| 1 |
gezelter |
445 |
#include <math.h> |
| 2 |
|
|
|
| 3 |
|
|
|
| 4 |
|
|
void NVT::nose_hoover_nvt( double ke, double dt, double temp ){ |
| 5 |
|
|
|
| 6 |
|
|
// Basic thermostating via Hoover, Phys.Rev.A, 1985, Vol. 31 (5) 1695-1697 |
| 7 |
|
|
|
| 8 |
|
|
int i, j, degrees_freedom; |
| 9 |
|
|
double ke, dt, temp, kB; |
| 10 |
|
|
double keconverter, NkBT, zetaScale, ke_temp; |
| 11 |
|
|
double vxi, vyi, vzi, jxi, jyi, jzi; |
| 12 |
|
|
|
| 13 |
|
|
degrees_freedom = 6*nmol; // number of degrees of freedom for the system |
| 14 |
|
|
kB = 8.31451e-7; // boltzmann constant in amu*Ang^2*fs^-2/K |
| 15 |
|
|
keconverter = 4.184e-4; // to convert ke from kcal/mol to amu*Ang^2*fs^-2 / K |
| 16 |
|
|
|
| 17 |
|
|
ke_temp = ke * keconverter; |
| 18 |
|
|
NkBT = degrees_freedom*kB*temp; |
| 19 |
|
|
|
| 20 |
|
|
// advance the zeta term to zeta(t + dt) - zeta is 0.0d0 on config. readin & |
| 21 |
|
|
// qmass is set in the parameter file |
| 22 |
|
|
zeta = zeta + dt*((ke_temp*2 - NkBT)/qmass); |
| 23 |
|
|
zetaScale = zeta * dt; |
| 24 |
|
|
|
| 25 |
|
|
// perform thermostat scaling on linear velocities and angular momentum |
| 26 |
|
|
for(i = 0, i < nmol; i++ ) { |
| 27 |
|
|
vxi = vx(i)*zetaScale; |
| 28 |
|
|
vyi = vy(i)*zetaScale; |
| 29 |
|
|
vzi = vz(i)*zetaScale; |
| 30 |
|
|
jxi = jx(i)*zetaScale; |
| 31 |
|
|
jyi = jy(i)*zetaScale; |
| 32 |
|
|
jzi = jz(i)*zetaScale; |
| 33 |
|
|
|
| 34 |
|
|
vx(i) = vx(i) - vxi; |
| 35 |
|
|
vy(i) = vy(i) - vyi; |
| 36 |
|
|
vz(i) = vz(i) - vzi; |
| 37 |
|
|
jx(i) = jx(i) - jxi; |
| 38 |
|
|
jy(i) = jy(i) - jyi; |
| 39 |
|
|
jz(i) = jz(i) - jzi; |
| 40 |
|
|
} |
| 41 |
|
|
} |
| 42 |
|
|
|
| 43 |
|
|
|
| 44 |
|
|
void NVT::nose_hoover_anderson_npt(double pressure, double ke, double dt, |
| 45 |
|
|
double temp ) { |
| 46 |
|
|
|
| 47 |
|
|
// Basic barostating via Hoover, Phys.Rev.A, 1985, Vol. 31 (5) 1695-1697 |
| 48 |
|
|
// Hoover, Phys.Rev.A, 1986, Vol.34 (3) 2499-2500 |
| 49 |
|
|
|
| 50 |
|
|
int i, j, degrees_freedom; |
| 51 |
|
|
double pressure, dt, temp, pressure_units, epsilonScale; |
| 52 |
|
|
double ke, kB, vxi, vyi, vzi, pressure_ext; |
| 53 |
|
|
double boxx_old, boxy_old, boxz_old; |
| 54 |
|
|
double keconverter, NkBT, zetaScale, ke_temp; |
| 55 |
|
|
double jxi, jyi, jzi, scale; |
| 56 |
|
|
|
| 57 |
|
|
kB = 8.31451e-7; // boltzmann constant in amu*Ang^2*fs^-2/K |
| 58 |
|
|
pressure_units = 6.10192996e-9; // converts atm to amu*fs^-2*Ang^-1 |
| 59 |
|
|
degrees_freedom = 6*nmol; // number of degrees of freedom for the system |
| 60 |
|
|
keconverter = 4.184e-4; // to convert ke from kcal/mol to amu*Ang^2*fs^-2/K |
| 61 |
|
|
|
| 62 |
|
|
pressure_ext = pressure * pressure_units; |
| 63 |
|
|
volume = boxx*boxy*boxz; |
| 64 |
|
|
ke_temp = ke * keconverter; |
| 65 |
|
|
NkBT = degrees_freedom*kB*temp; |
| 66 |
|
|
|
| 67 |
|
|
// propogate the strain rate |
| 68 |
|
|
epsilon_dot = epsilon_dot + dt*( (p_mol - pressure_ext)*volume |
| 69 |
|
|
/ (tau_relax*tau_relax * kB * temp) ); |
| 70 |
|
|
|
| 71 |
|
|
// determine the change in cell volume |
| 72 |
|
|
scale = (1.0d0 + dt*3.0d0*epsilon_dot)**(1.0d0/3.0d0); |
| 73 |
|
|
|
| 74 |
|
|
volume = volume * scale**3; |
| 75 |
|
|
|
| 76 |
|
|
// save old lengths and update box size |
| 77 |
|
|
boxx_old = boxx; |
| 78 |
|
|
boxy_old = boxy; |
| 79 |
|
|
boxz_old = boxz; |
| 80 |
|
|
boxx = boxx_old*scale; |
| 81 |
|
|
boxy = boxy_old*scale; |
| 82 |
|
|
boxz = boxz_old*scale; |
| 83 |
|
|
|
| 84 |
|
|
epsilonScale = epsilon_dot * dt; |
| 85 |
|
|
|
| 86 |
|
|
// advance the zeta term to zeta(t + dt) - zeta is 0.0d0 on config. readin |
| 87 |
|
|
// qmass is set in the parameter file |
| 88 |
|
|
zeta = zeta + dt*((ke_temp*2 - NkBT)/qmass); |
| 89 |
|
|
zetaScale = zeta * dt; |
| 90 |
|
|
|
| 91 |
|
|
// apply barostating and thermostating to velocities and angular momenta |
| 92 |
|
|
|
| 93 |
|
|
for (i=0; i < nmol; i++) { |
| 94 |
|
|
|
| 95 |
|
|
vxi = vx(i)*epsilonScale; |
| 96 |
|
|
vyi = vy(i)*epsilonScale; |
| 97 |
|
|
vzi = vz(i)*epsilonScale; |
| 98 |
|
|
vxi = vxi + vx(i)*zetaScale; |
| 99 |
|
|
vyi = vyi + vy(i)*zetaScale; |
| 100 |
|
|
vzi = vzi + vz(i)*zetaScale; |
| 101 |
|
|
jxi = jx(i)*zetaScale; |
| 102 |
|
|
jyi = jy(i)*zetaScale; |
| 103 |
|
|
jzi = jz(i)*zetaScale; |
| 104 |
|
|
|
| 105 |
|
|
vx(i) = vx(i) - vxi; |
| 106 |
|
|
vy(i) = vy(i) - vyi; |
| 107 |
|
|
vz(i) = vz(i) - vzi; |
| 108 |
|
|
jx(i) = jx(i) - jxi; |
| 109 |
|
|
jy(i) = jy(i) - jyi; |
| 110 |
|
|
jz(i) = jz(i) - jzi; |
| 111 |
|
|
} |
| 112 |
|
|
|
| 113 |
|
|
// perform affine transform to update positions with volume fluctuations |
| 114 |
|
|
affine_transform( boxx_old, boxy_old, boxz_old ); |
| 115 |
|
|
} |
| 116 |
|
|
|
| 117 |
|
|
void NVT::affine_transform( double boxx_old, double boxy_old, double boxz_old ){ |
| 118 |
|
|
|
| 119 |
|
|
int i; |
| 120 |
|
|
double boxx_old, boxy_old, boxz_old, percentScale; |
| 121 |
|
|
double boxx_num, boxy_num, boxz_num, rxi, ryi, rzi; |
| 122 |
|
|
|
| 123 |
|
|
// first determine the scaling factor from the box size change |
| 124 |
|
|
percentScale = (boxx - boxx_old)/boxx_old; |
| 125 |
|
|
|
| 126 |
|
|
|
| 127 |
|
|
for (i=0; i < nmol; i++) { |
| 128 |
|
|
|
| 129 |
|
|
// find the minimum image coordinates |
| 130 |
|
|
boxx_num = boxx_old*dsign(1.0d0,rx(i))*int(abs(rx(i)/boxx_old)+0.5d0); |
| 131 |
|
|
boxy_num = boxy_old*dsign(1.0d0,ry(i))*int(abs(ry(i)/boxy_old)+0.5d0); |
| 132 |
|
|
boxz_num = boxz_old*dsign(1.0d0,rz(i))*int(abs(rz(i)/boxz_old)+0.5d0); |
| 133 |
|
|
|
| 134 |
|
|
rxi = rx(i) - boxx_num; |
| 135 |
|
|
ryi = ry(i) - boxy_num; |
| 136 |
|
|
rzi = rz(i) - boxz_num; |
| 137 |
|
|
|
| 138 |
|
|
// update the minimum image coordinates using the scaling factor |
| 139 |
|
|
rxi = rxi + rxi*percentScale; |
| 140 |
|
|
ryi = ryi + ryi*percentScale; |
| 141 |
|
|
rzi = rzi + rzi*percentScale; |
| 142 |
|
|
|
| 143 |
|
|
rx(i) = rxi + boxx_num; |
| 144 |
|
|
ry(i) = ryi + boxy_num; |
| 145 |
|
|
rz(i) = rzi + boxz_num; |
| 146 |
|
|
} |
| 147 |
|
|
} |