return parameters;
306
307 }