ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/trunk/OOPSE/libmdtools/NPTzm.cpp
Revision: 787
Committed: Thu Sep 25 19:27:15 2003 UTC (20 years, 9 months ago) by mmeineke
File size: 8575 byte(s)
Log Message:
cleaned things with gcc -Wall and g++ -Wall

File Contents

# User Rev Content
1 mmeineke 755 #include <cmath>
2     #include "Atom.hpp"
3     #include "Molecule.hpp"
4     #include "SRI.hpp"
5     #include "AbstractClasses.hpp"
6     #include "SimInfo.hpp"
7     #include "ForceFields.hpp"
8     #include "Thermo.hpp"
9     #include "ReadWrite.hpp"
10     #include "Integrator.hpp"
11     #include "simError.h"
12    
13    
14     // Basic isotropic thermostating and barostating via the Melchionna
15     // modification of the Hoover algorithm:
16     //
17     // Melchionna, S., Ciccotti, G., and Holian, B. L., 1993,
18     // Molec. Phys., 78, 533.
19     //
20     // and
21     //
22     // Hoover, W. G., 1986, Phys. Rev. A, 34, 2499.
23    
24     // The NPTzm variant scales the molecular center-of-mass coordinates
25     // instead of the atomic coordinates
26    
27     template<typename T> NPTzm<T>::NPTzm ( SimInfo *theInfo, ForceFields* the_ff):
28     T( theInfo, the_ff )
29     {
30     chi = 0.0;
31     eta = 0.0;
32     etaZ = 0.0;
33     have_tau_thermostat = 0;
34     have_tau_barostat = 0;
35     have_target_temp = 0;
36     have_target_pressure = 0;
37     }
38    
39     template<typename T> void NPTzm<T>::moveA() {
40    
41     int i, j, k;
42     DirectionalAtom* dAtom;
43     double Tb[3], ji[3];
44     double A[3][3], I[3][3];
45     double angle, mass;
46     double vel[3], pos[3], frc[3];
47    
48     double rj[3];
49     double instaTemp, instaPress, instaPressZ, instaVol;
50     double tt2, tb2, scaleFactor, scaleFactorZ, scaleFactorXY, bigFactor, etaXY;
51     double hm[3][3], hmnew[3][3], scaleMat[3][3];
52     double scF3, scFxy2;
53    
54    
55     int nInMol;
56     double rc[3];
57    
58     nMols = info->n_mol;
59     myMolecules = info->molecules;
60    
61     tt2 = tauThermostat * tauThermostat;
62     tb2 = tauBarostat * tauBarostat;
63    
64     instaTemp = tStats->getTemperature();
65     instaPress = tStats->getPressure();
66     instaPressZ = tStats->getPressureZ();
67     instaVol = tStats->getVolume();
68    
69     // first evolve chi a half step
70    
71     chi += dt2 * ( instaTemp / targetTemp - 1.0) / tt2;
72     eta += dt2 * ( instaVol * (instaPress - targetPressure) /
73     (p_convert*NkBT*tb2));
74     etaZ += dt2 * ( instaVol * (instaPressZ - targetPressure) /
75     (p_convert*NkBT*tb2));
76    
77     scaleFactorZ = exp(dt*etaZ);
78     scaleFactor = exp(dt*eta);
79    
80     scF3 = scaleFactor * scaleFactor * scaleFactor;
81     scFxy2 = scF3 / scaleFactorZ;
82     scaleFactorXY = sqrt( scFxy2 );
83    
84     etaXY = log( scaleFactorXY ) / dt;
85    
86     for( i = 0; i < nMols; i++) {
87    
88     myMolecules[i].getCOM(rc);
89    
90     nInMol = myMolecules[i].getNAtoms();
91     myAtoms = myMolecules[i].getMyAtoms();
92    
93     // find the minimum image coordinates of the molecular centers of mass:
94    
95     info->wrapVector(rc);
96    
97     for (j = 0; j < nInMol; j++) {
98    
99     if(myAtoms[j] != NULL) {
100    
101     myAtoms[j]->getVel( vel );
102     myAtoms[j]->getPos( pos );
103     myAtoms[j]->getFrc( frc );
104    
105     mass = myAtoms[j]->getMass();
106    
107     for (k=0; k < 2; k++)
108     vel[k] += dt2 * ((frc[k] / mass ) * eConvert - vel[k]*(chi+etaXY));
109     vel[2] += dt2 * ((frc[2] / mass ) * eConvert - vel[2]*(chi+etaZ));
110    
111     myAtoms[j]->setVel( vel );
112    
113     for (k = 0; k < 2; k++)
114     pos[k] += dt * (vel[k] + etaXY*rc[k]);
115     pos[2] += dt * (vel[2] + etaZ*rc[2]);
116    
117     myAtoms[j]->setPos( pos );
118    
119     if( myAtoms[j]->isDirectional() ){
120    
121     dAtom = (DirectionalAtom *)myAtoms[j];
122    
123     // get and convert the torque to body frame
124    
125     dAtom->getTrq( Tb );
126     dAtom->lab2Body( Tb );
127    
128     // get the angular momentum, and propagate a half step
129    
130     dAtom->getJ( ji );
131    
132     for (k=0; k < 3; k++)
133     ji[k] += dt2 * (Tb[k] * eConvert - ji[k]*chi);
134    
135     // use the angular velocities to propagate the rotation matrix a
136     // full time step
137    
138     dAtom->getA(A);
139     dAtom->getI(I);
140    
141     // rotate about the x-axis
142     angle = dt2 * ji[0] / I[0][0];
143     this->rotate( 1, 2, angle, ji, A );
144    
145     // rotate about the y-axis
146     angle = dt2 * ji[1] / I[1][1];
147     this->rotate( 2, 0, angle, ji, A );
148    
149     // rotate about the z-axis
150     angle = dt * ji[2] / I[2][2];
151     this->rotate( 0, 1, angle, ji, A);
152    
153     // rotate about the y-axis
154     angle = dt2 * ji[1] / I[1][1];
155     this->rotate( 2, 0, angle, ji, A );
156    
157     // rotate about the x-axis
158     angle = dt2 * ji[0] / I[0][0];
159     this->rotate( 1, 2, angle, ji, A );
160    
161     dAtom->setJ( ji );
162     dAtom->setA( A );
163     }
164     }
165     }
166     }
167    
168     // Scale the box after all the positions have been moved:
169    
170    
171    
172     bigFactor = abs( 1.0 - scaleFactorZ );
173     if( abs(1.0 - scaleFactor) > bigFactor )
174     bigFactor = abs(1.0 - scaleFactor);
175    
176     if (bigFactor > 0.1) {
177     sprintf( painCave.errMsg,
178     "NPTzm error: Attempting a Box scaling of more than 10 percent"
179     " check your tauBarostat, as it is probably too small!\n"
180     " eta = %lf, scaleFactor = %lf\n"
181     " etaZ = %lf, scaleFactorZ = %lf\n",
182     eta, scaleFactor,
183     etaZ, scaleFactorZ
184     );
185     painCave.isFatal = 1;
186     simError();
187     } else {
188    
189     for(i=0;i<3;i++)
190     for(j=0;j<3;j++)
191     scaleBox[i][j] = 0.0;
192    
193    
194    
195     scaleBox[0][0] = scaleFactorXY;
196     scaleBox[1][1] = scaleFactorXY;
197     scaleBox[2][2] = scaleFactorZ;
198    
199     info->getBoxM( hm );
200     info->matMul3( hm, scaleBox, hmnew );
201    
202     info->setBoxM( hmnew );
203     }
204     }
205    
206     template<typename T> void NPTzm<T>::moveB( void ){
207     int i, j;
208     DirectionalAtom* dAtom;
209     double Tb[3], ji[3];
210     double vel[3], frc[3];
211     double mass;
212     double scaleFactor, scaleFactorZ, scaleFactorXY, bigFactor, etaXY;
213 mmeineke 787 double instaTemp, instaPress, instaPressZ, instaVol;
214 mmeineke 755 double scF3, scFxy2;
215    
216     double tt2, tb2;
217    
218     tt2 = tauThermostat * tauThermostat;
219     tb2 = tauBarostat * tauBarostat;
220    
221     instaTemp = tStats->getTemperature();
222     instaPress = tStats->getPressure();
223     instaPressZ = tStats->getPressureZ();
224     instaVol = tStats->getVolume();
225    
226     chi += dt2 * ( instaTemp / targetTemp - 1.0) / tt2;
227     eta += dt2 * ( instaVol * (instaPress - targetPressure) /
228     (p_convert*NkBT*tb2));
229     etaZ += dt2 * ( instaVol * (instaPressZ - targetPressure) /
230     (p_convert*NkBT*tb2));
231    
232     scaleFactorZ = exp(dt*etaZ);
233     scaleFactor = exp(dt*eta);
234    
235     scF3 = scaleFactor * scaleFactor * scaleFactor;
236     scFxy2 = scF3 / scaleFactorZ;
237     scaleFactorXY = sqrt( scFxy2 );
238    
239     etaXY = log( scaleFactorXY ) / dt;
240    
241     for( i=0; i<nAtoms; i++ ){
242    
243     atoms[i]->getVel( vel );
244     atoms[i]->getFrc( frc );
245    
246     mass = atoms[i]->getMass();
247    
248     // velocity half step
249     for (j=0; j < 2; j++)
250     vel[j] += dt2 * ((frc[j] / mass ) * eConvert - vel[j]*(chi+etaXY));
251     vel[2] += dt2 * ((frc[2] / mass ) * eConvert - vel[2]*(chi+etaZ));
252    
253     atoms[i]->setVel( vel );
254    
255     if( atoms[i]->isDirectional() ){
256    
257     dAtom = (DirectionalAtom *)atoms[i];
258    
259     // get and convert the torque to body frame
260    
261     dAtom->getTrq( Tb );
262     dAtom->lab2Body( Tb );
263    
264     // get the angular momentum, and propagate a half step
265    
266     dAtom->getJ( ji );
267    
268     for (j=0; j < 3; j++)
269     ji[j] += dt2 * (Tb[j] * eConvert - ji[j]*chi);
270    
271     dAtom->setJ( ji );
272     }
273     }
274     }
275    
276     template<typename T> void NPTzm<T>::resetIntegrator() {
277     chi = 0.0;
278     eta = 0.0;
279     etaZ = 0.0;
280     }
281    
282     template<typename T> int NPTzm<T>::readyCheck() {
283    
284     //check parent's readyCheck() first
285     if (T::readyCheck() == -1)
286     return -1;
287    
288     // First check to see if we have a target temperature.
289     // Not having one is fatal.
290    
291     if (!have_target_temp) {
292     sprintf( painCave.errMsg,
293     "NPTzm error: You can't use the NPTzm integrator\n"
294     " without a targetTemp!\n"
295     );
296     painCave.isFatal = 1;
297     simError();
298     return -1;
299     }
300    
301     if (!have_target_pressure) {
302     sprintf( painCave.errMsg,
303     "NPTzm error: You can't use the NPTzm integrator\n"
304     " without a targetPressure!\n"
305     );
306     painCave.isFatal = 1;
307     simError();
308     return -1;
309     }
310    
311     // We must set tauThermostat.
312    
313     if (!have_tau_thermostat) {
314     sprintf( painCave.errMsg,
315     "NPTzm error: If you use the NPTzm\n"
316     " integrator, you must set tauThermostat.\n");
317     painCave.isFatal = 1;
318     simError();
319     return -1;
320     }
321    
322     // We must set tauBarostat.
323    
324     if (!have_tau_barostat) {
325     sprintf( painCave.errMsg,
326     "NPTzm error: If you use the NPTzm\n"
327     " integrator, you must set tauBarostat.\n");
328     painCave.isFatal = 1;
329     simError();
330     return -1;
331     }
332    
333     // We need NkBT a lot, so just set it here:
334    
335     NkBT = (double)info->ndf * kB * targetTemp;
336    
337     return 1;
338     }