1 |
#include <cmath> |
2 |
#include "Atom.hpp" |
3 |
#include "Molecule.hpp" |
4 |
#include "SRI.hpp" |
5 |
#include "AbstractClasses.hpp" |
6 |
#include "SimInfo.hpp" |
7 |
#include "ForceFields.hpp" |
8 |
#include "Thermo.hpp" |
9 |
#include "ReadWrite.hpp" |
10 |
#include "Integrator.hpp" |
11 |
#include "simError.h" |
12 |
|
13 |
|
14 |
// Basic non-isotropic thermostating and barostating via the Melchionna |
15 |
// modification of the Hoover algorithm: |
16 |
// |
17 |
// Melchionna, S., Ciccotti, G., and Holian, B. L., 1993, |
18 |
// Molec. Phys., 78, 533. |
19 |
// |
20 |
// and |
21 |
// |
22 |
// Hoover, W. G., 1986, Phys. Rev. A, 34, 2499. |
23 |
|
24 |
// The NPTfm variant scales the molecular center-of-mass coordinates |
25 |
// instead of the atomic coordinates |
26 |
|
27 |
template<typename T> NPTfm<T>::NPTfm ( SimInfo *theInfo, ForceFields* the_ff): |
28 |
T( theInfo, the_ff ) |
29 |
{ |
30 |
int i, j; |
31 |
chi = 0.0; |
32 |
integralOfChidt = 0.0; |
33 |
|
34 |
for(i = 0; i < 3; i++) |
35 |
for (j = 0; j < 3; j++) |
36 |
eta[i][j] = 0.0; |
37 |
|
38 |
have_tau_thermostat = 0; |
39 |
have_tau_barostat = 0; |
40 |
have_target_temp = 0; |
41 |
have_target_pressure = 0; |
42 |
} |
43 |
|
44 |
template<typename T> void NPTfm<T>::moveA() { |
45 |
|
46 |
int i, j, k; |
47 |
DirectionalAtom* dAtom; |
48 |
double Tb[3], ji[3]; |
49 |
double A[3][3], I[3][3]; |
50 |
double angle, mass; |
51 |
double vel[3], pos[3], frc[3]; |
52 |
|
53 |
double rj[3]; |
54 |
double instaTemp, instaPress, instaVol; |
55 |
double tt2, tb2; |
56 |
double sc[3]; |
57 |
double eta2ij, smallScale, bigScale, offDiagMax; |
58 |
double press[3][3], vScale[3][3], hm[3][3], hmnew[3][3], scaleMat[3][3]; |
59 |
|
60 |
int nInMol; |
61 |
double rc[3]; |
62 |
|
63 |
nMols = info->n_mol; |
64 |
myMolecules = info->molecules; |
65 |
|
66 |
tt2 = tauThermostat * tauThermostat; |
67 |
tb2 = tauBarostat * tauBarostat; |
68 |
|
69 |
instaTemp = tStats->getTemperature(); |
70 |
tStats->getPressureTensor(press); |
71 |
instaVol = tStats->getVolume(); |
72 |
|
73 |
// first evolve chi a half step |
74 |
|
75 |
chi += dt2 * ( instaTemp / targetTemp - 1.0) / tt2; |
76 |
|
77 |
for (i = 0; i < 3; i++ ) { |
78 |
for (j = 0; j < 3; j++ ) { |
79 |
if (i == j) { |
80 |
|
81 |
eta[i][j] += dt2 * instaVol * |
82 |
(press[i][j] - targetPressure/p_convert) / (NkBT*tb2); |
83 |
|
84 |
vScale[i][j] = eta[i][j] + chi; |
85 |
|
86 |
} else { |
87 |
|
88 |
eta[i][j] += dt2 * instaVol * press[i][j] / (NkBT*tb2); |
89 |
|
90 |
vScale[i][j] = eta[i][j]; |
91 |
|
92 |
} |
93 |
} |
94 |
} |
95 |
|
96 |
|
97 |
for (i = 0; i < nMols; i++) { |
98 |
|
99 |
myMolecules[i].getCOM(rc); |
100 |
|
101 |
nInMol = myMolecules[i].getNAtoms(); |
102 |
myAtoms = myMolecules[i].getMyAtoms(); |
103 |
|
104 |
// find the minimum image coordinates of the molecular centers of mass: |
105 |
|
106 |
info->wrapVector(rc); |
107 |
|
108 |
for( j=0; j< nInMol; j++ ){ |
109 |
|
110 |
if(myAtoms[j] != NULL) { |
111 |
|
112 |
myAtoms[j]->getVel( vel ); |
113 |
myAtoms[j]->getPos( pos ); |
114 |
myAtoms[j]->getFrc( frc ); |
115 |
|
116 |
mass = myAtoms[j]->getMass(); |
117 |
|
118 |
// velocity half step |
119 |
|
120 |
info->matVecMul3( vScale, vel, sc ); |
121 |
|
122 |
for (k = 0; k < 3; k++) |
123 |
vel[k] += dt2 * ((frc[k] / mass) * eConvert - sc[k]); |
124 |
|
125 |
myAtoms[j]->setVel( vel ); |
126 |
|
127 |
// position whole step |
128 |
|
129 |
info->matVecMul3( eta, rc, sc ); |
130 |
|
131 |
for (k = 0; k < 3; k++ ) |
132 |
pos[k] += dt * (vel[k] + sc[k]); |
133 |
|
134 |
myAtoms[j]->setPos( pos ); |
135 |
|
136 |
if( myAtoms[j]->isDirectional() ){ |
137 |
|
138 |
dAtom = (DirectionalAtom *)myAtoms[j]; |
139 |
|
140 |
// get and convert the torque to body frame |
141 |
|
142 |
dAtom->getTrq( Tb ); |
143 |
dAtom->lab2Body( Tb ); |
144 |
|
145 |
// get the angular momentum, and propagate a half step |
146 |
|
147 |
dAtom->getJ( ji ); |
148 |
|
149 |
for (k=0; k < 3; k++) |
150 |
ji[k] += dt2 * (Tb[k] * eConvert - ji[k]*chi); |
151 |
|
152 |
// use the angular velocities to propagate the rotation matrix a |
153 |
// full time step |
154 |
|
155 |
dAtom->getA(A); |
156 |
dAtom->getI(I); |
157 |
|
158 |
// rotate about the x-axis |
159 |
angle = dt2 * ji[0] / I[0][0]; |
160 |
this->rotate( 1, 2, angle, ji, A ); |
161 |
|
162 |
// rotate about the y-axis |
163 |
angle = dt2 * ji[1] / I[1][1]; |
164 |
this->rotate( 2, 0, angle, ji, A ); |
165 |
|
166 |
// rotate about the z-axis |
167 |
angle = dt * ji[2] / I[2][2]; |
168 |
this->rotate( 0, 1, angle, ji, A); |
169 |
|
170 |
// rotate about the y-axis |
171 |
angle = dt2 * ji[1] / I[1][1]; |
172 |
this->rotate( 2, 0, angle, ji, A ); |
173 |
|
174 |
// rotate about the x-axis |
175 |
angle = dt2 * ji[0] / I[0][0]; |
176 |
this->rotate( 1, 2, angle, ji, A ); |
177 |
|
178 |
dAtom->setJ( ji ); |
179 |
dAtom->setA( A ); |
180 |
} |
181 |
} |
182 |
} |
183 |
} |
184 |
|
185 |
// Scale the box after all the positions have been moved: |
186 |
|
187 |
// Use a taylor expansion for eta products: Hmat = Hmat . exp(dt * etaMat) |
188 |
// Hmat = Hmat . ( Ident + dt * etaMat + dt^2 * etaMat*etaMat / 2) |
189 |
|
190 |
|
191 |
bigScale = 1.0; |
192 |
smallScale = 1.0; |
193 |
offDiagMax = 0.0; |
194 |
|
195 |
for(i=0; i<3; i++){ |
196 |
for(j=0; j<3; j++){ |
197 |
|
198 |
// Calculate the matrix Product of the eta array (we only need |
199 |
// the ij element right now): |
200 |
|
201 |
eta2ij = 0.0; |
202 |
for(k=0; k<3; k++){ |
203 |
eta2ij += eta[i][k] * eta[k][j]; |
204 |
} |
205 |
|
206 |
scaleMat[i][j] = 0.0; |
207 |
// identity matrix (see above): |
208 |
if (i == j) scaleMat[i][j] = 1.0; |
209 |
// Taylor expansion for the exponential truncated at second order: |
210 |
scaleMat[i][j] += dt*eta[i][j] + 0.5*dt*dt*eta2ij; |
211 |
|
212 |
if (i != j) |
213 |
if (fabs(scaleMat[i][j]) > offDiagMax) |
214 |
offDiagMax = fabs(scaleMat[i][j]); |
215 |
} |
216 |
if (scaleMat[i][i] > bigScale) bigScale = scaleMat[i][i]; |
217 |
if (scaleMat[i][i] < smallScale) smallScale = scaleMat[i][i]; |
218 |
} |
219 |
|
220 |
if ((bigScale > 1.1) || (smallScale < 0.9)) { |
221 |
sprintf( painCave.errMsg, |
222 |
"NPTf error: Attempting a Box scaling of more than 10 percent.\n" |
223 |
" Check your tauBarostat, as it is probably too small!\n\n" |
224 |
" scaleMat = [%lf\t%lf\t%lf]\n" |
225 |
" [%lf\t%lf\t%lf]\n" |
226 |
" [%lf\t%lf\t%lf]\n", |
227 |
scaleMat[0][0],scaleMat[0][1],scaleMat[0][2], |
228 |
scaleMat[1][0],scaleMat[1][1],scaleMat[1][2], |
229 |
scaleMat[2][0],scaleMat[2][1],scaleMat[2][2]); |
230 |
painCave.isFatal = 1; |
231 |
simError(); |
232 |
} else if (offDiagMax > 0.1) { |
233 |
sprintf( painCave.errMsg, |
234 |
"NPTf error: Attempting an off-diagonal Box scaling of more than 10 percent.\n" |
235 |
" Check your tauBarostat, as it is probably too small!\n\n" |
236 |
" scaleMat = [%lf\t%lf\t%lf]\n" |
237 |
" [%lf\t%lf\t%lf]\n" |
238 |
" [%lf\t%lf\t%lf]\n", |
239 |
scaleMat[0][0],scaleMat[0][1],scaleMat[0][2], |
240 |
scaleMat[1][0],scaleMat[1][1],scaleMat[1][2], |
241 |
scaleMat[2][0],scaleMat[2][1],scaleMat[2][2]); |
242 |
painCave.isFatal = 1; |
243 |
simError(); |
244 |
} else { |
245 |
info->getBoxM(hm); |
246 |
info->matMul3(hm, scaleMat, hmnew); |
247 |
info->setBoxM(hmnew); |
248 |
} |
249 |
} |
250 |
|
251 |
template<typename T> void NPTfm<T>::moveB( void ){ |
252 |
|
253 |
int i, j; |
254 |
DirectionalAtom* dAtom; |
255 |
double Tb[3], ji[3]; |
256 |
double vel[3], frc[3]; |
257 |
double mass; |
258 |
|
259 |
double instaTemp, instaPress, instaVol; |
260 |
double tt2, tb2; |
261 |
double sc[3]; |
262 |
double press[3][3], vScale[3][3]; |
263 |
|
264 |
tt2 = tauThermostat * tauThermostat; |
265 |
tb2 = tauBarostat * tauBarostat; |
266 |
|
267 |
instaTemp = tStats->getTemperature(); |
268 |
tStats->getPressureTensor(press); |
269 |
instaVol = tStats->getVolume(); |
270 |
|
271 |
// first evolve chi a half step |
272 |
|
273 |
chi += dt2 * ( instaTemp / targetTemp - 1.0) / tt2; |
274 |
|
275 |
for (i = 0; i < 3; i++ ) { |
276 |
for (j = 0; j < 3; j++ ) { |
277 |
if (i == j) { |
278 |
|
279 |
eta[i][j] += dt2 * instaVol * |
280 |
(press[i][j] - targetPressure/p_convert) / (NkBT*tb2); |
281 |
|
282 |
vScale[i][j] = eta[i][j] + chi; |
283 |
|
284 |
} else { |
285 |
|
286 |
eta[i][j] += dt2 * instaVol * press[i][j] / (NkBT*tb2); |
287 |
|
288 |
vScale[i][j] = eta[i][j]; |
289 |
|
290 |
} |
291 |
} |
292 |
} |
293 |
|
294 |
for( i=0; i<nAtoms; i++ ){ |
295 |
|
296 |
atoms[i]->getVel( vel ); |
297 |
atoms[i]->getFrc( frc ); |
298 |
|
299 |
mass = atoms[i]->getMass(); |
300 |
|
301 |
// velocity half step |
302 |
|
303 |
info->matVecMul3( vScale, vel, sc ); |
304 |
|
305 |
for (j = 0; j < 3; j++) { |
306 |
vel[j] += dt2 * ((frc[j] / mass) * eConvert - sc[j]); |
307 |
} |
308 |
|
309 |
atoms[i]->setVel( vel ); |
310 |
|
311 |
if( atoms[i]->isDirectional() ){ |
312 |
|
313 |
dAtom = (DirectionalAtom *)atoms[i]; |
314 |
|
315 |
// get and convert the torque to body frame |
316 |
|
317 |
dAtom->getTrq( Tb ); |
318 |
dAtom->lab2Body( Tb ); |
319 |
|
320 |
// get the angular momentum, and propagate a half step |
321 |
|
322 |
dAtom->getJ( ji ); |
323 |
|
324 |
for (j=0; j < 3; j++) |
325 |
ji[j] += dt2 * (Tb[j] * eConvert - ji[j]*chi); |
326 |
|
327 |
dAtom->setJ( ji ); |
328 |
|
329 |
} |
330 |
} |
331 |
} |
332 |
|
333 |
template<typename T> void NPTfm<T>::resetIntegrator() { |
334 |
int i,j; |
335 |
|
336 |
chi = 0.0; |
337 |
|
338 |
for(i = 0; i < 3; i++) |
339 |
for (j = 0; j < 3; j++) |
340 |
eta[i][j] = 0.0; |
341 |
} |
342 |
|
343 |
template<typename T> int NPTfm<T>::readyCheck() { |
344 |
|
345 |
//check parent's readyCheck() first |
346 |
if (T::readyCheck() == -1) |
347 |
return -1; |
348 |
|
349 |
// First check to see if we have a target temperature. |
350 |
// Not having one is fatal. |
351 |
|
352 |
if (!have_target_temp) { |
353 |
sprintf( painCave.errMsg, |
354 |
"NPTfm error: You can't use the NPTfm integrator\n" |
355 |
" without a targetTemp!\n" |
356 |
); |
357 |
painCave.isFatal = 1; |
358 |
simError(); |
359 |
return -1; |
360 |
} |
361 |
|
362 |
if (!have_target_pressure) { |
363 |
sprintf( painCave.errMsg, |
364 |
"NPTfm error: You can't use the NPTfm integrator\n" |
365 |
" without a targetPressure!\n" |
366 |
); |
367 |
painCave.isFatal = 1; |
368 |
simError(); |
369 |
return -1; |
370 |
} |
371 |
|
372 |
// We must set tauThermostat. |
373 |
|
374 |
if (!have_tau_thermostat) { |
375 |
sprintf( painCave.errMsg, |
376 |
"NPTfm error: If you use the NPTfm\n" |
377 |
" integrator, you must set tauThermostat.\n"); |
378 |
painCave.isFatal = 1; |
379 |
simError(); |
380 |
return -1; |
381 |
} |
382 |
|
383 |
// We must set tauBarostat. |
384 |
|
385 |
if (!have_tau_barostat) { |
386 |
sprintf( painCave.errMsg, |
387 |
"NPTfm error: If you use the NPTfm\n" |
388 |
" integrator, you must set tauBarostat.\n"); |
389 |
painCave.isFatal = 1; |
390 |
simError(); |
391 |
return -1; |
392 |
} |
393 |
|
394 |
// We need NkBT a lot, so just set it here: |
395 |
|
396 |
NkBT = (double)info->ndf * kB * targetTemp; |
397 |
|
398 |
return 1; |
399 |
} |
400 |
|
401 |
template<typename T> double NPTfm<T>::getConservedQuantity(void){ |
402 |
|
403 |
double conservedQuantity; |
404 |
double tb2; |
405 |
double trEta; |
406 |
|
407 |
//HNVE |
408 |
conservedQuantity = tStats->getTotalE(); |
409 |
|
410 |
//HNVT |
411 |
conservedQuantity += (info->getNDF() * kB * targetTemp * |
412 |
(integralOfChidt + tauThermostat * tauThermostat * chi * chi / 2.0)) / eConvert ; |
413 |
|
414 |
//HNPT |
415 |
tb2 = tauBarostat *tauBarostat; |
416 |
|
417 |
trEta = info->matTrace3(eta); |
418 |
|
419 |
conservedQuantity += (targetPressure * tStats->getVolume() / p_convert + |
420 |
3*NkBT/2 * tb2 * trEta * trEta) / eConvert; |
421 |
|
422 |
return conservedQuantity; |
423 |
} |