ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/trunk/OOPSE/libmdtools/NPTi.cpp
Revision: 772
Committed: Fri Sep 19 16:01:07 2003 UTC (20 years, 9 months ago) by gezelter
File size: 10283 byte(s)
Log Message:
fixed bugs in NPTf, found (nearly) conserved quantities for both NPTi
and NPTf

File Contents

# Content
1 #include <cmath>
2 #include "Atom.hpp"
3 #include "SRI.hpp"
4 #include "AbstractClasses.hpp"
5 #include "SimInfo.hpp"
6 #include "ForceFields.hpp"
7 #include "Thermo.hpp"
8 #include "ReadWrite.hpp"
9 #include "Integrator.hpp"
10 #include "simError.h"
11
12 #ifdef IS_MPI
13 #include "mpiSimulation.hpp"
14 #endif
15
16 // Basic isotropic thermostating and barostating via the Melchionna
17 // modification of the Hoover algorithm:
18 //
19 // Melchionna, S., Ciccotti, G., and Holian, B. L., 1993,
20 // Molec. Phys., 78, 533.
21 //
22 // and
23 //
24 // Hoover, W. G., 1986, Phys. Rev. A, 34, 2499.
25
26 template<typename T> NPTi<T>::NPTi ( SimInfo *theInfo, ForceFields* the_ff):
27 T( theInfo, the_ff )
28 {
29 chi = 0.0;
30 eta = 0.0;
31 integralOfChidt = 0.0;
32 have_tau_thermostat = 0;
33 have_tau_barostat = 0;
34 have_target_temp = 0;
35 have_target_pressure = 0;
36 have_chi_tolerance = 0;
37 have_eta_tolerance = 0;
38 have_pos_iter_tolerance = 0;
39
40 oldPos = new double[3*nAtoms];
41 oldVel = new double[3*nAtoms];
42 oldJi = new double[3*nAtoms];
43 #ifdef IS_MPI
44 Nparticles = mpiSim->getTotAtoms();
45 #else
46 Nparticles = theInfo->n_atoms;
47 #endif
48
49 }
50
51 template<typename T> NPTi<T>::~NPTi() {
52 delete[] oldPos;
53 delete[] oldVel;
54 delete[] oldJi;
55 }
56
57 template<typename T> void NPTi<T>::moveA() {
58
59 //new version of NPTi
60 int i, j, k;
61 DirectionalAtom* dAtom;
62 double Tb[3], ji[3];
63 double A[3][3], I[3][3];
64 double angle, mass;
65 double vel[3], pos[3], frc[3];
66
67 double rj[3];
68 double instaTemp, instaPress, instaVol;
69 double tt2, tb2, scaleFactor;
70 double COM[3];
71
72 tt2 = tauThermostat * tauThermostat;
73 tb2 = tauBarostat * tauBarostat;
74
75 instaTemp = tStats->getTemperature();
76 instaPress = tStats->getPressure();
77 instaVol = tStats->getVolume();
78
79 tStats->getCOM(COM);
80
81 //evolve velocity half step
82 for( i=0; i<nAtoms; i++ ){
83
84 atoms[i]->getVel( vel );
85 atoms[i]->getFrc( frc );
86
87 mass = atoms[i]->getMass();
88
89 for (j=0; j < 3; j++) {
90 // velocity half step
91 vel[j] += dt2 * ((frc[j] / mass ) * eConvert - vel[j]*(chi + eta));
92 }
93
94 atoms[i]->setVel( vel );
95
96 if( atoms[i]->isDirectional() ){
97
98 dAtom = (DirectionalAtom *)atoms[i];
99
100 // get and convert the torque to body frame
101
102 dAtom->getTrq( Tb );
103 dAtom->lab2Body( Tb );
104
105 // get the angular momentum, and propagate a half step
106
107 dAtom->getJ( ji );
108
109 for (j=0; j < 3; j++)
110 ji[j] += dt2 * (Tb[j] * eConvert - ji[j]*chi);
111
112 // use the angular velocities to propagate the rotation matrix a
113 // full time step
114
115 dAtom->getA(A);
116 dAtom->getI(I);
117
118 // rotate about the x-axis
119 angle = dt2 * ji[0] / I[0][0];
120 this->rotate( 1, 2, angle, ji, A );
121
122 // rotate about the y-axis
123 angle = dt2 * ji[1] / I[1][1];
124 this->rotate( 2, 0, angle, ji, A );
125
126 // rotate about the z-axis
127 angle = dt * ji[2] / I[2][2];
128 this->rotate( 0, 1, angle, ji, A);
129
130 // rotate about the y-axis
131 angle = dt2 * ji[1] / I[1][1];
132 this->rotate( 2, 0, angle, ji, A );
133
134 // rotate about the x-axis
135 angle = dt2 * ji[0] / I[0][0];
136 this->rotate( 1, 2, angle, ji, A );
137
138 dAtom->setJ( ji );
139 dAtom->setA( A );
140 }
141 }
142
143 // advance chi half step
144
145 chi += dt2 * ( instaTemp / targetTemp - 1.0) / tt2;
146
147 // calculate the integral of chidt
148
149 integralOfChidt += dt2*chi;
150
151 // advance eta half step
152
153 eta += dt2 * ( instaVol * (instaPress - targetPressure) / (p_convert*NkBT*tb2));
154
155 //save the old positions
156 for(i = 0; i < nAtoms; i++){
157 atoms[i]->getPos(pos);
158 for(j = 0; j < 3; j++)
159 oldPos[i*3 + j] = pos[j];
160 }
161
162 //the first estimation of r(t+dt) is equal to r(t)
163
164 for(k = 0; k < 4; k ++){
165
166 for(i =0 ; i < nAtoms; i++){
167
168 atoms[i]->getVel(vel);
169 atoms[i]->getPos(pos);
170
171 for(j = 0; j < 3; j++)
172 rj[j] = (oldPos[i*3 + j] + pos[j])/2 - COM[j];
173
174 for(j = 0; j < 3; j++)
175 pos[j] = oldPos[i*3 + j] + dt*(vel[j] + eta*rj[j]);
176
177 atoms[i]->setPos( pos );
178 }
179
180 if (nConstrained){
181 constrainA();
182 }
183 }
184
185
186 // Scale the box after all the positions have been moved:
187
188 scaleFactor = exp(dt*eta);
189
190 if ((scaleFactor > 1.1) || (scaleFactor < 0.9)) {
191 sprintf( painCave.errMsg,
192 "NPTi error: Attempting a Box scaling of more than 10 percent"
193 " check your tauBarostat, as it is probably too small!\n"
194 " eta = %lf, scaleFactor = %lf\n", eta, scaleFactor
195 );
196 painCave.isFatal = 1;
197 simError();
198 } else {
199 info->scaleBox(scaleFactor);
200 }
201
202 }
203
204 template<typename T> void NPTi<T>::moveB( void ){
205
206 //new version of NPTi
207 int i, j, k;
208 DirectionalAtom* dAtom;
209 double Tb[3], ji[3];
210 double vel[3], frc[3];
211 double mass;
212
213 double instaTemp, instaPress, instaVol;
214 double tt2, tb2;
215 double oldChi, prevChi;
216 double oldEta, prevEta;
217
218 tt2 = tauThermostat * tauThermostat;
219 tb2 = tauBarostat * tauBarostat;
220
221 // Set things up for the iteration:
222
223 oldChi = chi;
224 oldEta = eta;
225
226 for( i=0; i<nAtoms; i++ ){
227
228 atoms[i]->getVel( vel );
229
230 for (j=0; j < 3; j++)
231 oldVel[3*i + j] = vel[j];
232
233 if( atoms[i]->isDirectional() ){
234
235 dAtom = (DirectionalAtom *)atoms[i];
236
237 dAtom->getJ( ji );
238
239 for (j=0; j < 3; j++)
240 oldJi[3*i + j] = ji[j];
241
242 }
243 }
244
245 // do the iteration:
246
247 instaVol = tStats->getVolume();
248
249 for (k=0; k < 4; k++) {
250
251 instaTemp = tStats->getTemperature();
252 instaPress = tStats->getPressure();
253
254 // evolve chi another half step using the temperature at t + dt/2
255
256 prevChi = chi;
257 chi = oldChi + dt2 * ( instaTemp / targetTemp - 1.0) / tt2;
258
259 prevEta = eta;
260
261 // advance eta half step and calculate scale factor for velocity
262
263 eta = oldEta + dt2 * ( instaVol * (instaPress - targetPressure) /
264 (p_convert*NkBT*tb2));
265
266
267 for( i=0; i<nAtoms; i++ ){
268
269 atoms[i]->getFrc( frc );
270 atoms[i]->getVel(vel);
271
272 mass = atoms[i]->getMass();
273
274 // velocity half step
275 for (j=0; j < 3; j++)
276 vel[j] = oldVel[3*i+j] + dt2 * ((frc[j] / mass ) * eConvert - oldVel[3*i + j]*(chi + eta));
277
278 atoms[i]->setVel( vel );
279
280 if( atoms[i]->isDirectional() ){
281
282 dAtom = (DirectionalAtom *)atoms[i];
283
284 // get and convert the torque to body frame
285
286 dAtom->getTrq( Tb );
287 dAtom->lab2Body( Tb );
288
289 for (j=0; j < 3; j++)
290 ji[j] = oldJi[3*i + j] + dt2 * (Tb[j] * eConvert - oldJi[3*i+j]*chi);
291
292 dAtom->setJ( ji );
293 }
294 }
295
296 if (nConstrained){
297 constrainB();
298 }
299
300 if (fabs(prevChi - chi) <=
301 chiTolerance && fabs(prevEta -eta) <= etaTolerance)
302 break;
303 }
304
305 //calculate integral of chidt
306 integralOfChidt += dt2*chi;
307
308 }
309
310 template<typename T> void NPTi<T>::resetIntegrator() {
311 chi = 0.0;
312 eta = 0.0;
313 }
314
315 template<typename T> int NPTi<T>::readyCheck() {
316
317 //check parent's readyCheck() first
318 if (T::readyCheck() == -1)
319 return -1;
320
321 // First check to see if we have a target temperature.
322 // Not having one is fatal.
323
324 if (!have_target_temp) {
325 sprintf( painCave.errMsg,
326 "NPTi error: You can't use the NPTi integrator\n"
327 " without a targetTemp!\n"
328 );
329 painCave.isFatal = 1;
330 simError();
331 return -1;
332 }
333
334 if (!have_target_pressure) {
335 sprintf( painCave.errMsg,
336 "NPTi error: You can't use the NPTi integrator\n"
337 " without a targetPressure!\n"
338 );
339 painCave.isFatal = 1;
340 simError();
341 return -1;
342 }
343
344 // We must set tauThermostat.
345
346 if (!have_tau_thermostat) {
347 sprintf( painCave.errMsg,
348 "NPTi error: If you use the NPTi\n"
349 " integrator, you must set tauThermostat.\n");
350 painCave.isFatal = 1;
351 simError();
352 return -1;
353 }
354
355 // We must set tauBarostat.
356
357 if (!have_tau_barostat) {
358 sprintf( painCave.errMsg,
359 "NPTi error: If you use the NPTi\n"
360 " integrator, you must set tauBarostat.\n");
361 painCave.isFatal = 1;
362 simError();
363 return -1;
364 }
365
366 if (!have_chi_tolerance) {
367 sprintf( painCave.errMsg,
368 "NPTi warning: setting chi tolerance to 1e-6\n");
369 chiTolerance = 1e-6;
370 have_chi_tolerance = 1;
371 painCave.isFatal = 0;
372 simError();
373 }
374
375 if (!have_eta_tolerance) {
376 sprintf( painCave.errMsg,
377 "NPTi warning: setting eta tolerance to 1e-6\n");
378 etaTolerance = 1e-6;
379 have_eta_tolerance = 1;
380 painCave.isFatal = 0;
381 simError();
382 }
383
384
385 // We need NkBT a lot, so just set it here: This is the RAW number
386 // of particles, so no subtraction or addition of constraints or
387 // orientational degrees of freedom:
388
389 NkBT = (double)Nparticles * kB * targetTemp;
390
391 // fkBT is used because the thermostat operates on more degrees of freedom
392 // than the barostat (when there are particles with orientational degrees
393 // of freedom). ndf = 3 * (n_atoms + n_oriented -1) - n_constraint - nZcons
394
395 fkBT = (double)info->ndf * kB * targetTemp;
396
397 return 1;
398 }
399
400 template<typename T> double NPTi<T>::getConservedQuantity(void){
401
402 double conservedQuantity;
403 double Three_NkBT;
404 double Energy;
405 double thermostat_kinetic;
406 double thermostat_potential;
407 double barostat_kinetic;
408 double barostat_potential;
409 double tb2;
410 double eta2;
411
412 Energy = tStats->getTotalE();
413
414 thermostat_kinetic = fkBT* tauThermostat * tauThermostat * chi * chi /
415 (2.0 * eConvert);
416
417 thermostat_potential = fkBT* integralOfChidt / eConvert;
418
419
420 barostat_kinetic = 3.0 * NkBT * tauBarostat * tauBarostat * eta * eta /
421 (2.0 * eConvert);
422
423 barostat_potential = (targetPressure * tStats->getVolume() / p_convert) /
424 eConvert;
425
426 conservedQuantity = Energy + thermostat_kinetic + thermostat_potential +
427 barostat_kinetic + barostat_potential;
428
429 cout.width(8);
430 cout.precision(8);
431
432 cerr << info->getTime() << "\t" << Energy << "\t" << thermostat_kinetic <<
433 "\t" << thermostat_potential << "\t" << barostat_kinetic <<
434 "\t" << barostat_potential << "\t" << conservedQuantity << endl;
435
436 return conservedQuantity;
437 }