ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/trunk/OOPSE/libmdtools/NPTi.cpp
Revision: 770
Committed: Fri Sep 19 14:55:41 2003 UTC (20 years, 9 months ago) by gezelter
File size: 10250 byte(s)
Log Message:
*** empty log message ***

File Contents

# User Rev Content
1 gezelter 578 #include <cmath>
2 gezelter 574 #include "Atom.hpp"
3     #include "SRI.hpp"
4     #include "AbstractClasses.hpp"
5     #include "SimInfo.hpp"
6     #include "ForceFields.hpp"
7     #include "Thermo.hpp"
8     #include "ReadWrite.hpp"
9     #include "Integrator.hpp"
10     #include "simError.h"
11    
12 tim 763 #ifdef IS_MPI
13     #include "mpiSimulation.hpp"
14     #endif
15 gezelter 574
16 tim 763
17 gezelter 574 // Basic isotropic thermostating and barostating via the Melchionna
18     // modification of the Hoover algorithm:
19     //
20     // Melchionna, S., Ciccotti, G., and Holian, B. L., 1993,
21     // Molec. Phys., 78, 533.
22     //
23     // and
24     //
25     // Hoover, W. G., 1986, Phys. Rev. A, 34, 2499.
26    
27 tim 645 template<typename T> NPTi<T>::NPTi ( SimInfo *theInfo, ForceFields* the_ff):
28     T( theInfo, the_ff )
29 gezelter 574 {
30     chi = 0.0;
31     eta = 0.0;
32 tim 763 integralOfChidt = 0.0;
33 gezelter 574 have_tau_thermostat = 0;
34     have_tau_barostat = 0;
35     have_target_temp = 0;
36     have_target_pressure = 0;
37 tim 763 have_chi_tolerance = 0;
38     have_eta_tolerance = 0;
39     have_pos_iter_tolerance = 0;
40    
41     oldPos = new double[3*nAtoms];
42     oldVel = new double[3*nAtoms];
43     oldJi = new double[3*nAtoms];
44     #ifdef IS_MPI
45     Nparticles = mpiSim->getTotAtoms();
46     #else
47     Nparticles = theInfo->n_atoms;
48     #endif
49    
50 gezelter 574 }
51    
52 tim 763 template<typename T> NPTi<T>::~NPTi() {
53     delete[] oldPos;
54     delete[] oldVel;
55     delete[] oldJi;
56     }
57    
58 tim 645 template<typename T> void NPTi<T>::moveA() {
59 tim 763
60     //new version of NPTi
61     int i, j, k;
62 gezelter 574 DirectionalAtom* dAtom;
63 gezelter 600 double Tb[3], ji[3];
64     double A[3][3], I[3][3];
65     double angle, mass;
66     double vel[3], pos[3], frc[3];
67    
68 gezelter 574 double rj[3];
69     double instaTemp, instaPress, instaVol;
70 gezelter 611 double tt2, tb2, scaleFactor;
71 tim 763 double COM[3];
72 gezelter 574
73     tt2 = tauThermostat * tauThermostat;
74     tb2 = tauBarostat * tauBarostat;
75    
76     instaTemp = tStats->getTemperature();
77     instaPress = tStats->getPressure();
78     instaVol = tStats->getVolume();
79    
80 tim 763 tStats->getCOM(COM);
81    
82     //evolve velocity half step
83     for( i=0; i<nAtoms; i++ ){
84 gezelter 574
85 gezelter 600 atoms[i]->getVel( vel );
86     atoms[i]->getFrc( frc );
87 gezelter 574
88 gezelter 600 mass = atoms[i]->getMass();
89 gezelter 574
90 gezelter 600 for (j=0; j < 3; j++) {
91 tim 763 // velocity half step (use chi from previous step here):
92     vel[j] += dt2 * ((frc[j] / mass ) * eConvert - vel[j]*(chi + eta));
93    
94 gezelter 600 }
95    
96     atoms[i]->setVel( vel );
97 tim 763
98 gezelter 574 if( atoms[i]->isDirectional() ){
99    
100     dAtom = (DirectionalAtom *)atoms[i];
101 tim 763
102 gezelter 574 // get and convert the torque to body frame
103    
104 gezelter 600 dAtom->getTrq( Tb );
105 gezelter 574 dAtom->lab2Body( Tb );
106    
107     // get the angular momentum, and propagate a half step
108    
109 gezelter 600 dAtom->getJ( ji );
110    
111     for (j=0; j < 3; j++)
112     ji[j] += dt2 * (Tb[j] * eConvert - ji[j]*chi);
113 gezelter 574
114     // use the angular velocities to propagate the rotation matrix a
115     // full time step
116 gezelter 600
117     dAtom->getA(A);
118     dAtom->getI(I);
119    
120 gezelter 574 // rotate about the x-axis
121 gezelter 600 angle = dt2 * ji[0] / I[0][0];
122     this->rotate( 1, 2, angle, ji, A );
123    
124 gezelter 574 // rotate about the y-axis
125 gezelter 600 angle = dt2 * ji[1] / I[1][1];
126     this->rotate( 2, 0, angle, ji, A );
127 gezelter 574
128     // rotate about the z-axis
129 gezelter 600 angle = dt * ji[2] / I[2][2];
130     this->rotate( 0, 1, angle, ji, A);
131 gezelter 574
132     // rotate about the y-axis
133 gezelter 600 angle = dt2 * ji[1] / I[1][1];
134     this->rotate( 2, 0, angle, ji, A );
135 gezelter 574
136     // rotate about the x-axis
137 gezelter 600 angle = dt2 * ji[0] / I[0][0];
138     this->rotate( 1, 2, angle, ji, A );
139 gezelter 574
140 gezelter 600 dAtom->setJ( ji );
141     dAtom->setA( A );
142 tim 763 }
143     }
144 gezelter 600
145 tim 763 // evolve chi and eta half step
146    
147     chi += dt2 * ( instaTemp / targetTemp - 1.0) / tt2;
148     eta += dt2 * ( instaVol * (instaPress - targetPressure) / (p_convert*NkBT*tb2));
149    
150     //calculate the integral of chidt
151     integralOfChidt += dt2*chi;
152    
153     //save the old positions
154     for(i = 0; i < nAtoms; i++){
155     atoms[i]->getPos(pos);
156     for(j = 0; j < 3; j++)
157     oldPos[i*3 + j] = pos[j];
158 gezelter 574 }
159 tim 763
160     //the first estimation of r(t+dt) is equal to r(t)
161    
162     for(k = 0; k < 4; k ++){
163 gezelter 611
164 tim 763 for(i =0 ; i < nAtoms; i++){
165    
166     atoms[i]->getVel(vel);
167     atoms[i]->getPos(pos);
168    
169     for(j = 0; j < 3; j++)
170 tim 767 rj[j] = (oldPos[i*3 + j] + pos[j])/2 - COM[j];
171 tim 763
172     for(j = 0; j < 3; j++)
173     pos[j] = oldPos[i*3 + j] + dt*(vel[j] + eta*rj[j]);
174    
175     atoms[i]->setPos( pos );
176     }
177 mmeineke 768
178     if (nConstrained){
179     constrainA();
180     }
181 tim 763 }
182    
183    
184 gezelter 577 // Scale the box after all the positions have been moved:
185 gezelter 600
186 gezelter 611 scaleFactor = exp(dt*eta);
187    
188 mmeineke 614 if ((scaleFactor > 1.1) || (scaleFactor < 0.9)) {
189 gezelter 611 sprintf( painCave.errMsg,
190     "NPTi error: Attempting a Box scaling of more than 10 percent"
191     " check your tauBarostat, as it is probably too small!\n"
192     " eta = %lf, scaleFactor = %lf\n", eta, scaleFactor
193     );
194     painCave.isFatal = 1;
195     simError();
196     } else {
197 tim 763 info->scaleBox(scaleFactor);
198     }
199 mmeineke 614
200 gezelter 574 }
201    
202 tim 645 template<typename T> void NPTi<T>::moveB( void ){
203 gezelter 574
204 tim 763 //new version of NPTi
205     int i, j, k;
206     DirectionalAtom* dAtom;
207     double Tb[3], ji[3];
208     double vel[3], frc[3];
209     double mass;
210    
211     double instTemp, instPress, instVol;
212     double tt2, tb2;
213     double oldChi, prevChi;
214     double oldEta, preEta;
215    
216     tt2 = tauThermostat * tauThermostat;
217     tb2 = tauBarostat * tauBarostat;
218    
219     // Set things up for the iteration:
220    
221     oldChi = chi;
222     oldEta = eta;
223    
224     for( i=0; i<nAtoms; i++ ){
225    
226     atoms[i]->getVel( vel );
227    
228     for (j=0; j < 3; j++)
229     oldVel[3*i + j] = vel[j];
230    
231     if( atoms[i]->isDirectional() ){
232    
233     dAtom = (DirectionalAtom *)atoms[i];
234    
235     dAtom->getJ( ji );
236    
237     for (j=0; j < 3; j++)
238     oldJi[3*i + j] = ji[j];
239    
240     }
241     }
242    
243     // do the iteration:
244    
245     instVol = tStats->getVolume();
246    
247     for (k=0; k < 4; k++) {
248    
249     instTemp = tStats->getTemperature();
250     instPress = tStats->getPressure();
251    
252     // evolve chi another half step using the temperature at t + dt/2
253    
254     prevChi = chi;
255     chi = oldChi + dt2 * ( instTemp / targetTemp - 1.0) /
256     (tauThermostat*tauThermostat);
257    
258     preEta = eta;
259     eta = oldEta + dt2 * ( instVol * (instPress - targetPressure) /
260     (p_convert*NkBT*tb2));
261    
262    
263     for( i=0; i<nAtoms; i++ ){
264    
265     atoms[i]->getFrc( frc );
266     atoms[i]->getVel(vel);
267    
268     mass = atoms[i]->getMass();
269    
270     // velocity half step
271     for (j=0; j < 3; j++)
272     vel[j] = oldVel[3*i+j] + dt2 * ((frc[j] / mass ) * eConvert - oldVel[3*i + j]*(chi + eta));
273    
274     atoms[i]->setVel( vel );
275    
276     if( atoms[i]->isDirectional() ){
277    
278     dAtom = (DirectionalAtom *)atoms[i];
279    
280     // get and convert the torque to body frame
281    
282     dAtom->getTrq( Tb );
283     dAtom->lab2Body( Tb );
284    
285     for (j=0; j < 3; j++)
286     ji[j] = oldJi[3*i + j] + dt2 * (Tb[j] * eConvert - oldJi[3*i+j]*chi);
287    
288     dAtom->setJ( ji );
289     }
290     }
291 mmeineke 768
292     if (nConstrained){
293     constrainB();
294     }
295    
296     if (fabs(prevChi - chi) <=
297     chiTolerance && fabs(preEta -eta) <= etaTolerance)
298 tim 763 break;
299     }
300    
301     //calculate integral of chida
302     integralOfChidt += dt2*chi;
303    
304    
305 gezelter 574 }
306    
307 mmeineke 746 template<typename T> void NPTi<T>::resetIntegrator() {
308     chi = 0.0;
309     eta = 0.0;
310     }
311    
312 tim 645 template<typename T> int NPTi<T>::readyCheck() {
313 tim 658
314     //check parent's readyCheck() first
315     if (T::readyCheck() == -1)
316     return -1;
317 gezelter 574
318     // First check to see if we have a target temperature.
319     // Not having one is fatal.
320    
321     if (!have_target_temp) {
322     sprintf( painCave.errMsg,
323     "NPTi error: You can't use the NPTi integrator\n"
324     " without a targetTemp!\n"
325     );
326     painCave.isFatal = 1;
327     simError();
328     return -1;
329     }
330    
331     if (!have_target_pressure) {
332     sprintf( painCave.errMsg,
333     "NPTi error: You can't use the NPTi integrator\n"
334     " without a targetPressure!\n"
335     );
336     painCave.isFatal = 1;
337     simError();
338     return -1;
339     }
340    
341     // We must set tauThermostat.
342    
343     if (!have_tau_thermostat) {
344     sprintf( painCave.errMsg,
345     "NPTi error: If you use the NPTi\n"
346     " integrator, you must set tauThermostat.\n");
347     painCave.isFatal = 1;
348     simError();
349     return -1;
350     }
351    
352     // We must set tauBarostat.
353    
354     if (!have_tau_barostat) {
355     sprintf( painCave.errMsg,
356     "NPTi error: If you use the NPTi\n"
357     " integrator, you must set tauBarostat.\n");
358     painCave.isFatal = 1;
359     simError();
360     return -1;
361     }
362    
363 tim 763 if (!have_chi_tolerance) {
364     sprintf( painCave.errMsg,
365     "NPTi warning: setting chi tolerance to 1e-6\n");
366     chiTolerance = 1e-6;
367     have_chi_tolerance = 1;
368     painCave.isFatal = 0;
369     simError();
370     }
371    
372 gezelter 770 if (!have_eta_tolerance) {
373 tim 763 sprintf( painCave.errMsg,
374     "NPTi warning: setting eta tolerance to 1e-6\n");
375     etaTolerance = 1e-6;
376     have_eta_tolerance = 1;
377     painCave.isFatal = 0;
378     simError();
379     }
380 gezelter 770
381    
382     // We need NkBT a lot, so just set it here: This is the RAW number
383     // of particles, so no subtraction or addition of constraints or
384     // orientational degrees of freedom:
385    
386 tim 763 NkBT = (double)Nparticles * kB * targetTemp;
387 gezelter 770
388     // fkBT is used because the thermostat operates on more degrees of freedom
389     // than the barostat (when there are particles with orientational degrees
390     // of freedom). ndf = 3 * (n_atoms + n_oriented -1) - n_constraint - nZcons
391    
392 tim 763 fkBT = (double)info->ndf * kB * targetTemp;
393 gezelter 574
394     return 1;
395     }
396 tim 763
397     template<typename T> double NPTi<T>::getConservedQuantity(void){
398    
399     double conservedQuantity;
400 gezelter 770 double Three_NkBT;
401 tim 769 double Energy;
402     double thermostat_kinetic;
403     double thermostat_potential;
404     double barostat_kinetic;
405     double barostat_potential;
406 tim 763 double tb2;
407 gezelter 770 double eta2;
408 tim 763
409 tim 769 Energy = tStats->getTotalE();
410 tim 763
411 tim 769 thermostat_kinetic = fkBT* tauThermostat * tauThermostat * chi * chi /
412     (2.0 * eConvert);
413 tim 763
414 tim 769 thermostat_potential = fkBT* integralOfChidt / eConvert;
415 tim 763
416    
417 gezelter 770 barostat_kinetic = 3.0 * NkBT * tauBarostat * tauBarostat * eta * eta /
418 tim 769 (2.0 * eConvert);
419    
420     barostat_potential = (targetPressure * tStats->getVolume() / p_convert) /
421     eConvert;
422 tim 767
423 tim 769 conservedQuantity = Energy + thermostat_kinetic + thermostat_potential +
424     barostat_kinetic + barostat_potential;
425    
426 tim 763 cout.width(8);
427     cout.precision(8);
428    
429 tim 769 cerr << info->getTime() << "\t" << Energy << "\t" << thermostat_kinetic <<
430     "\t" << thermostat_potential << "\t" << barostat_kinetic <<
431     "\t" << barostat_potential << "\t" << conservedQuantity << endl;
432 tim 763
433     return conservedQuantity;
434     }