--- trunk/OOPSE/libmdtools/NPTi.cpp 2003/09/19 19:29:24 777 +++ trunk/OOPSE/libmdtools/NPTi.cpp 2003/09/19 20:00:27 778 @@ -26,165 +26,60 @@ template NPTi::NPTi ( SimInfo *theInfo, template NPTi::NPTi ( SimInfo *theInfo, ForceFields* the_ff): T( theInfo, the_ff ) { - chi = 0.0; eta = 0.0; - integralOfChidt = 0.0; - have_tau_thermostat = 0; - have_tau_barostat = 0; - have_target_temp = 0; - have_target_pressure = 0; - have_chi_tolerance = 0; - have_eta_tolerance = 0; - have_pos_iter_tolerance = 0; - - oldPos = new double[3*nAtoms]; - oldVel = new double[3*nAtoms]; - oldJi = new double[3*nAtoms]; -#ifdef IS_MPI - Nparticles = mpiSim->getTotAtoms(); -#else - Nparticles = theInfo->n_atoms; -#endif - + oldEta = 0.0; } template NPTi::~NPTi() { - delete[] oldPos; - delete[] oldVel; - delete[] oldJi; + //nothing for now } -template void NPTi::moveA() { - - //new version of NPTi - int i, j, k; - DirectionalAtom* dAtom; - double Tb[3], ji[3]; - double A[3][3], I[3][3]; - double angle, mass; - double vel[3], pos[3], frc[3]; +template void NPTi::resetIntegrator() { + eta = 0.0; + T::resetIntegrator(); +} - double rj[3]; - double instaTemp, instaPress, instaVol; - double tt2, tb2, scaleFactor; - double COM[3]; +template void NPTi::evolveEtaA() { + eta += dt2 * ( instaVol * (instaPress - targetPressure) / + (p_convert*NkBT*tb2)); + oldEta = eta; +} - tt2 = tauThermostat * tauThermostat; - tb2 = tauBarostat * tauBarostat; - - instaTemp = tStats->getTemperature(); - instaPress = tStats->getPressure(); - instaVol = tStats->getVolume(); +template void NPTi::evolveEtaB() { - tStats->getCOM(COM); - - //evolve velocity half step - for( i=0; igetVel( vel ); - atoms[i]->getFrc( frc ); +template void NPTi::getVelScaleA(double sc[3], double vel[3]) { + int i; - mass = atoms[i]->getMass(); + for(i=0; i<3; i++) sc[i] = vel[i] * ( chi + eta ); +} - for (j=0; j < 3; j++) { - // velocity half step - vel[j] += dt2 * ((frc[j] / mass ) * eConvert - vel[j]*(chi + eta)); - } +template void NPTi::getVelScaleB(double sc[3], int index ){ + int i; - atoms[i]->setVel( vel ); - - if( atoms[i]->isDirectional() ){ + for(i=0; i<3; i++) sc[i] = oldVel[index*3 + i] * ( chi + eta ); +} - dAtom = (DirectionalAtom *)atoms[i]; - // get and convert the torque to body frame - - dAtom->getTrq( Tb ); - dAtom->lab2Body( Tb ); - - // get the angular momentum, and propagate a half step +template void NPTi::getPosScale(double pos[3], double COM[3], + int index, double sc[3]){ + int j; - dAtom->getJ( ji ); + for(j=0; j<3; j++) + sc[j] = ( oldPos[index*3+j] + pos[j]) / 2.0 - COM[j]; - for (j=0; j < 3; j++) - ji[j] += dt2 * (Tb[j] * eConvert - ji[j]*chi); - - // use the angular velocities to propagate the rotation matrix a - // full time step + for(j=0; j<3; j++) + sc[j] *= eta; +} - dAtom->getA(A); - dAtom->getI(I); - - // rotate about the x-axis - angle = dt2 * ji[0] / I[0][0]; - this->rotate( 1, 2, angle, ji, A ); +template void NPTi::scaleSimBox( void ){ - // rotate about the y-axis - angle = dt2 * ji[1] / I[1][1]; - this->rotate( 2, 0, angle, ji, A ); - - // rotate about the z-axis - angle = dt * ji[2] / I[2][2]; - this->rotate( 0, 1, angle, ji, A); - - // rotate about the y-axis - angle = dt2 * ji[1] / I[1][1]; - this->rotate( 2, 0, angle, ji, A ); - - // rotate about the x-axis - angle = dt2 * ji[0] / I[0][0]; - this->rotate( 1, 2, angle, ji, A ); - - dAtom->setJ( ji ); - dAtom->setA( A ); - } - } + double scaleFactor; - // advance chi half step - - chi += dt2 * ( instaTemp / targetTemp - 1.0) / tt2; - - // calculate the integral of chidt - - integralOfChidt += dt2*chi; - - // advance eta half step - - eta += dt2 * ( instaVol * (instaPress - targetPressure) / (p_convert*NkBT*tb2)); - - //save the old positions - for(i = 0; i < nAtoms; i++){ - atoms[i]->getPos(pos); - for(j = 0; j < 3; j++) - oldPos[i*3 + j] = pos[j]; - } - - //the first estimation of r(t+dt) is equal to r(t) - - for(k = 0; k < 4; k ++){ - - for(i =0 ; i < nAtoms; i++){ - - atoms[i]->getVel(vel); - atoms[i]->getPos(pos); - - for(j = 0; j < 3; j++) - rj[j] = (oldPos[i*3 + j] + pos[j])/2 - COM[j]; - - for(j = 0; j < 3; j++) - pos[j] = oldPos[i*3 + j] + dt*(vel[j] + eta*rj[j]); - - atoms[i]->setPos( pos ); - } - - if (nConstrained){ - constrainA(); - } - } - - - // Scale the box after all the positions have been moved: - scaleFactor = exp(dt*eta); if ((scaleFactor > 1.1) || (scaleFactor < 0.9)) { @@ -201,202 +96,11 @@ template void NPTi::moveB( void ){ } -template void NPTi::moveB( void ){ - - //new version of NPTi - int i, j, k; - DirectionalAtom* dAtom; - double Tb[3], ji[3]; - double vel[3], frc[3]; - double mass; - - double instaTemp, instaPress, instaVol; - double tt2, tb2; - double oldChi, prevChi; - double oldEta, prevEta; - - tt2 = tauThermostat * tauThermostat; - tb2 = tauBarostat * tauBarostat; - - // Set things up for the iteration: +template bool NPTi::etaConverged() { - oldChi = chi; - oldEta = eta; - - for( i=0; igetVel( vel ); - - for (j=0; j < 3; j++) - oldVel[3*i + j] = vel[j]; - - if( atoms[i]->isDirectional() ){ - - dAtom = (DirectionalAtom *)atoms[i]; - - dAtom->getJ( ji ); - - for (j=0; j < 3; j++) - oldJi[3*i + j] = ji[j]; - - } - } - - // do the iteration: - - instaVol = tStats->getVolume(); - - for (k=0; k < 4; k++) { - - instaTemp = tStats->getTemperature(); - instaPress = tStats->getPressure(); - - // evolve chi another half step using the temperature at t + dt/2 - - prevChi = chi; - chi = oldChi + dt2 * ( instaTemp / targetTemp - 1.0) / tt2; - - prevEta = eta; - - // advance eta half step and calculate scale factor for velocity - - eta = oldEta + dt2 * ( instaVol * (instaPress - targetPressure) / - (p_convert*NkBT*tb2)); - - - for( i=0; igetFrc( frc ); - atoms[i]->getVel(vel); - - mass = atoms[i]->getMass(); - - // velocity half step - for (j=0; j < 3; j++) - vel[j] = oldVel[3*i+j] + dt2 * ((frc[j] / mass ) * eConvert - oldVel[3*i + j]*(chi + eta)); - - atoms[i]->setVel( vel ); - - if( atoms[i]->isDirectional() ){ - - dAtom = (DirectionalAtom *)atoms[i]; - - // get and convert the torque to body frame - - dAtom->getTrq( Tb ); - dAtom->lab2Body( Tb ); - - for (j=0; j < 3; j++) - ji[j] = oldJi[3*i + j] + dt2 * (Tb[j] * eConvert - oldJi[3*i+j]*chi); - - dAtom->setJ( ji ); - } - } - - if (nConstrained){ - constrainB(); - } - - if (fabs(prevChi - chi) <= - chiTolerance && fabs(prevEta -eta) <= etaTolerance) - break; - } - - //calculate integral of chidt - integralOfChidt += dt2*chi; - + return ( fabs(prevEta - eta) <= etaTolerance ); } -template void NPTi::resetIntegrator() { - chi = 0.0; - eta = 0.0; -} - -template int NPTi::readyCheck() { - - //check parent's readyCheck() first - if (T::readyCheck() == -1) - return -1; - - // First check to see if we have a target temperature. - // Not having one is fatal. - - if (!have_target_temp) { - sprintf( painCave.errMsg, - "NPTi error: You can't use the NPTi integrator\n" - " without a targetTemp!\n" - ); - painCave.isFatal = 1; - simError(); - return -1; - } - - if (!have_target_pressure) { - sprintf( painCave.errMsg, - "NPTi error: You can't use the NPTi integrator\n" - " without a targetPressure!\n" - ); - painCave.isFatal = 1; - simError(); - return -1; - } - - // We must set tauThermostat. - - if (!have_tau_thermostat) { - sprintf( painCave.errMsg, - "NPTi error: If you use the NPTi\n" - " integrator, you must set tauThermostat.\n"); - painCave.isFatal = 1; - simError(); - return -1; - } - - // We must set tauBarostat. - - if (!have_tau_barostat) { - sprintf( painCave.errMsg, - "NPTi error: If you use the NPTi\n" - " integrator, you must set tauBarostat.\n"); - painCave.isFatal = 1; - simError(); - return -1; - } - - if (!have_chi_tolerance) { - sprintf( painCave.errMsg, - "NPTi warning: setting chi tolerance to 1e-6\n"); - chiTolerance = 1e-6; - have_chi_tolerance = 1; - painCave.isFatal = 0; - simError(); - } - - if (!have_eta_tolerance) { - sprintf( painCave.errMsg, - "NPTi warning: setting eta tolerance to 1e-6\n"); - etaTolerance = 1e-6; - have_eta_tolerance = 1; - painCave.isFatal = 0; - simError(); - } - - - // We need NkBT a lot, so just set it here: This is the RAW number - // of particles, so no subtraction or addition of constraints or - // orientational degrees of freedom: - - NkBT = (double)Nparticles * kB * targetTemp; - - // fkBT is used because the thermostat operates on more degrees of freedom - // than the barostat (when there are particles with orientational degrees - // of freedom). ndf = 3 * (n_atoms + n_oriented -1) - n_constraint - nZcons - - fkBT = (double)info->ndf * kB * targetTemp; - - return 1; -} - template double NPTi::getConservedQuantity(void){ double conservedQuantity; @@ -426,12 +130,11 @@ template double NPTi::getConservedQuant conservedQuantity = Energy + thermostat_kinetic + thermostat_potential + barostat_kinetic + barostat_potential; - cout.width(8); - cout.precision(8); +// cout.width(8); +// cout.precision(8); - cerr << info->getTime() << "\t" << Energy << "\t" << thermostat_kinetic << - "\t" << thermostat_potential << "\t" << barostat_kinetic << - "\t" << barostat_potential << "\t" << conservedQuantity << endl; - +// cerr << info->getTime() << "\t" << Energy << "\t" << thermostat_kinetic << +// "\t" << thermostat_potential << "\t" << barostat_kinetic << +// "\t" << barostat_potential << "\t" << conservedQuantity << endl; return conservedQuantity; }