ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/trunk/OOPSE/libmdtools/NVT.cpp
(Generate patch)

Comparing trunk/OOPSE/libmdtools/NVT.cpp (file contents):
Revision 768 by mmeineke, Wed Sep 17 14:22:15 2003 UTC vs.
Revision 853 by mmeineke, Thu Nov 6 19:11:38 2003 UTC

# Line 1 | Line 1
1 + #include <math.h>
2 +
3   #include "Atom.hpp"
4   #include "SRI.hpp"
5   #include "AbstractClasses.hpp"
# Line 6 | Line 8
8   #include "Thermo.hpp"
9   #include "ReadWrite.hpp"
10   #include "Integrator.hpp"
11 < #include "simError.h"
11 > #include "simError.h"
12  
13  
14   // Basic thermostating via Hoover, Phys.Rev.A, 1985, Vol. 31 (5) 1695-1697
# Line 14 | Line 16 | template<typename T> NVT<T>::NVT ( SimInfo *theInfo, F
16   template<typename T> NVT<T>::NVT ( SimInfo *theInfo, ForceFields* the_ff):
17    T( theInfo, the_ff )
18   {
19 +  GenericData* data;
20 +  DoubleData * chiValue;
21 +  DoubleData * integralOfChidtValue;
22 +
23 +  chiValue = NULL;
24 +  integralOfChidtValue = NULL;
25 +
26    chi = 0.0;
27    have_tau_thermostat = 0;
28    have_target_temp = 0;
29    have_chi_tolerance = 0;
30    integralOfChidt = 0.0;
31  
32 +  // retrieve chi and integralOfChidt from simInfo
33 +  data = info->getProperty(CHIVALUE_ID);
34 +  if(data){
35 +    chiValue = dynamic_cast<DoubleData*>(data);
36 +  }
37 +
38 +  data = info->getProperty(INTEGRALOFCHIDT_ID);
39 +  if(data){
40 +    integralOfChidtValue = dynamic_cast<DoubleData*>(data);
41 +  }
42 +
43 +  // chi and integralOfChidt should appear by pair
44 +  if(chiValue && integralOfChidtValue){
45 +    chi = chiValue->getData();
46 +    integralOfChidt = integralOfChidtValue->getData();
47 +  }
48 +
49    oldVel = new double[3*nAtoms];
50    oldJi = new double[3*nAtoms];
51   }
# Line 30 | Line 56 | template<typename T> void NVT<T>::moveA() {
56   }
57  
58   template<typename T> void NVT<T>::moveA() {
59 <  
59 >
60    int i, j;
61    DirectionalAtom* dAtom;
62    double Tb[3], ji[3];
63 <  double A[3][3], I[3][3];
38 <  double angle, mass;
63 >  double mass;
64    double vel[3], pos[3], frc[3];
65  
66    double instTemp;
# Line 43 | Line 68 | template<typename T> void NVT<T>::moveA() {
68    // We need the temperature at time = t for the chi update below:
69  
70    instTemp = tStats->getTemperature();
71 <  
71 >
72    for( i=0; i<nAtoms; i++ ){
73  
74      atoms[i]->getVel( vel );
# Line 61 | Line 86 | template<typename T> void NVT<T>::moveA() {
86  
87      atoms[i]->setVel( vel );
88      atoms[i]->setPos( pos );
89 <  
89 >
90      if( atoms[i]->isDirectional() ){
91  
92        dAtom = (DirectionalAtom *)atoms[i];
93 <          
93 >
94        // get and convert the torque to body frame
95 <      
95 >
96        dAtom->getTrq( Tb );
97        dAtom->lab2Body( Tb );
98 <      
98 >
99        // get the angular momentum, and propagate a half step
100  
101        dAtom->getJ( ji );
102  
103 <      for (j=0; j < 3; j++)
103 >      for (j=0; j < 3; j++)
104          ji[j] += dt2 * (Tb[j] * eConvert - ji[j]*chi);
80      
81      // use the angular velocities to propagate the rotation matrix a
82      // full time step
105  
106 <      dAtom->getA(A);
85 <      dAtom->getI(I);
86 <    
87 <      // rotate about the x-axis      
88 <      angle = dt2 * ji[0] / I[0][0];
89 <      this->rotate( 1, 2, angle, ji, A );
106 >      this->rotationPropagation( dAtom, ji );
107  
91      // rotate about the y-axis
92      angle = dt2 * ji[1] / I[1][1];
93      this->rotate( 2, 0, angle, ji, A );
94      
95      // rotate about the z-axis
96      angle = dt * ji[2] / I[2][2];
97      this->rotate( 0, 1, angle, ji, A);
98      
99      // rotate about the y-axis
100      angle = dt2 * ji[1] / I[1][1];
101      this->rotate( 2, 0, angle, ji, A );
102      
103       // rotate about the x-axis
104      angle = dt2 * ji[0] / I[0][0];
105      this->rotate( 1, 2, angle, ji, A );
106      
108        dAtom->setJ( ji );
109 <      dAtom->setA( A  );    
109 <    }    
109 >    }
110    }
111 <  
111 >
112    if (nConstrained){
113      constrainA();
114    }
115  
116 <  // Finally, evolve chi a half step (just like a velocity) using
116 >  // Finally, evolve chi a half step (just like a velocity) using
117    // temperature at time t, not time t+dt/2
118  
119    chi += dt2 * ( instTemp / targetTemp - 1.0) / (tauThermostat*tauThermostat);
# Line 156 | Line 156 | template<typename T> void NVT<T>::moveB( void ){
156    // do the iteration:
157  
158    for (k=0; k < 4; k++) {
159 <    
159 >
160      instTemp = tStats->getTemperature();
161  
162      // evolve chi another half step using the temperature at t + dt/2
163  
164      prevChi = chi;
165 <    chi = oldChi + dt2 * ( instTemp / targetTemp - 1.0) /
165 >    chi = oldChi + dt2 * ( instTemp / targetTemp - 1.0) /
166        (tauThermostat*tauThermostat);
167 <  
167 >
168      for( i=0; i<nAtoms; i++ ){
169  
170        atoms[i]->getFrc( frc );
171        atoms[i]->getVel(vel);
172 <      
172 >
173        mass = atoms[i]->getMass();
174 <      
174 >
175        // velocity half step
176 <      for (j=0; j < 3; j++)
176 >      for (j=0; j < 3; j++)
177          vel[j] = oldVel[3*i+j] + dt2 * ((frc[j] / mass ) * eConvert - oldVel[3*i + j]*chi);
178 <      
179 <      atoms[i]->setVel( vel );
180 <      
178 >
179 >      atoms[i]->setVel( vel );
180 >
181        if( atoms[i]->isDirectional() ){
182 <        
182 >
183          dAtom = (DirectionalAtom *)atoms[i];
184 <        
185 <        // get and convert the torque to body frame      
186 <        
184 >
185 >        // get and convert the torque to body frame
186 >
187          dAtom->getTrq( Tb );
188 <        dAtom->lab2Body( Tb );      
189 <            
190 <        for (j=0; j < 3; j++)
188 >        dAtom->lab2Body( Tb );
189 >
190 >        for (j=0; j < 3; j++)
191            ji[j] = oldJi[3*i + j] + dt2 * (Tb[j] * eConvert - oldJi[3*i+j]*chi);
192 <      
192 >
193          dAtom->setJ( ji );
194        }
195      }
# Line 200 | Line 200 | template<typename T> void NVT<T>::moveB( void ){
200  
201      if (fabs(prevChi - chi) <= chiTolerance) break;
202    }
203 <  
203 >
204    integralOfChidt += dt2*chi;
205   }
206  
207   template<typename T> void NVT<T>::resetIntegrator( void ){
208 <  
208 >
209    chi = 0.0;
210    integralOfChidt = 0.0;
211   }
# Line 215 | Line 215 | template<typename T> int NVT<T>::readyCheck() {
215    //check parent's readyCheck() first
216    if (T::readyCheck() == -1)
217      return -1;
218 <  
219 <  // First check to see if we have a target temperature.
220 <  // Not having one is fatal.
221 <  
218 >
219 >  // First check to see if we have a target temperature.
220 >  // Not having one is fatal.
221 >
222    if (!have_target_temp) {
223      sprintf( painCave.errMsg,
224               "NVT error: You can't use the NVT integrator without a targetTemp!\n"
# Line 227 | Line 227 | template<typename T> int NVT<T>::readyCheck() {
227      simError();
228      return -1;
229    }
230 <  
230 >
231    // We must set tauThermostat.
232 <  
232 >
233    if (!have_tau_thermostat) {
234      sprintf( painCave.errMsg,
235               "NVT error: If you use the constant temperature\n"
# Line 237 | Line 237 | template<typename T> int NVT<T>::readyCheck() {
237      painCave.isFatal = 1;
238      simError();
239      return -1;
240 <  }    
240 >  }
241  
242    if (!have_chi_tolerance) {
243      sprintf( painCave.errMsg,
# Line 246 | Line 246 | template<typename T> int NVT<T>::readyCheck() {
246      have_chi_tolerance = 1;
247      painCave.isFatal = 0;
248      simError();
249 <  }    
249 >  }
250  
251 <  return 1;    
251 >  return 1;
252  
253   }
254  
255   template<typename T> double NVT<T>::getConservedQuantity(void){
256  
257    double conservedQuantity;
258 <  double E_NVT;
258 >  double fkBT;
259 >  double Energy;
260 >  double thermostat_kinetic;
261 >  double thermostat_potential;
262  
263 <  //HNVE
261 <  conservedQuantity = tStats->getTotalE();
262 <  //HNVE
263 <  
264 <  E_NVT =  (info->getNDF() * kB * targetTemp *
265 <                (integralOfChidt + tauThermostat * tauThermostat * chi * chi / 2.0 )) / eConvert;
263 >  fkBT = (double)(info->getNDF()    ) * kB * targetTemp;
264  
265 <  conservedQuantity += E_NVT;
265 >  Energy = tStats->getTotalE();
266  
267 <  //cerr << info->getTime() << "\t" << chi << "\t" << integralOfChidt << "\t" << E_NVT << endl;
267 >  thermostat_kinetic = fkBT* tauThermostat * tauThermostat * chi * chi /
268 >    (2.0 * eConvert);
269  
270 <  return conservedQuantity;
270 >  thermostat_potential = fkBT * integralOfChidt / eConvert;
271 >
272 >  conservedQuantity = Energy + thermostat_kinetic + thermostat_potential;
273 >
274 >  return conservedQuantity;
275   }
276 +
277 + template<typename T> string NVT<T>::getAdditionalParameters(void){
278 +  string parameters;
279 +  const int BUFFERSIZE = 2000; // size of the read buffer
280 +  char buffer[BUFFERSIZE];
281 +
282 +  sprintf(buffer,"\t%G\t%G;", chi, integralOfChidt);
283 +  parameters += buffer;
284 +
285 +  return parameters;
286 + }

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines