ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/trunk/OOPSE/libmdtools/NVT.cpp
Revision: 837
Committed: Wed Oct 29 00:19:10 2003 UTC (20 years, 8 months ago) by tim
File size: 6286 byte(s)
Log Message:
add chi and eta to the comment line of dump file.

File Contents

# User Rev Content
1 gezelter 560 #include "Atom.hpp"
2     #include "SRI.hpp"
3     #include "AbstractClasses.hpp"
4     #include "SimInfo.hpp"
5     #include "ForceFields.hpp"
6     #include "Thermo.hpp"
7     #include "ReadWrite.hpp"
8     #include "Integrator.hpp"
9 tim 837 #include "simError.h"
10 mmeineke 561
11    
12 gezelter 560 // Basic thermostating via Hoover, Phys.Rev.A, 1985, Vol. 31 (5) 1695-1697
13    
14 tim 645 template<typename T> NVT<T>::NVT ( SimInfo *theInfo, ForceFields* the_ff):
15     T( theInfo, the_ff )
16 mmeineke 561 {
17 tim 837 GenericData* data;
18     DoubleData * chiValue;
19     DoubleData * integralOfChidtValue;
20    
21     chiValue = NULL;
22     integralOfChidtValue = NULL;
23    
24 gezelter 565 chi = 0.0;
25 gezelter 560 have_tau_thermostat = 0;
26     have_target_temp = 0;
27 tim 763 have_chi_tolerance = 0;
28     integralOfChidt = 0.0;
29    
30 tim 837 // retrieve chi and integralOfChidt from simInfo
31     data = info->getProperty(CHIVALUE_ID);
32     if(data){
33     chiValue = dynamic_cast<DoubleData*>(data);
34     }
35    
36     data = info->getProperty(INTEGRALOFCHIDT_ID);
37     if(data){
38     integralOfChidtValue = dynamic_cast<DoubleData*>(data);
39     }
40    
41     // chi and integralOfChidt should appear by pair
42     if(chiValue && integralOfChidtValue){
43     chi = chiValue->getData();
44     integralOfChidt = integralOfChidtValue->getData();
45     }
46    
47 tim 763 oldVel = new double[3*nAtoms];
48     oldJi = new double[3*nAtoms];
49 gezelter 560 }
50    
51 tim 763 template<typename T> NVT<T>::~NVT() {
52     delete[] oldVel;
53     delete[] oldJi;
54     }
55    
56 tim 645 template<typename T> void NVT<T>::moveA() {
57 tim 837
58 gezelter 600 int i, j;
59 gezelter 560 DirectionalAtom* dAtom;
60 gezelter 600 double Tb[3], ji[3];
61 mmeineke 778 double mass;
62 gezelter 600 double vel[3], pos[3], frc[3];
63    
64 gezelter 565 double instTemp;
65 gezelter 560
66 tim 763 // We need the temperature at time = t for the chi update below:
67    
68 gezelter 565 instTemp = tStats->getTemperature();
69 tim 837
70 gezelter 560 for( i=0; i<nAtoms; i++ ){
71    
72 gezelter 600 atoms[i]->getVel( vel );
73     atoms[i]->getPos( pos );
74     atoms[i]->getFrc( frc );
75    
76     mass = atoms[i]->getMass();
77    
78     for (j=0; j < 3; j++) {
79 tim 763 // velocity half step (use chi from previous step here):
80 gezelter 600 vel[j] += dt2 * ((frc[j] / mass ) * eConvert - vel[j]*chi);
81     // position whole step
82 gezelter 560 pos[j] += dt * vel[j];
83 gezelter 600 }
84 gezelter 560
85 gezelter 600 atoms[i]->setVel( vel );
86     atoms[i]->setPos( pos );
87 tim 837
88 gezelter 560 if( atoms[i]->isDirectional() ){
89    
90     dAtom = (DirectionalAtom *)atoms[i];
91 tim 837
92 gezelter 560 // get and convert the torque to body frame
93 tim 837
94 gezelter 600 dAtom->getTrq( Tb );
95 gezelter 560 dAtom->lab2Body( Tb );
96 tim 837
97 gezelter 560 // get the angular momentum, and propagate a half step
98    
99 gezelter 600 dAtom->getJ( ji );
100    
101 tim 837 for (j=0; j < 3; j++)
102 gezelter 600 ji[j] += dt2 * (Tb[j] * eConvert - ji[j]*chi);
103 tim 837
104 mmeineke 778 this->rotationPropagation( dAtom, ji );
105 tim 837
106 gezelter 600 dAtom->setJ( ji );
107 tim 837 }
108 gezelter 560 }
109 tim 837
110 mmeineke 768 if (nConstrained){
111     constrainA();
112     }
113 tim 763
114 tim 837 // Finally, evolve chi a half step (just like a velocity) using
115 tim 763 // temperature at time t, not time t+dt/2
116    
117     chi += dt2 * ( instTemp / targetTemp - 1.0) / (tauThermostat*tauThermostat);
118     integralOfChidt += chi*dt2;
119    
120 gezelter 560 }
121    
122 tim 645 template<typename T> void NVT<T>::moveB( void ){
123 tim 763 int i, j, k;
124 gezelter 560 DirectionalAtom* dAtom;
125 gezelter 600 double Tb[3], ji[3];
126     double vel[3], frc[3];
127     double mass;
128 tim 763 double instTemp;
129     double oldChi, prevChi;
130 gezelter 600
131 tim 763 // Set things up for the iteration:
132    
133     oldChi = chi;
134    
135 gezelter 560 for( i=0; i<nAtoms; i++ ){
136 gezelter 600
137     atoms[i]->getVel( vel );
138    
139 tim 763 for (j=0; j < 3; j++)
140     oldVel[3*i + j] = vel[j];
141 gezelter 600
142 gezelter 560 if( atoms[i]->isDirectional() ){
143 gezelter 600
144 gezelter 560 dAtom = (DirectionalAtom *)atoms[i];
145 gezelter 600
146 tim 763 dAtom->getJ( ji );
147 gezelter 600
148 tim 763 for (j=0; j < 3; j++)
149     oldJi[3*i + j] = ji[j];
150 gezelter 600
151 tim 763 }
152     }
153 gezelter 600
154 tim 763 // do the iteration:
155 gezelter 600
156 tim 763 for (k=0; k < 4; k++) {
157 tim 837
158 tim 763 instTemp = tStats->getTemperature();
159    
160     // evolve chi another half step using the temperature at t + dt/2
161    
162     prevChi = chi;
163 tim 837 chi = oldChi + dt2 * ( instTemp / targetTemp - 1.0) /
164 tim 763 (tauThermostat*tauThermostat);
165 tim 837
166 tim 763 for( i=0; i<nAtoms; i++ ){
167    
168     atoms[i]->getFrc( frc );
169     atoms[i]->getVel(vel);
170 tim 837
171 tim 763 mass = atoms[i]->getMass();
172 tim 837
173 tim 763 // velocity half step
174 tim 837 for (j=0; j < 3; j++)
175 tim 763 vel[j] = oldVel[3*i+j] + dt2 * ((frc[j] / mass ) * eConvert - oldVel[3*i + j]*chi);
176 tim 837
177 tim 763 atoms[i]->setVel( vel );
178 tim 837
179 tim 763 if( atoms[i]->isDirectional() ){
180 tim 837
181 tim 763 dAtom = (DirectionalAtom *)atoms[i];
182 tim 837
183     // get and convert the torque to body frame
184    
185 tim 763 dAtom->getTrq( Tb );
186 tim 837 dAtom->lab2Body( Tb );
187    
188     for (j=0; j < 3; j++)
189 tim 763 ji[j] = oldJi[3*i + j] + dt2 * (Tb[j] * eConvert - oldJi[3*i+j]*chi);
190 tim 837
191 tim 763 dAtom->setJ( ji );
192     }
193     }
194 gezelter 600
195 mmeineke 768 if (nConstrained){
196     constrainB();
197     }
198    
199 tim 763 if (fabs(prevChi - chi) <= chiTolerance) break;
200 gezelter 560 }
201 tim 837
202 tim 763 integralOfChidt += dt2*chi;
203 gezelter 560 }
204    
205 mmeineke 746 template<typename T> void NVT<T>::resetIntegrator( void ){
206 tim 837
207 mmeineke 746 chi = 0.0;
208 tim 763 integralOfChidt = 0.0;
209 mmeineke 746 }
210    
211 tim 645 template<typename T> int NVT<T>::readyCheck() {
212 tim 658
213     //check parent's readyCheck() first
214     if (T::readyCheck() == -1)
215     return -1;
216 tim 837
217     // First check to see if we have a target temperature.
218     // Not having one is fatal.
219    
220 gezelter 560 if (!have_target_temp) {
221     sprintf( painCave.errMsg,
222     "NVT error: You can't use the NVT integrator without a targetTemp!\n"
223     );
224     painCave.isFatal = 1;
225     simError();
226     return -1;
227     }
228 tim 837
229 gezelter 565 // We must set tauThermostat.
230 tim 837
231 gezelter 565 if (!have_tau_thermostat) {
232 gezelter 560 sprintf( painCave.errMsg,
233 gezelter 565 "NVT error: If you use the constant temperature\n"
234     " integrator, you must set tauThermostat.\n");
235 gezelter 560 painCave.isFatal = 1;
236     simError();
237     return -1;
238 tim 837 }
239 tim 763
240     if (!have_chi_tolerance) {
241     sprintf( painCave.errMsg,
242     "NVT warning: setting chi tolerance to 1e-6\n");
243     chiTolerance = 1e-6;
244     have_chi_tolerance = 1;
245     painCave.isFatal = 0;
246     simError();
247 tim 837 }
248 tim 763
249 tim 837 return 1;
250 tim 763
251 gezelter 560 }
252 tim 763
253     template<typename T> double NVT<T>::getConservedQuantity(void){
254    
255     double conservedQuantity;
256 tim 769 double fkBT;
257     double Energy;
258     double thermostat_kinetic;
259     double thermostat_potential;
260 tim 763
261 tim 837 fkBT = (double)(info->getNDF() ) * kB * targetTemp;
262    
263 tim 769 Energy = tStats->getTotalE();
264 tim 763
265 tim 837 thermostat_kinetic = fkBT* tauThermostat * tauThermostat * chi * chi /
266 tim 769 (2.0 * eConvert);
267 tim 763
268 tim 769 thermostat_potential = fkBT * integralOfChidt / eConvert;
269 tim 763
270 tim 769 conservedQuantity = Energy + thermostat_kinetic + thermostat_potential;
271 tim 837
272     cerr << info->getTime() << "\t" << Energy << "\t" << thermostat_kinetic <<
273 tim 769 "\t" << thermostat_potential << "\t" << conservedQuantity << endl;
274    
275 tim 837 return conservedQuantity;
276 tim 763 }
277 tim 837
278     template<typename T> string NVT<T>::getAdditionalParameters(void){
279     string parameters;
280     const int BUFFERSIZE = 2000; // size of the read buffer
281     char buffer[BUFFERSIZE];
282    
283     sprintf(buffer,"\t%g\t%g;", chi, integralOfChidt);
284     parameters += buffer;
285    
286     return parameters;
287     }