ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/trunk/OOPSE/libmdtools/NPTi.cpp
Revision: 586
Committed: Wed Jul 9 22:14:06 2003 UTC (21 years ago) by mmeineke
File size: 6410 byte(s)
Log Message:
Bug fixing NPTi and NPTf. there is some error in the caclulation of HmatInverse.

File Contents

# User Rev Content
1 gezelter 578 #include <cmath>
2 gezelter 574 #include "Atom.hpp"
3     #include "SRI.hpp"
4     #include "AbstractClasses.hpp"
5     #include "SimInfo.hpp"
6     #include "ForceFields.hpp"
7     #include "Thermo.hpp"
8     #include "ReadWrite.hpp"
9     #include "Integrator.hpp"
10     #include "simError.h"
11    
12    
13     // Basic isotropic thermostating and barostating via the Melchionna
14     // modification of the Hoover algorithm:
15     //
16     // Melchionna, S., Ciccotti, G., and Holian, B. L., 1993,
17     // Molec. Phys., 78, 533.
18     //
19     // and
20     //
21     // Hoover, W. G., 1986, Phys. Rev. A, 34, 2499.
22    
23     NPTi::NPTi ( SimInfo *theInfo, ForceFields* the_ff):
24     Integrator( theInfo, the_ff )
25     {
26     chi = 0.0;
27     eta = 0.0;
28     have_tau_thermostat = 0;
29     have_tau_barostat = 0;
30     have_target_temp = 0;
31     have_target_pressure = 0;
32     }
33    
34     void NPTi::moveA() {
35    
36     int i,j,k;
37     int atomIndex, aMatIndex;
38     DirectionalAtom* dAtom;
39     double Tb[3];
40     double ji[3];
41     double rj[3];
42     double instaTemp, instaPress, instaVol;
43     double tt2, tb2;
44     double angle;
45    
46 mmeineke 586
47 gezelter 574 tt2 = tauThermostat * tauThermostat;
48     tb2 = tauBarostat * tauBarostat;
49    
50     instaTemp = tStats->getTemperature();
51     instaPress = tStats->getPressure();
52     instaVol = tStats->getVolume();
53    
54 mmeineke 586 // first evolve chi a half step
55 gezelter 574
56     chi += dt2 * ( instaTemp / targetTemp - 1.0) / tt2;
57 mmeineke 586 eta += dt2 * ( instaVol * (instaPress - targetPressure) /
58     (p_convert*NkBT*tb2));
59 gezelter 574
60     for( i=0; i<nAtoms; i++ ){
61     atomIndex = i * 3;
62     aMatIndex = i * 9;
63    
64     // velocity half step
65     for( j=atomIndex; j<(atomIndex+3); j++ )
66     vel[j] += dt2 * ((frc[j]/atoms[i]->getMass())*eConvert
67     - vel[j]*(chi+eta));
68    
69     // position whole step
70    
71 gezelter 577 rj[0] = pos[atomIndex];
72     rj[1] = pos[atomIndex+1];
73     rj[2] = pos[atomIndex+2];
74    
75     info->wrapVector(rj);
76 gezelter 574
77 gezelter 577 pos[atomIndex] += dt * (vel[atomIndex] + eta*rj[0]);
78     pos[atomIndex+1] += dt * (vel[atomIndex+1] + eta*rj[1]);
79     pos[atomIndex+2] += dt * (vel[atomIndex+2] + eta*rj[2]);
80 gezelter 574
81     if( atoms[i]->isDirectional() ){
82    
83     dAtom = (DirectionalAtom *)atoms[i];
84    
85     // get and convert the torque to body frame
86    
87     Tb[0] = dAtom->getTx();
88     Tb[1] = dAtom->getTy();
89     Tb[2] = dAtom->getTz();
90    
91     dAtom->lab2Body( Tb );
92    
93     // get the angular momentum, and propagate a half step
94    
95     ji[0] = dAtom->getJx();
96     ji[1] = dAtom->getJy();
97     ji[2] = dAtom->getJz();
98    
99     ji[0] += dt2 * (Tb[0] * eConvert - ji[0]*chi);
100     ji[1] += dt2 * (Tb[1] * eConvert - ji[1]*chi);
101     ji[2] += dt2 * (Tb[2] * eConvert - ji[2]*chi);
102    
103     // use the angular velocities to propagate the rotation matrix a
104     // full time step
105    
106     // rotate about the x-axis
107     angle = dt2 * ji[0] / dAtom->getIxx();
108     this->rotate( 1, 2, angle, ji, &Amat[aMatIndex] );
109    
110     // rotate about the y-axis
111     angle = dt2 * ji[1] / dAtom->getIyy();
112     this->rotate( 2, 0, angle, ji, &Amat[aMatIndex] );
113    
114     // rotate about the z-axis
115     angle = dt * ji[2] / dAtom->getIzz();
116     this->rotate( 0, 1, angle, ji, &Amat[aMatIndex] );
117    
118     // rotate about the y-axis
119     angle = dt2 * ji[1] / dAtom->getIyy();
120     this->rotate( 2, 0, angle, ji, &Amat[aMatIndex] );
121    
122     // rotate about the x-axis
123     angle = dt2 * ji[0] / dAtom->getIxx();
124     this->rotate( 1, 2, angle, ji, &Amat[aMatIndex] );
125    
126     dAtom->setJx( ji[0] );
127     dAtom->setJy( ji[1] );
128     dAtom->setJz( ji[2] );
129     }
130    
131     }
132 gezelter 577 // Scale the box after all the positions have been moved:
133    
134 mmeineke 586 cerr << "eta = " << eta
135     << "; exp(dt*eta) = " << exp(eta*dt) << "\n";
136    
137 gezelter 577 info->scaleBox(exp(dt*eta));
138    
139 gezelter 574 }
140    
141     void NPTi::moveB( void ){
142     int i,j,k;
143     int atomIndex;
144     DirectionalAtom* dAtom;
145     double Tb[3];
146     double ji[3];
147     double instaTemp, instaPress, instaVol;
148     double tt2, tb2;
149    
150     tt2 = tauThermostat * tauThermostat;
151     tb2 = tauBarostat * tauBarostat;
152    
153     instaTemp = tStats->getTemperature();
154     instaPress = tStats->getPressure();
155     instaVol = tStats->getVolume();
156    
157     chi += dt2 * ( instaTemp / targetTemp - 1.0) / tt2;
158 mmeineke 586 eta += dt2 * ( instaVol * (instaPress - targetPressure) /
159     (p_convert*NkBT*tb2));
160 gezelter 574
161     for( i=0; i<nAtoms; i++ ){
162     atomIndex = i * 3;
163    
164     // velocity half step
165     for( j=atomIndex; j<(atomIndex+3); j++ )
166     for( j=atomIndex; j<(atomIndex+3); j++ )
167     vel[j] += dt2 * ((frc[j]/atoms[i]->getMass())*eConvert
168     - vel[j]*(chi+eta));
169    
170     if( atoms[i]->isDirectional() ){
171    
172     dAtom = (DirectionalAtom *)atoms[i];
173    
174     // get and convert the torque to body frame
175    
176     Tb[0] = dAtom->getTx();
177     Tb[1] = dAtom->getTy();
178     Tb[2] = dAtom->getTz();
179    
180     dAtom->lab2Body( Tb );
181    
182     // get the angular momentum, and complete the angular momentum
183     // half step
184    
185     ji[0] = dAtom->getJx();
186     ji[1] = dAtom->getJy();
187     ji[2] = dAtom->getJz();
188    
189     ji[0] += dt2 * (Tb[0] * eConvert - ji[0]*chi);
190     ji[1] += dt2 * (Tb[1] * eConvert - ji[1]*chi);
191     ji[2] += dt2 * (Tb[2] * eConvert - ji[2]*chi);
192    
193     dAtom->setJx( ji[0] );
194     dAtom->setJy( ji[1] );
195     dAtom->setJz( ji[2] );
196     }
197     }
198     }
199    
200     int NPTi::readyCheck() {
201    
202     // First check to see if we have a target temperature.
203     // Not having one is fatal.
204    
205     if (!have_target_temp) {
206     sprintf( painCave.errMsg,
207     "NPTi error: You can't use the NPTi integrator\n"
208     " without a targetTemp!\n"
209     );
210     painCave.isFatal = 1;
211     simError();
212     return -1;
213     }
214    
215     if (!have_target_pressure) {
216     sprintf( painCave.errMsg,
217     "NPTi error: You can't use the NPTi integrator\n"
218     " without a targetPressure!\n"
219     );
220     painCave.isFatal = 1;
221     simError();
222     return -1;
223     }
224    
225     // We must set tauThermostat.
226    
227     if (!have_tau_thermostat) {
228     sprintf( painCave.errMsg,
229     "NPTi error: If you use the NPTi\n"
230     " integrator, you must set tauThermostat.\n");
231     painCave.isFatal = 1;
232     simError();
233     return -1;
234     }
235    
236     // We must set tauBarostat.
237    
238     if (!have_tau_barostat) {
239     sprintf( painCave.errMsg,
240     "NPTi error: If you use the NPTi\n"
241     " integrator, you must set tauBarostat.\n");
242     painCave.isFatal = 1;
243     simError();
244     return -1;
245     }
246    
247     // We need NkBT a lot, so just set it here:
248    
249     NkBT = (double)info->ndf * kB * targetTemp;
250    
251     return 1;
252     }