ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/trunk/OOPSE/libmdtools/NPTi.cpp
(Generate patch)

Comparing trunk/OOPSE/libmdtools/NPTi.cpp (file contents):
Revision 772 by gezelter, Fri Sep 19 16:01:07 2003 UTC vs.
Revision 853 by mmeineke, Thu Nov 6 19:11:38 2003 UTC

# Line 1 | Line 1
1 < #include <cmath>
1 > #include <math.h>
2   #include "Atom.hpp"
3   #include "SRI.hpp"
4   #include "AbstractClasses.hpp"
# Line 7 | Line 7
7   #include "Thermo.hpp"
8   #include "ReadWrite.hpp"
9   #include "Integrator.hpp"
10 < #include "simError.h"
10 > #include "simError.h"
11  
12   #ifdef IS_MPI
13   #include "mpiSimulation.hpp"
# Line 17 | Line 17
17   // modification of the Hoover algorithm:
18   //
19   //    Melchionna, S., Ciccotti, G., and Holian, B. L., 1993,
20 < //       Molec. Phys., 78, 533.
20 > //       Molec. Phys., 78, 533.
21   //
22   //           and
23 < //
23 > //
24   //    Hoover, W. G., 1986, Phys. Rev. A, 34, 2499.
25  
26   template<typename T> NPTi<T>::NPTi ( SimInfo *theInfo, ForceFields* the_ff):
27    T( theInfo, the_ff )
28   {
29 <  chi = 0.0;
29 >  GenericData* data;
30 >  DoubleArrayData * etaValue;
31 >  vector<double> etaArray;
32 >
33    eta = 0.0;
34 <  integralOfChidt = 0.0;
32 <  have_tau_thermostat = 0;
33 <  have_tau_barostat = 0;
34 <  have_target_temp = 0;
35 <  have_target_pressure = 0;
36 <  have_chi_tolerance = 0;
37 <  have_eta_tolerance = 0;
38 <  have_pos_iter_tolerance = 0;
34 >  oldEta = 0.0;
35  
36 <  oldPos = new double[3*nAtoms];
37 <  oldVel = new double[3*nAtoms];
38 <  oldJi = new double[3*nAtoms];
39 < #ifdef IS_MPI
44 <  Nparticles = mpiSim->getTotAtoms();
45 < #else
46 <  Nparticles = theInfo->n_atoms;
47 < #endif
36 >  // retrieve eta from simInfo if
37 >  data = info->getProperty(ETAVALUE_ID);
38 >  if(data){
39 >    etaValue = dynamic_cast<DoubleArrayData*>(data);
40  
41 +    if(etaValue){
42 +      etaArray = etaValue->getData();
43 +      eta = etaArray[0];
44 +      oldEta = eta;
45 +    }
46 +  }
47 +
48   }
49  
50   template<typename T> NPTi<T>::~NPTi() {
51 <  delete[] oldPos;
53 <  delete[] oldVel;
54 <  delete[] oldJi;
51 >  //nothing for now
52   }
53  
54 < template<typename T> void NPTi<T>::moveA() {
55 <
56 <  //new version of NPTi
57 <  int i, j, k;
61 <  DirectionalAtom* dAtom;
62 <  double Tb[3], ji[3];
63 <  double A[3][3], I[3][3];
64 <  double angle, mass;
65 <  double vel[3], pos[3], frc[3];
54 > template<typename T> void NPTi<T>::resetIntegrator() {
55 >  eta = 0.0;
56 >  T::resetIntegrator();
57 > }
58  
59 <  double rj[3];
60 <  double instaTemp, instaPress, instaVol;
61 <  double tt2, tb2, scaleFactor;
62 <  double COM[3];
59 > template<typename T> void NPTi<T>::evolveEtaA() {
60 >  eta += dt2 * ( instaVol * (instaPress - targetPressure) /
61 >                 (p_convert*NkBT*tb2));
62 >  oldEta = eta;
63 > }
64  
65 <  tt2 = tauThermostat * tauThermostat;
73 <  tb2 = tauBarostat * tauBarostat;
65 > template<typename T> void NPTi<T>::evolveEtaB() {
66  
67 <  instaTemp = tStats->getTemperature();
68 <  instaPress = tStats->getPressure();
69 <  instaVol = tStats->getVolume();
70 <  
79 <  tStats->getCOM(COM);
80 <  
81 <  //evolve velocity half step
82 <  for( i=0; i<nAtoms; i++ ){
67 >  prevEta = eta;
68 >  eta = oldEta + dt2 * ( instaVol * (instaPress - targetPressure) /
69 >                 (p_convert*NkBT*tb2));
70 > }
71  
72 <    atoms[i]->getVel( vel );
73 <    atoms[i]->getFrc( frc );
72 > template<typename T> void NPTi<T>::getVelScaleA(double sc[3], double vel[3]) {
73 >  int i;
74  
75 <    mass = atoms[i]->getMass();
75 >  for(i=0; i<3; i++) sc[i] = vel[i] * ( chi + eta );
76 > }
77  
78 <    for (j=0; j < 3; j++) {
79 <      // velocity half step
91 <      vel[j] += dt2 * ((frc[j] / mass ) * eConvert - vel[j]*(chi + eta));
92 <    }
78 > template<typename T> void NPTi<T>::getVelScaleB(double sc[3], int index ){
79 >  int i;
80  
81 <    atoms[i]->setVel( vel );
82 <  
96 <    if( atoms[i]->isDirectional() ){
81 >  for(i=0; i<3; i++) sc[i] = oldVel[index*3 + i] * ( chi + eta );
82 > }
83  
98      dAtom = (DirectionalAtom *)atoms[i];
84  
85 <      // get and convert the torque to body frame
86 <      
87 <      dAtom->getTrq( Tb );
103 <      dAtom->lab2Body( Tb );
104 <      
105 <      // get the angular momentum, and propagate a half step
85 > template<typename T> void NPTi<T>::getPosScale(double pos[3], double COM[3],
86 >                                               int index, double sc[3]){
87 >  int j;
88  
89 <      dAtom->getJ( ji );
89 >  for(j=0; j<3; j++)
90 >    sc[j] = ( oldPos[index*3+j] + pos[j]) / 2.0 - COM[j];
91  
92 <      for (j=0; j < 3; j++)
93 <        ji[j] += dt2 * (Tb[j] * eConvert - ji[j]*chi);
94 <      
112 <      // use the angular velocities to propagate the rotation matrix a
113 <      // full time step
92 >  for(j=0; j<3; j++)
93 >    sc[j] *= eta;
94 > }
95  
96 <      dAtom->getA(A);
116 <      dAtom->getI(I);
117 <    
118 <      // rotate about the x-axis      
119 <      angle = dt2 * ji[0] / I[0][0];
120 <      this->rotate( 1, 2, angle, ji, A );
96 > template<typename T> void NPTi<T>::scaleSimBox( void ){
97  
98 <      // rotate about the y-axis
123 <      angle = dt2 * ji[1] / I[1][1];
124 <      this->rotate( 2, 0, angle, ji, A );
125 <      
126 <      // rotate about the z-axis
127 <      angle = dt * ji[2] / I[2][2];
128 <      this->rotate( 0, 1, angle, ji, A);
129 <      
130 <      // rotate about the y-axis
131 <      angle = dt2 * ji[1] / I[1][1];
132 <      this->rotate( 2, 0, angle, ji, A );
133 <      
134 <       // rotate about the x-axis
135 <      angle = dt2 * ji[0] / I[0][0];
136 <      this->rotate( 1, 2, angle, ji, A );
137 <      
138 <      dAtom->setJ( ji );
139 <      dAtom->setA( A  );    
140 <    }    
141 <  }
98 >  double scaleFactor;
99  
143  // advance chi half step
144  
145  chi += dt2 * ( instaTemp / targetTemp - 1.0) / tt2;
146
147  // calculate the integral of chidt
148
149  integralOfChidt += dt2*chi;
150
151  // advance eta half step
152
153  eta += dt2 * ( instaVol * (instaPress - targetPressure) / (p_convert*NkBT*tb2));
154
155  //save the old positions
156  for(i = 0; i < nAtoms; i++){
157    atoms[i]->getPos(pos);
158    for(j = 0; j < 3; j++)
159      oldPos[i*3 + j] = pos[j];
160  }
161  
162  //the first estimation of r(t+dt) is equal to  r(t)
163    
164  for(k = 0; k < 4; k ++){
165
166    for(i =0 ; i < nAtoms; i++){
167
168      atoms[i]->getVel(vel);
169      atoms[i]->getPos(pos);
170
171      for(j = 0; j < 3; j++)
172        rj[j] = (oldPos[i*3 + j] + pos[j])/2 - COM[j];    
173      
174      for(j = 0; j < 3; j++)
175        pos[j] = oldPos[i*3 + j] + dt*(vel[j] + eta*rj[j]);
176
177      atoms[i]->setPos( pos );
178    }
179    
180    if (nConstrained){
181      constrainA();
182    }
183  }
184    
185
186  // Scale the box after all the positions have been moved:
187  
100    scaleFactor = exp(dt*eta);
101  
102    if ((scaleFactor > 1.1) || (scaleFactor < 0.9)) {
# Line 195 | Line 107 | template<typename T> void NPTi<T>::moveA() {
107               );
108      painCave.isFatal = 1;
109      simError();
110 <  } else {        
111 <    info->scaleBox(scaleFactor);      
200 <  }  
201 <
202 < }
203 <
204 < template<typename T> void NPTi<T>::moveB( void ){
205 <  
206 <  //new version of NPTi
207 <  int i, j, k;
208 <  DirectionalAtom* dAtom;
209 <  double Tb[3], ji[3];
210 <  double vel[3], frc[3];
211 <  double mass;
212 <
213 <  double instaTemp, instaPress, instaVol;
214 <  double tt2, tb2;
215 <  double oldChi, prevChi;
216 <  double oldEta, prevEta;
217 <  
218 <  tt2 = tauThermostat * tauThermostat;
219 <  tb2 = tauBarostat * tauBarostat;
220 <
221 <  // Set things up for the iteration:
222 <
223 <  oldChi = chi;
224 <  oldEta = eta;
225 <
226 <  for( i=0; i<nAtoms; i++ ){
227 <
228 <    atoms[i]->getVel( vel );
229 <
230 <    for (j=0; j < 3; j++)
231 <      oldVel[3*i + j]  = vel[j];
232 <
233 <    if( atoms[i]->isDirectional() ){
234 <
235 <      dAtom = (DirectionalAtom *)atoms[i];
236 <
237 <      dAtom->getJ( ji );
238 <
239 <      for (j=0; j < 3; j++)
240 <        oldJi[3*i + j] = ji[j];
241 <
242 <    }
110 >  } else {
111 >    info->scaleBox(scaleFactor);
112    }
113  
245  // do the iteration:
246
247  instaVol = tStats->getVolume();
248  
249  for (k=0; k < 4; k++) {
250    
251    instaTemp = tStats->getTemperature();
252    instaPress = tStats->getPressure();
253
254    // evolve chi another half step using the temperature at t + dt/2
255
256    prevChi = chi;
257    chi = oldChi + dt2 * ( instaTemp / targetTemp - 1.0) / tt2;
258
259    prevEta = eta;
260
261    // advance eta half step and calculate scale factor for velocity
262
263    eta = oldEta + dt2 * ( instaVol * (instaPress - targetPressure) /
264       (p_convert*NkBT*tb2));
265
266  
267    for( i=0; i<nAtoms; i++ ){
268
269      atoms[i]->getFrc( frc );
270      atoms[i]->getVel(vel);
271      
272      mass = atoms[i]->getMass();
273      
274      // velocity half step
275      for (j=0; j < 3; j++)
276        vel[j] = oldVel[3*i+j] + dt2 * ((frc[j] / mass ) * eConvert - oldVel[3*i + j]*(chi + eta));
277      
278      atoms[i]->setVel( vel );
279      
280      if( atoms[i]->isDirectional() ){
281
282        dAtom = (DirectionalAtom *)atoms[i];
283  
284        // get and convert the torque to body frame      
285  
286        dAtom->getTrq( Tb );
287        dAtom->lab2Body( Tb );      
288            
289        for (j=0; j < 3; j++)
290          ji[j] = oldJi[3*i + j] + dt2 * (Tb[j] * eConvert - oldJi[3*i+j]*chi);
291      
292          dAtom->setJ( ji );
293      }
294    }
295    
296    if (nConstrained){
297      constrainB();
298    }    
299    
300    if (fabs(prevChi - chi) <=
301        chiTolerance && fabs(prevEta -eta) <= etaTolerance)
302      break;
303  }
304
305  //calculate integral of chidt
306  integralOfChidt += dt2*chi;
307
114   }
115  
116 < template<typename T> void NPTi<T>::resetIntegrator() {
311 <  chi = 0.0;
312 <  eta = 0.0;
313 < }
116 > template<typename T> bool NPTi<T>::etaConverged() {
117  
118 < template<typename T> int NPTi<T>::readyCheck() {
316 <
317 <  //check parent's readyCheck() first
318 <  if (T::readyCheck() == -1)
319 <    return -1;
320 <
321 <  // First check to see if we have a target temperature.
322 <  // Not having one is fatal.
323 <  
324 <  if (!have_target_temp) {
325 <    sprintf( painCave.errMsg,
326 <             "NPTi error: You can't use the NPTi integrator\n"
327 <             "   without a targetTemp!\n"
328 <             );
329 <    painCave.isFatal = 1;
330 <    simError();
331 <    return -1;
332 <  }
333 <
334 <  if (!have_target_pressure) {
335 <    sprintf( painCave.errMsg,
336 <             "NPTi error: You can't use the NPTi integrator\n"
337 <             "   without a targetPressure!\n"
338 <             );
339 <    painCave.isFatal = 1;
340 <    simError();
341 <    return -1;
342 <  }
343 <  
344 <  // We must set tauThermostat.
345 <  
346 <  if (!have_tau_thermostat) {
347 <    sprintf( painCave.errMsg,
348 <             "NPTi error: If you use the NPTi\n"
349 <             "   integrator, you must set tauThermostat.\n");
350 <    painCave.isFatal = 1;
351 <    simError();
352 <    return -1;
353 <  }    
354 <
355 <  // We must set tauBarostat.
356 <  
357 <  if (!have_tau_barostat) {
358 <    sprintf( painCave.errMsg,
359 <             "NPTi error: If you use the NPTi\n"
360 <             "   integrator, you must set tauBarostat.\n");
361 <    painCave.isFatal = 1;
362 <    simError();
363 <    return -1;
364 <  }    
365 <
366 <  if (!have_chi_tolerance) {
367 <    sprintf( painCave.errMsg,
368 <             "NPTi warning: setting chi tolerance to 1e-6\n");
369 <    chiTolerance = 1e-6;
370 <    have_chi_tolerance = 1;
371 <    painCave.isFatal = 0;
372 <    simError();
373 <  }
374 <
375 <  if (!have_eta_tolerance) {
376 <    sprintf( painCave.errMsg,
377 <             "NPTi warning: setting eta tolerance to 1e-6\n");
378 <    etaTolerance = 1e-6;
379 <    have_eta_tolerance = 1;
380 <    painCave.isFatal = 0;
381 <    simError();
382 <  }
383 <  
384 <  
385 <  // We need NkBT a lot, so just set it here: This is the RAW number
386 <  // of particles, so no subtraction or addition of constraints or
387 <  // orientational degrees of freedom:
388 <  
389 <  NkBT = (double)Nparticles * kB * targetTemp;
390 <  
391 <  // fkBT is used because the thermostat operates on more degrees of freedom
392 <  // than the barostat (when there are particles with orientational degrees
393 <  // of freedom).  ndf = 3 * (n_atoms + n_oriented -1) - n_constraint - nZcons
394 <  
395 <  fkBT = (double)info->ndf * kB * targetTemp;
396 <
397 <  return 1;
118 >  return ( fabs(prevEta - eta) <= etaTolerance );
119   }
120  
121   template<typename T> double NPTi<T>::getConservedQuantity(void){
122  
123    double conservedQuantity;
403  double Three_NkBT;
124    double Energy;
125    double thermostat_kinetic;
126    double thermostat_potential;
127    double barostat_kinetic;
128    double barostat_potential;
409  double tb2;
410  double eta2;
129  
130    Energy = tStats->getTotalE();
131  
132 <  thermostat_kinetic = fkBT* tauThermostat * tauThermostat * chi * chi /
132 >  thermostat_kinetic = fkBT* tt2 * chi * chi /
133      (2.0 * eConvert);
134  
135    thermostat_potential = fkBT* integralOfChidt / eConvert;
136  
137  
138 <  barostat_kinetic = 3.0 * NkBT * tauBarostat * tauBarostat * eta * eta /
138 >  barostat_kinetic = 3.0 * NkBT * tb2 * eta * eta /
139      (2.0 * eConvert);
140 <  
141 <  barostat_potential = (targetPressure * tStats->getVolume() / p_convert) /
140 >
141 >  barostat_potential = (targetPressure * tStats->getVolume() / p_convert) /
142      eConvert;
143  
144    conservedQuantity = Energy + thermostat_kinetic + thermostat_potential +
145      barostat_kinetic + barostat_potential;
428  
429  cout.width(8);
430  cout.precision(8);
146  
147 <  cerr << info->getTime() << "\t" << Energy << "\t" << thermostat_kinetic <<
148 <      "\t" << thermostat_potential << "\t" << barostat_kinetic <<
434 <      "\t" << barostat_potential << "\t" << conservedQuantity << endl;
147 > //   cout.width(8);
148 > //   cout.precision(8);
149  
150 <  return conservedQuantity;
150 > //   cerr << info->getTime() << "\t" << Energy << "\t" << thermostat_kinetic <<
151 > //       "\t" << thermostat_potential << "\t" << barostat_kinetic <<
152 > //       "\t" << barostat_potential << "\t" << conservedQuantity << endl;
153 >  return conservedQuantity;
154   }
155 +
156 + template<typename T> string NPTi<T>::getAdditionalParameters(void){
157 +  string parameters;
158 +  const int BUFFERSIZE = 2000; // size of the read buffer
159 +  char buffer[BUFFERSIZE];
160 +
161 +  sprintf(buffer,"\t%G\t%G;", chi, integralOfChidt);
162 +  parameters += buffer;
163 +
164 +  sprintf(buffer,"\t%G\t0\t0;", eta);
165 +  parameters += buffer;
166 +
167 +  sprintf(buffer,"\t0\t%G\t0;", eta);
168 +  parameters += buffer;
169 +
170 +  sprintf(buffer,"\t0\t0\t%G;", eta);
171 +  parameters += buffer;
172 +
173 +  return parameters;
174 +
175 + }

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines