ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/trunk/OOPSE/libmdtools/NPTi.cpp
(Generate patch)

Comparing trunk/OOPSE/libmdtools/NPTi.cpp (file contents):
Revision 586 by mmeineke, Wed Jul 9 22:14:06 2003 UTC vs.
Revision 778 by mmeineke, Fri Sep 19 20:00:27 2003 UTC

# Line 9 | Line 9
9   #include "Integrator.hpp"
10   #include "simError.h"
11  
12 + #ifdef IS_MPI
13 + #include "mpiSimulation.hpp"
14 + #endif
15  
16   // Basic isotropic thermostating and barostating via the Melchionna
17   // modification of the Hoover algorithm:
# Line 20 | Line 23 | NPTi::NPTi ( SimInfo *theInfo, ForceFields* the_ff):
23   //
24   //    Hoover, W. G., 1986, Phys. Rev. A, 34, 2499.
25  
26 < NPTi::NPTi ( SimInfo *theInfo, ForceFields* the_ff):
27 <  Integrator( theInfo, the_ff )
26 > template<typename T> NPTi<T>::NPTi ( SimInfo *theInfo, ForceFields* the_ff):
27 >  T( theInfo, the_ff )
28   {
26  chi = 0.0;
29    eta = 0.0;
30 <  have_tau_thermostat = 0;
29 <  have_tau_barostat = 0;
30 <  have_target_temp = 0;
31 <  have_target_pressure = 0;
30 >  oldEta = 0.0;
31   }
32  
33 < void NPTi::moveA() {
34 <  
35 <  int i,j,k;
37 <  int atomIndex, aMatIndex;
38 <  DirectionalAtom* dAtom;
39 <  double Tb[3];
40 <  double ji[3];
41 <  double rj[3];
42 <  double instaTemp, instaPress, instaVol;
43 <  double tt2, tb2;
44 <  double angle;
33 > template<typename T> NPTi<T>::~NPTi() {
34 >  //nothing for now
35 > }
36  
37 + template<typename T> void NPTi<T>::resetIntegrator() {
38 +  eta = 0.0;
39 +  T::resetIntegrator();
40 + }
41  
42 <  tt2 = tauThermostat * tauThermostat;
43 <  tb2 = tauBarostat * tauBarostat;
42 > template<typename T> void NPTi<T>::evolveEtaA() {
43 >  eta += dt2 * ( instaVol * (instaPress - targetPressure) /
44 >                 (p_convert*NkBT*tb2));
45 >  oldEta = eta;
46 > }
47  
48 <  instaTemp = tStats->getTemperature();
51 <  instaPress = tStats->getPressure();
52 <  instaVol = tStats->getVolume();
53 <  
54 <   // first evolve chi a half step
48 > template<typename T> void NPTi<T>::evolveEtaB() {
49    
50 <  chi += dt2 * ( instaTemp / targetTemp - 1.0) / tt2;
51 <  eta += dt2 * ( instaVol * (instaPress - targetPressure) /
50 >  prevEta = eta;
51 >  eta = oldEta + dt2 * ( instaVol * (instaPress - targetPressure) /
52                   (p_convert*NkBT*tb2));
53 + }
54  
55 <  for( i=0; i<nAtoms; i++ ){
56 <    atomIndex = i * 3;
62 <    aMatIndex = i * 9;
63 <    
64 <    // velocity half step
65 <    for( j=atomIndex; j<(atomIndex+3); j++ )
66 <      vel[j] += dt2 * ((frc[j]/atoms[i]->getMass())*eConvert
67 <                       - vel[j]*(chi+eta));
55 > template<typename T> void NPTi<T>::getVelScaleA(double sc[3], double vel[3]) {
56 >  int i;
57  
58 <    // position whole step    
58 >  for(i=0; i<3; i++) sc[i] = vel[i] * ( chi + eta );
59 > }
60  
61 <    rj[0] = pos[atomIndex];
62 <    rj[1] = pos[atomIndex+1];
73 <    rj[2] = pos[atomIndex+2];
74 <    
75 <    info->wrapVector(rj);
61 > template<typename T> void NPTi<T>::getVelScaleB(double sc[3], int index ){
62 >  int i;
63  
64 <    pos[atomIndex] += dt * (vel[atomIndex] + eta*rj[0]);
65 <    pos[atomIndex+1] += dt * (vel[atomIndex+1] + eta*rj[1]);
79 <    pos[atomIndex+2] += dt * (vel[atomIndex+2] + eta*rj[2]);
80 <  
81 <    if( atoms[i]->isDirectional() ){
64 >  for(i=0; i<3; i++) sc[i] = oldVel[index*3 + i] * ( chi + eta );
65 > }
66  
83      dAtom = (DirectionalAtom *)atoms[i];
84          
85      // get and convert the torque to body frame
86      
87      Tb[0] = dAtom->getTx();
88      Tb[1] = dAtom->getTy();
89      Tb[2] = dAtom->getTz();
90      
91      dAtom->lab2Body( Tb );
92      
93      // get the angular momentum, and propagate a half step
67  
68 <      ji[0] = dAtom->getJx();
69 <      ji[1] = dAtom->getJy();
70 <      ji[2] = dAtom->getJz();
98 <      
99 <      ji[0] += dt2 * (Tb[0] * eConvert - ji[0]*chi);
100 <      ji[1] += dt2 * (Tb[1] * eConvert - ji[1]*chi);
101 <      ji[2] += dt2 * (Tb[2] * eConvert - ji[2]*chi);
102 <      
103 <      // use the angular velocities to propagate the rotation matrix a
104 <      // full time step
105 <      
106 <      // rotate about the x-axis      
107 <      angle = dt2 * ji[0] / dAtom->getIxx();
108 <      this->rotate( 1, 2, angle, ji, &Amat[aMatIndex] );
109 <      
110 <      // rotate about the y-axis
111 <      angle = dt2 * ji[1] / dAtom->getIyy();
112 <      this->rotate( 2, 0, angle, ji, &Amat[aMatIndex] );
113 <      
114 <      // rotate about the z-axis
115 <      angle = dt * ji[2] / dAtom->getIzz();
116 <      this->rotate( 0, 1, angle, ji, &Amat[aMatIndex] );
117 <      
118 <      // rotate about the y-axis
119 <      angle = dt2 * ji[1] / dAtom->getIyy();
120 <      this->rotate( 2, 0, angle, ji, &Amat[aMatIndex] );
121 <      
122 <       // rotate about the x-axis
123 <      angle = dt2 * ji[0] / dAtom->getIxx();
124 <      this->rotate( 1, 2, angle, ji, &Amat[aMatIndex] );
125 <      
126 <      dAtom->setJx( ji[0] );
127 <      dAtom->setJy( ji[1] );
128 <      dAtom->setJz( ji[2] );
129 <    }
130 <    
131 <  }
132 <  // Scale the box after all the positions have been moved:
68 > template<typename T> void NPTi<T>::getPosScale(double pos[3], double COM[3],
69 >                                               int index, double sc[3]){
70 >  int j;
71  
72 <  cerr << "eta = " << eta
73 <       << "; exp(dt*eta) = " << exp(eta*dt) << "\n";
72 >  for(j=0; j<3; j++)
73 >    sc[j] = ( oldPos[index*3+j] + pos[j]) / 2.0 - COM[j];
74  
75 <  info->scaleBox(exp(dt*eta));
76 <
75 >  for(j=0; j<3; j++)
76 >    sc[j] *= eta;
77   }
78  
79 < void NPTi::moveB( void ){
142 <  int i,j,k;
143 <  int atomIndex;
144 <  DirectionalAtom* dAtom;
145 <  double Tb[3];
146 <  double ji[3];
147 <  double instaTemp, instaPress, instaVol;
148 <  double tt2, tb2;
149 <  
150 <  tt2 = tauThermostat * tauThermostat;
151 <  tb2 = tauBarostat * tauBarostat;
79 > template<typename T> void NPTi<T>::scaleSimBox( void ){
80  
81 <  instaTemp = tStats->getTemperature();
154 <  instaPress = tStats->getPressure();
155 <  instaVol = tStats->getVolume();
81 >  double scaleFactor;
82  
83 <  chi += dt2 * ( instaTemp / targetTemp - 1.0) / tt2;
158 <  eta += dt2 * ( instaVol * (instaPress - targetPressure) /
159 <                 (p_convert*NkBT*tb2));
160 <  
161 <  for( i=0; i<nAtoms; i++ ){
162 <    atomIndex = i * 3;
163 <    
164 <    // velocity half step
165 <    for( j=atomIndex; j<(atomIndex+3); j++ )
166 <    for( j=atomIndex; j<(atomIndex+3); j++ )
167 <      vel[j] += dt2 * ((frc[j]/atoms[i]->getMass())*eConvert
168 <                       - vel[j]*(chi+eta));
169 <    
170 <    if( atoms[i]->isDirectional() ){
171 <      
172 <      dAtom = (DirectionalAtom *)atoms[i];
173 <      
174 <      // get and convert the torque to body frame
175 <      
176 <      Tb[0] = dAtom->getTx();
177 <      Tb[1] = dAtom->getTy();
178 <      Tb[2] = dAtom->getTz();
179 <      
180 <      dAtom->lab2Body( Tb );
181 <      
182 <      // get the angular momentum, and complete the angular momentum
183 <      // half step
184 <      
185 <      ji[0] = dAtom->getJx();
186 <      ji[1] = dAtom->getJy();
187 <      ji[2] = dAtom->getJz();
188 <      
189 <      ji[0] += dt2 * (Tb[0] * eConvert - ji[0]*chi);
190 <      ji[1] += dt2 * (Tb[1] * eConvert - ji[1]*chi);
191 <      ji[2] += dt2 * (Tb[2] * eConvert - ji[2]*chi);
192 <      
193 <      dAtom->setJx( ji[0] );
194 <      dAtom->setJy( ji[1] );
195 <      dAtom->setJz( ji[2] );
196 <    }
197 <  }
198 < }
83 >  scaleFactor = exp(dt*eta);
84  
85 < int NPTi::readyCheck() {
201 <
202 <  // First check to see if we have a target temperature.
203 <  // Not having one is fatal.
204 <  
205 <  if (!have_target_temp) {
85 >  if ((scaleFactor > 1.1) || (scaleFactor < 0.9)) {
86      sprintf( painCave.errMsg,
87 <             "NPTi error: You can't use the NPTi integrator\n"
88 <             "   without a targetTemp!\n"
87 >             "NPTi error: Attempting a Box scaling of more than 10 percent"
88 >             " check your tauBarostat, as it is probably too small!\n"
89 >             " eta = %lf, scaleFactor = %lf\n", eta, scaleFactor
90               );
91      painCave.isFatal = 1;
92      simError();
93 <    return -1;
94 <  }
93 >  } else {        
94 >    info->scaleBox(scaleFactor);      
95 >  }  
96  
97 <  if (!have_target_pressure) {
216 <    sprintf( painCave.errMsg,
217 <             "NPTi error: You can't use the NPTi integrator\n"
218 <             "   without a targetPressure!\n"
219 <             );
220 <    painCave.isFatal = 1;
221 <    simError();
222 <    return -1;
223 <  }
224 <  
225 <  // We must set tauThermostat.
226 <  
227 <  if (!have_tau_thermostat) {
228 <    sprintf( painCave.errMsg,
229 <             "NPTi error: If you use the NPTi\n"
230 <             "   integrator, you must set tauThermostat.\n");
231 <    painCave.isFatal = 1;
232 <    simError();
233 <    return -1;
234 <  }    
97 > }
98  
99 <  // We must set tauBarostat.
237 <  
238 <  if (!have_tau_barostat) {
239 <    sprintf( painCave.errMsg,
240 <             "NPTi error: If you use the NPTi\n"
241 <             "   integrator, you must set tauBarostat.\n");
242 <    painCave.isFatal = 1;
243 <    simError();
244 <    return -1;
245 <  }    
99 > template<typename T> bool NPTi<T>::etaConverged() {
100  
101 <  // We need NkBT a lot, so just set it here:
101 >  return ( fabs(prevEta - eta) <= etaTolerance );
102 > }
103  
104 <  NkBT = (double)info->ndf * kB * targetTemp;
104 > template<typename T> double NPTi<T>::getConservedQuantity(void){
105  
106 <  return 1;
106 >  double conservedQuantity;
107 >  double Three_NkBT;
108 >  double Energy;
109 >  double thermostat_kinetic;
110 >  double thermostat_potential;
111 >  double barostat_kinetic;
112 >  double barostat_potential;
113 >  double tb2;
114 >  double eta2;
115 >
116 >  Energy = tStats->getTotalE();
117 >
118 >  thermostat_kinetic = fkBT* tauThermostat * tauThermostat * chi * chi /
119 >    (2.0 * eConvert);
120 >
121 >  thermostat_potential = fkBT* integralOfChidt / eConvert;
122 >
123 >
124 >  barostat_kinetic = 3.0 * NkBT * tauBarostat * tauBarostat * eta * eta /
125 >    (2.0 * eConvert);
126 >  
127 >  barostat_potential = (targetPressure * tStats->getVolume() / p_convert) /
128 >    eConvert;
129 >
130 >  conservedQuantity = Energy + thermostat_kinetic + thermostat_potential +
131 >    barostat_kinetic + barostat_potential;
132 >  
133 > //   cout.width(8);
134 > //   cout.precision(8);
135 >
136 > //   cerr << info->getTime() << "\t" << Energy << "\t" << thermostat_kinetic <<
137 > //       "\t" << thermostat_potential << "\t" << barostat_kinetic <<
138 > //       "\t" << barostat_potential << "\t" << conservedQuantity << endl;
139 >  return conservedQuantity;
140   }

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines