--- trunk/OOPSE/libmdtools/NPTi.cpp 2003/07/09 22:14:06 586 +++ trunk/OOPSE/libmdtools/NPTi.cpp 2003/09/19 16:01:07 772 @@ -9,6 +9,9 @@ #include "Integrator.hpp" #include "simError.h" +#ifdef IS_MPI +#include "mpiSimulation.hpp" +#endif // Basic isotropic thermostating and barostating via the Melchionna // modification of the Hoover algorithm: @@ -20,184 +23,300 @@ NPTi::NPTi ( SimInfo *theInfo, ForceFields* the_ff): // // Hoover, W. G., 1986, Phys. Rev. A, 34, 2499. -NPTi::NPTi ( SimInfo *theInfo, ForceFields* the_ff): - Integrator( theInfo, the_ff ) +template NPTi::NPTi ( SimInfo *theInfo, ForceFields* the_ff): + T( theInfo, the_ff ) { chi = 0.0; eta = 0.0; + integralOfChidt = 0.0; have_tau_thermostat = 0; have_tau_barostat = 0; have_target_temp = 0; have_target_pressure = 0; + have_chi_tolerance = 0; + have_eta_tolerance = 0; + have_pos_iter_tolerance = 0; + + oldPos = new double[3*nAtoms]; + oldVel = new double[3*nAtoms]; + oldJi = new double[3*nAtoms]; +#ifdef IS_MPI + Nparticles = mpiSim->getTotAtoms(); +#else + Nparticles = theInfo->n_atoms; +#endif + } -void NPTi::moveA() { - - int i,j,k; - int atomIndex, aMatIndex; +template NPTi::~NPTi() { + delete[] oldPos; + delete[] oldVel; + delete[] oldJi; +} + +template void NPTi::moveA() { + + //new version of NPTi + int i, j, k; DirectionalAtom* dAtom; - double Tb[3]; - double ji[3]; + double Tb[3], ji[3]; + double A[3][3], I[3][3]; + double angle, mass; + double vel[3], pos[3], frc[3]; + double rj[3]; double instaTemp, instaPress, instaVol; - double tt2, tb2; - double angle; + double tt2, tb2, scaleFactor; + double COM[3]; - tt2 = tauThermostat * tauThermostat; tb2 = tauBarostat * tauBarostat; instaTemp = tStats->getTemperature(); instaPress = tStats->getPressure(); instaVol = tStats->getVolume(); - - // first evolve chi a half step - chi += dt2 * ( instaTemp / targetTemp - 1.0) / tt2; - eta += dt2 * ( instaVol * (instaPress - targetPressure) / - (p_convert*NkBT*tb2)); - + tStats->getCOM(COM); + + //evolve velocity half step for( i=0; igetMass())*eConvert - - vel[j]*(chi+eta)); - // position whole step + atoms[i]->getVel( vel ); + atoms[i]->getFrc( frc ); - rj[0] = pos[atomIndex]; - rj[1] = pos[atomIndex+1]; - rj[2] = pos[atomIndex+2]; - - info->wrapVector(rj); + mass = atoms[i]->getMass(); - pos[atomIndex] += dt * (vel[atomIndex] + eta*rj[0]); - pos[atomIndex+1] += dt * (vel[atomIndex+1] + eta*rj[1]); - pos[atomIndex+2] += dt * (vel[atomIndex+2] + eta*rj[2]); + for (j=0; j < 3; j++) { + // velocity half step + vel[j] += dt2 * ((frc[j] / mass ) * eConvert - vel[j]*(chi + eta)); + } + + atoms[i]->setVel( vel ); if( atoms[i]->isDirectional() ){ dAtom = (DirectionalAtom *)atoms[i]; - + // get and convert the torque to body frame - Tb[0] = dAtom->getTx(); - Tb[1] = dAtom->getTy(); - Tb[2] = dAtom->getTz(); - + dAtom->getTrq( Tb ); dAtom->lab2Body( Tb ); // get the angular momentum, and propagate a half step - ji[0] = dAtom->getJx(); - ji[1] = dAtom->getJy(); - ji[2] = dAtom->getJz(); + dAtom->getJ( ji ); + + for (j=0; j < 3; j++) + ji[j] += dt2 * (Tb[j] * eConvert - ji[j]*chi); - ji[0] += dt2 * (Tb[0] * eConvert - ji[0]*chi); - ji[1] += dt2 * (Tb[1] * eConvert - ji[1]*chi); - ji[2] += dt2 * (Tb[2] * eConvert - ji[2]*chi); - // use the angular velocities to propagate the rotation matrix a // full time step - + + dAtom->getA(A); + dAtom->getI(I); + // rotate about the x-axis - angle = dt2 * ji[0] / dAtom->getIxx(); - this->rotate( 1, 2, angle, ji, &Amat[aMatIndex] ); - + angle = dt2 * ji[0] / I[0][0]; + this->rotate( 1, 2, angle, ji, A ); + // rotate about the y-axis - angle = dt2 * ji[1] / dAtom->getIyy(); - this->rotate( 2, 0, angle, ji, &Amat[aMatIndex] ); + angle = dt2 * ji[1] / I[1][1]; + this->rotate( 2, 0, angle, ji, A ); // rotate about the z-axis - angle = dt * ji[2] / dAtom->getIzz(); - this->rotate( 0, 1, angle, ji, &Amat[aMatIndex] ); + angle = dt * ji[2] / I[2][2]; + this->rotate( 0, 1, angle, ji, A); // rotate about the y-axis - angle = dt2 * ji[1] / dAtom->getIyy(); - this->rotate( 2, 0, angle, ji, &Amat[aMatIndex] ); + angle = dt2 * ji[1] / I[1][1]; + this->rotate( 2, 0, angle, ji, A ); // rotate about the x-axis - angle = dt2 * ji[0] / dAtom->getIxx(); - this->rotate( 1, 2, angle, ji, &Amat[aMatIndex] ); + angle = dt2 * ji[0] / I[0][0]; + this->rotate( 1, 2, angle, ji, A ); - dAtom->setJx( ji[0] ); - dAtom->setJy( ji[1] ); - dAtom->setJz( ji[2] ); + dAtom->setJ( ji ); + dAtom->setA( A ); + } + } + + // advance chi half step + + chi += dt2 * ( instaTemp / targetTemp - 1.0) / tt2; + + // calculate the integral of chidt + + integralOfChidt += dt2*chi; + + // advance eta half step + + eta += dt2 * ( instaVol * (instaPress - targetPressure) / (p_convert*NkBT*tb2)); + + //save the old positions + for(i = 0; i < nAtoms; i++){ + atoms[i]->getPos(pos); + for(j = 0; j < 3; j++) + oldPos[i*3 + j] = pos[j]; + } + + //the first estimation of r(t+dt) is equal to r(t) + + for(k = 0; k < 4; k ++){ + + for(i =0 ; i < nAtoms; i++){ + + atoms[i]->getVel(vel); + atoms[i]->getPos(pos); + + for(j = 0; j < 3; j++) + rj[j] = (oldPos[i*3 + j] + pos[j])/2 - COM[j]; + + for(j = 0; j < 3; j++) + pos[j] = oldPos[i*3 + j] + dt*(vel[j] + eta*rj[j]); + + atoms[i]->setPos( pos ); } + if (nConstrained){ + constrainA(); + } } + + // Scale the box after all the positions have been moved: + + scaleFactor = exp(dt*eta); - cerr << "eta = " << eta - << "; exp(dt*eta) = " << exp(eta*dt) << "\n"; + if ((scaleFactor > 1.1) || (scaleFactor < 0.9)) { + sprintf( painCave.errMsg, + "NPTi error: Attempting a Box scaling of more than 10 percent" + " check your tauBarostat, as it is probably too small!\n" + " eta = %lf, scaleFactor = %lf\n", eta, scaleFactor + ); + painCave.isFatal = 1; + simError(); + } else { + info->scaleBox(scaleFactor); + } - info->scaleBox(exp(dt*eta)); - } -void NPTi::moveB( void ){ - int i,j,k; - int atomIndex; +template void NPTi::moveB( void ){ + + //new version of NPTi + int i, j, k; DirectionalAtom* dAtom; - double Tb[3]; - double ji[3]; + double Tb[3], ji[3]; + double vel[3], frc[3]; + double mass; + double instaTemp, instaPress, instaVol; double tt2, tb2; + double oldChi, prevChi; + double oldEta, prevEta; tt2 = tauThermostat * tauThermostat; tb2 = tauBarostat * tauBarostat; - instaTemp = tStats->getTemperature(); - instaPress = tStats->getPressure(); - instaVol = tStats->getVolume(); + // Set things up for the iteration: - chi += dt2 * ( instaTemp / targetTemp - 1.0) / tt2; - eta += dt2 * ( instaVol * (instaPress - targetPressure) / - (p_convert*NkBT*tb2)); - + oldChi = chi; + oldEta = eta; + for( i=0; igetMass())*eConvert - - vel[j]*(chi+eta)); - + + atoms[i]->getVel( vel ); + + for (j=0; j < 3; j++) + oldVel[3*i + j] = vel[j]; + if( atoms[i]->isDirectional() ){ - + dAtom = (DirectionalAtom *)atoms[i]; + + dAtom->getJ( ji ); + + for (j=0; j < 3; j++) + oldJi[3*i + j] = ji[j]; + + } + } + + // do the iteration: + + instaVol = tStats->getVolume(); + + for (k=0; k < 4; k++) { + + instaTemp = tStats->getTemperature(); + instaPress = tStats->getPressure(); + + // evolve chi another half step using the temperature at t + dt/2 + + prevChi = chi; + chi = oldChi + dt2 * ( instaTemp / targetTemp - 1.0) / tt2; + + prevEta = eta; + + // advance eta half step and calculate scale factor for velocity + + eta = oldEta + dt2 * ( instaVol * (instaPress - targetPressure) / + (p_convert*NkBT*tb2)); + + + for( i=0; igetFrc( frc ); + atoms[i]->getVel(vel); - // get and convert the torque to body frame + mass = atoms[i]->getMass(); - Tb[0] = dAtom->getTx(); - Tb[1] = dAtom->getTy(); - Tb[2] = dAtom->getTz(); + // velocity half step + for (j=0; j < 3; j++) + vel[j] = oldVel[3*i+j] + dt2 * ((frc[j] / mass ) * eConvert - oldVel[3*i + j]*(chi + eta)); - dAtom->lab2Body( Tb ); + atoms[i]->setVel( vel ); - // get the angular momentum, and complete the angular momentum - // half step + if( atoms[i]->isDirectional() ){ + + dAtom = (DirectionalAtom *)atoms[i]; + + // get and convert the torque to body frame + + dAtom->getTrq( Tb ); + dAtom->lab2Body( Tb ); + + for (j=0; j < 3; j++) + ji[j] = oldJi[3*i + j] + dt2 * (Tb[j] * eConvert - oldJi[3*i+j]*chi); - ji[0] = dAtom->getJx(); - ji[1] = dAtom->getJy(); - ji[2] = dAtom->getJz(); - - ji[0] += dt2 * (Tb[0] * eConvert - ji[0]*chi); - ji[1] += dt2 * (Tb[1] * eConvert - ji[1]*chi); - ji[2] += dt2 * (Tb[2] * eConvert - ji[2]*chi); - - dAtom->setJx( ji[0] ); - dAtom->setJy( ji[1] ); - dAtom->setJz( ji[2] ); + dAtom->setJ( ji ); + } } + + if (nConstrained){ + constrainB(); + } + + if (fabs(prevChi - chi) <= + chiTolerance && fabs(prevEta -eta) <= etaTolerance) + break; } + + //calculate integral of chidt + integralOfChidt += dt2*chi; + } -int NPTi::readyCheck() { +template void NPTi::resetIntegrator() { + chi = 0.0; + eta = 0.0; +} + +template int NPTi::readyCheck() { + + //check parent's readyCheck() first + if (T::readyCheck() == -1) + return -1; // First check to see if we have a target temperature. // Not having one is fatal. @@ -244,9 +363,75 @@ int NPTi::readyCheck() { return -1; } - // We need NkBT a lot, so just set it here: + if (!have_chi_tolerance) { + sprintf( painCave.errMsg, + "NPTi warning: setting chi tolerance to 1e-6\n"); + chiTolerance = 1e-6; + have_chi_tolerance = 1; + painCave.isFatal = 0; + simError(); + } - NkBT = (double)info->ndf * kB * targetTemp; + if (!have_eta_tolerance) { + sprintf( painCave.errMsg, + "NPTi warning: setting eta tolerance to 1e-6\n"); + etaTolerance = 1e-6; + have_eta_tolerance = 1; + painCave.isFatal = 0; + simError(); + } + + + // We need NkBT a lot, so just set it here: This is the RAW number + // of particles, so no subtraction or addition of constraints or + // orientational degrees of freedom: + + NkBT = (double)Nparticles * kB * targetTemp; + + // fkBT is used because the thermostat operates on more degrees of freedom + // than the barostat (when there are particles with orientational degrees + // of freedom). ndf = 3 * (n_atoms + n_oriented -1) - n_constraint - nZcons + + fkBT = (double)info->ndf * kB * targetTemp; return 1; } + +template double NPTi::getConservedQuantity(void){ + + double conservedQuantity; + double Three_NkBT; + double Energy; + double thermostat_kinetic; + double thermostat_potential; + double barostat_kinetic; + double barostat_potential; + double tb2; + double eta2; + + Energy = tStats->getTotalE(); + + thermostat_kinetic = fkBT* tauThermostat * tauThermostat * chi * chi / + (2.0 * eConvert); + + thermostat_potential = fkBT* integralOfChidt / eConvert; + + + barostat_kinetic = 3.0 * NkBT * tauBarostat * tauBarostat * eta * eta / + (2.0 * eConvert); + + barostat_potential = (targetPressure * tStats->getVolume() / p_convert) / + eConvert; + + conservedQuantity = Energy + thermostat_kinetic + thermostat_potential + + barostat_kinetic + barostat_potential; + + cout.width(8); + cout.precision(8); + + cerr << info->getTime() << "\t" << Energy << "\t" << thermostat_kinetic << + "\t" << thermostat_potential << "\t" << barostat_kinetic << + "\t" << barostat_potential << "\t" << conservedQuantity << endl; + + return conservedQuantity; +}