91 |
|
//G : constraint force scalar |
92 |
|
//d: equilibrium bond length |
93 |
|
|
94 |
< |
if (pabDotZeta2 - zeta2 * diffsq < 0) |
94 |
> |
if (pabDotZeta2 - zeta2 * diffsq < 0) |
95 |
|
return consFail; |
96 |
< |
|
96 |
> |
|
97 |
|
//forceScalar = (pabDotZeta + sqrt(pabDotZeta2 - zeta2 * diffsq)) / dt * dt * zeta2; |
98 |
|
forceScalar = diffsq / (2 * dt * dt * pabDotZeta); |
99 |
< |
// |
99 |
> |
//forceScalar = 1 / forceScalar; |
100 |
|
consForce = forceScalar * bondDirUnitVec; |
101 |
|
//integrate consRB1 using constraint force; |
102 |
|
integrate(consAtom1, consForce); |
129 |
|
Vector3d pos; |
130 |
|
Vector3d tempPos; |
131 |
|
Vector3d tempVel; |
132 |
– |
|
132 |
|
double mass; |
134 |
– |
double dtOver2; |
133 |
|
double dt; |
136 |
– |
const double eConvert = 4.184e-4; |
134 |
|
|
135 |
|
dt = info->dt; |
139 |
– |
dtOver2 = dt /2; |
136 |
|
sd = consAtom->getStuntDouble(); |
137 |
|
|
138 |
|
sd->getVel(vel.vec); |
140 |
|
|
141 |
|
mass = sd->getMass(); |
142 |
|
|
143 |
< |
tempVel = eConvert * dtOver2/mass * force; |
143 |
> |
tempVel = dt/mass * force; |
144 |
|
tempPos = dt * tempVel; |
145 |
|
|
146 |
|
vel += tempVel; |
176 |
|
double zeta2; |
177 |
|
double forceScalar; |
178 |
|
|
179 |
< |
const int conRBMaxIter = 10; |
179 |
> |
const int conRBMaxIter = 100; |
180 |
|
|
181 |
|
dt = info->dt; |
182 |
|
|
205 |
|
rab = oldPosB - oldPosA; |
206 |
|
info->wrapVector(rab.vec); |
207 |
|
|
208 |
< |
//rpab = dotProduct(rab, pab); |
213 |
< |
|
214 |
< |
//rpabsq = rpab * rpab; |
215 |
< |
|
216 |
< |
|
217 |
< |
//if (rpabsq < (rabsq * -diffsq)){ |
218 |
< |
// return consFail; |
219 |
< |
//} |
220 |
< |
|
221 |
< |
bondDirUnitVec = pab; |
208 |
> |
bondDirUnitVec = rab; |
209 |
|
bondDirUnitVec.normalize(); |
210 |
|
|
211 |
|
calcZeta(consRB1, bondDirUnitVec, zetaA); |
225 |
|
//G : constraint force scalar |
226 |
|
//d: equilibrium bond length |
227 |
|
|
228 |
< |
if (pabDotZeta2 - zeta2 * diffsq < 0) |
228 |
> |
if (pabDotZeta2 - zeta2 * diffsq < 0){ |
229 |
> |
cerr << "DCRollAFunctor::operator() Error: Constraint Fail at " << info->getTime() << endl; |
230 |
|
return consFail; |
231 |
< |
|
232 |
< |
//forceScalar = (pabDotZeta + sqrt(pabDotZeta2 - zeta2 * diffsq)) / dt * dt * zeta2; |
233 |
< |
forceScalar = diffsq / (2 * dt * dt * pabDotZeta); |
231 |
> |
} |
232 |
> |
//if pabDotZeta is close to 0, we can't neglect the square term |
233 |
> |
if(fabs(pabDotZeta) < consTolerance) |
234 |
> |
forceScalar = (pabDotZeta - sqrt(pabDotZeta2 - zeta2 * diffsq)) / dt * dt * zeta2; |
235 |
> |
else |
236 |
> |
forceScalar = diffsq / (2 * dt * dt * pabDotZeta); |
237 |
> |
|
238 |
|
// |
239 |
|
consForce = forceScalar * bondDirUnitVec; |
240 |
|
//integrate consRB1 using constraint force; |
252 |
|
} |
253 |
|
} |
254 |
|
|
255 |
+ |
cerr << "DCRollAFunctor::operator() Error: can not constrain the bond within maximum iteration at " << info->getTime() << endl; |
256 |
|
return consExceedMaxIter; |
257 |
|
|
258 |
|
} |
264 |
|
Vector3d refCoor; |
265 |
|
Vector3d refCrossBond; |
266 |
|
Mat3x3d IBody; |
274 |
– |
Mat3x3d IFrame; |
267 |
|
Mat3x3d invIBody; |
268 |
< |
Mat3x3d invIFrame; |
268 |
> |
Mat3x3d invILab; |
269 |
|
Mat3x3d a; |
270 |
|
Mat3x3d aTrans; |
271 |
|
|
280 |
|
aTrans = a.transpose(); |
281 |
|
invIBody = IBody.inverse(); |
282 |
|
|
283 |
< |
IFrame = aTrans * invIBody * a; |
283 |
> |
invILab = aTrans * invIBody * a; |
284 |
|
|
285 |
|
refCrossBond = crossProduct(refCoor, bondDir); |
286 |
|
|
287 |
< |
tempVec1 = invIFrame * refCrossBond; |
287 |
> |
tempVec1 = invILab * refCrossBond; |
288 |
|
tempVec2 = crossProduct(tempVec1, refCoor); |
289 |
|
|
290 |
|
zeta += tempVec2; |
297 |
|
Vector3d pos; |
298 |
|
Vector3d Tb; |
299 |
|
Vector3d ji; |
300 |
< |
Vector3d tempPos; |
301 |
< |
Vector3d tempVel; |
302 |
< |
Vector3d tempTrq; |
303 |
< |
Vector3d tempJi; |
300 |
> |
Vector3d tempPos; |
301 |
> |
Vector3d tempVel; |
302 |
> |
Vector3d tempTrqLab; |
303 |
> |
Vector3d tempTrqBody; |
304 |
> |
Vector3d tempJi; |
305 |
> |
Vector3d refCoor; |
306 |
|
double mass; |
307 |
< |
double dtOver2; |
307 |
> |
Mat3x3d oldA; |
308 |
|
double dt; |
309 |
< |
const double eConvert = 4.184e-4; |
316 |
< |
|
309 |
> |
double dtOver2; |
310 |
|
dt = info->dt; |
311 |
< |
dtOver2 = dt /2; |
311 |
> |
dtOver2 = dt /2; |
312 |
> |
|
313 |
> |
consRB->getOldA(oldA.element); |
314 |
|
sd = consRB->getStuntDouble(); |
315 |
|
|
316 |
|
sd->getVel(vel.vec); |
318 |
|
|
319 |
|
mass = sd->getMass(); |
320 |
|
|
321 |
< |
tempVel = eConvert * dtOver2/mass * force; |
321 |
> |
tempVel = dtOver2/mass * force; |
322 |
|
tempPos = dt * tempVel; |
323 |
|
|
324 |
|
vel += tempVel; |
329 |
|
|
330 |
|
if (sd->isDirectional()){ |
331 |
|
|
332 |
< |
// get and convert the torque to body frame |
332 |
> |
consRB->getRefCoor(refCoor.vec); |
333 |
> |
tempTrqLab = crossProduct(refCoor, force); |
334 |
|
|
335 |
< |
sd->getTrq(Tb.vec); |
336 |
< |
sd->lab2Body(Tb.vec); |
335 |
> |
//convert torque in lab frame to torque in body frame using old rotation matrix |
336 |
> |
//tempTrqBody = oldA * tempTrqLab; |
337 |
> |
|
338 |
> |
//tempJi = dtOver2 * tempTrqBody; |
339 |
> |
sd->lab2Body(tempTrqLab.vec); |
340 |
> |
tempJi = dtOver2 * tempTrqLab; |
341 |
> |
rotationPropagation( sd, tempJi.vec); |
342 |
|
|
342 |
– |
// get the angular momentum, and propagate a half step |
343 |
– |
|
343 |
|
sd->getJ(ji.vec); |
344 |
|
|
345 |
< |
ji += eConvert * dtOver2 * Tb; |
345 |
> |
ji += tempJi; |
346 |
|
|
348 |
– |
rotationPropagation( sd, ji.vec); |
349 |
– |
|
347 |
|
sd->setJ(ji.vec); |
348 |
|
} |
349 |
+ |
|
350 |
|
|
351 |
|
} |
352 |
|
|
494 |
|
Vector3d pab; |
495 |
|
Vector3d rab; |
496 |
|
Vector3d vab; |
497 |
< |
Vector3d rma; |
498 |
< |
Vector3d rmb; |
497 |
> |
Vector3d zetaA; |
498 |
> |
Vector3d zetaB; |
499 |
> |
Vector3d zeta; |
500 |
|
Vector3d consForce; |
501 |
|
Vector3d bondDirUnitVec; |
503 |
– |
double dx, dy, dz; |
504 |
– |
double rpab; |
505 |
– |
double rabsq, pabsq, rpabsq; |
506 |
– |
double diffsq; |
507 |
– |
double gab; |
502 |
|
double dt; |
503 |
< |
double pabcDotvab; |
504 |
< |
double pabDotInvMassVec; |
503 |
> |
double pabDotvab; |
504 |
> |
double pabDotZeta; |
505 |
> |
double pvab; |
506 |
|
|
507 |
< |
|
513 |
< |
const int conRBMaxIter = 10; |
507 |
> |
const int conRBMaxIter = 100; |
508 |
|
|
509 |
|
dt = info->dt; |
510 |
|
|
511 |
|
for(int i=0 ; i < conRBMaxIter; i++){ |
512 |
|
consRB1->getCurAtomPos(posA.vec); |
513 |
|
consRB2->getCurAtomPos(posB.vec); |
514 |
< |
pab = posA - posB; |
521 |
< |
|
522 |
< |
consRB1->getVel(velA.vec); |
523 |
< |
consRB2->getVel(velB.vec); |
524 |
< |
vab = velA -velB; |
514 |
> |
pab = posB - posA; |
515 |
|
|
516 |
|
//periodic boundary condition |
527 |
– |
|
517 |
|
info->wrapVector(pab.vec); |
518 |
+ |
|
519 |
+ |
consRB1->getCurAtomVel(velA.vec); |
520 |
+ |
consRB2->getCurAtomVel(velB.vec); |
521 |
+ |
vab = velB -velA; |
522 |
|
|
523 |
< |
pabsq = pab.length2(); |
523 |
> |
pvab = dotProduct(pab, vab); |
524 |
|
|
525 |
< |
rabsq = curPair->getBondLength2(); |
533 |
< |
diffsq = rabsq - pabsq; |
525 |
> |
if (fabs(pvab) > consTolerance ){ |
526 |
|
|
535 |
– |
if (fabs(diffsq) > (consTolerance * rabsq * 2)){ |
527 |
|
|
537 |
– |
|
528 |
|
bondDirUnitVec = pab; |
529 |
|
bondDirUnitVec.normalize(); |
530 |
|
|
531 |
< |
getEffInvMassVec(consRB1, bondDirUnitVec, rma); |
532 |
< |
|
533 |
< |
getEffInvMassVec(consRB2, bondDirUnitVec, rmb); |
544 |
< |
|
545 |
< |
pabcDotvab = dotProduct(pab, vab); |
546 |
< |
pabDotInvMassVec = dotProduct(pab, rma + rmb); |
531 |
> |
getZeta(consRB1, bondDirUnitVec, zetaA); |
532 |
> |
getZeta(consRB2, bondDirUnitVec, zetaB); |
533 |
> |
zeta = zetaA + zetaB; |
534 |
|
|
535 |
< |
consForce = pabcDotvab /(2 * dt * pabDotInvMassVec) * bondDirUnitVec; |
535 |
> |
pabDotZeta = dotProduct(pab, zeta); |
536 |
> |
|
537 |
> |
consForce = pvab / (dt * pabDotZeta) * bondDirUnitVec; |
538 |
|
//integrate consRB1 using constraint force; |
539 |
< |
integrate(consRB1,consForce); |
539 |
> |
integrate(consRB1, consForce); |
540 |
|
|
541 |
|
//integrate consRB2 using constraint force; |
542 |
|
integrate(consRB2, -consForce); |
550 |
|
} |
551 |
|
} |
552 |
|
|
553 |
+ |
cerr << "DCRollBFunctor::operator() Error: can not constrain the bond within maximum iteration at " << info->getTime() << endl; |
554 |
|
return consExceedMaxIter; |
555 |
|
|
556 |
|
} |
557 |
|
|
558 |
< |
void DCRollBFunctor::getEffInvMassVec(ConstraintRigidBody* consRB, const Vector3d& bondDir, Vector3d& invMassVec){ |
558 |
> |
void DCRollBFunctor::getZeta(ConstraintRigidBody* consRB, const Vector3d& bondDir, Vector3d& zeta){ |
559 |
|
double invMass; |
560 |
|
Vector3d tempVec1; |
561 |
|
Vector3d tempVec2; |
562 |
|
Vector3d refCoor; |
563 |
|
Vector3d refCrossBond; |
564 |
|
Mat3x3d IBody; |
565 |
< |
Mat3x3d IFrame; |
565 |
> |
Mat3x3d ILab; |
566 |
|
Mat3x3d invIBody; |
567 |
< |
Mat3x3d invIFrame; |
567 |
> |
Mat3x3d invILab; |
568 |
|
Mat3x3d a; |
569 |
|
Mat3x3d aTrans; |
570 |
|
|
571 |
|
invMass = 1.0 / consRB ->getMass(); |
572 |
|
|
573 |
< |
invMassVec = invMass * bondDir; |
573 |
> |
zeta = invMass * bondDir; |
574 |
|
|
575 |
|
consRB->getRefCoor(refCoor.vec); |
576 |
|
consRB->getA(a.element); |
579 |
|
aTrans = a.transpose(); |
580 |
|
invIBody = IBody.inverse(); |
581 |
|
|
582 |
< |
IFrame = aTrans * invIBody * a; |
582 |
> |
invILab = aTrans * invIBody * a; |
583 |
|
|
584 |
|
refCrossBond = crossProduct(refCoor, bondDir); |
585 |
|
|
586 |
< |
tempVec1 = invIFrame * refCrossBond; |
586 |
> |
tempVec1 = invILab * refCrossBond; |
587 |
|
tempVec2 = crossProduct(tempVec1, refCoor); |
588 |
|
|
589 |
< |
invMassVec += tempVec2; |
589 |
> |
zeta += tempVec2; |
590 |
|
} |
591 |
|
|
592 |
|
void DCRollBFunctor::integrate(ConstraintRigidBody* consRB, const Vector3d& force){ |
603 |
– |
const double eConvert = 4.184e-4; |
593 |
|
Vector3d vel; |
605 |
– |
Vector3d pos; |
606 |
– |
Vector3d Tb; |
594 |
|
Vector3d ji; |
595 |
+ |
Vector3d tempJi; |
596 |
+ |
Vector3d tempTrq; |
597 |
+ |
Vector3d refCoor; |
598 |
|
double mass; |
599 |
|
double dtOver2; |
600 |
|
StuntDouble* sd; |
602 |
|
sd = consRB->getStuntDouble(); |
603 |
|
dtOver2 = info->dt/2; |
604 |
|
|
605 |
+ |
sd->getVel(vel.vec); |
606 |
|
mass = sd->getMass(); |
607 |
< |
|
617 |
< |
// velocity half step |
618 |
< |
|
619 |
< |
vel += eConvert * dtOver2 /mass * force; |
620 |
< |
|
607 |
> |
vel +=dtOver2 /mass * force; |
608 |
|
sd->setVel(vel.vec); |
609 |
|
|
610 |
|
if (sd->isDirectional()){ |
611 |
< |
|
612 |
< |
// get and convert the torque to body frame |
613 |
< |
|
627 |
< |
sd->getTrq(Tb.vec); |
628 |
< |
sd->lab2Body(Tb.vec); |
629 |
< |
|
630 |
< |
// get the angular momentum, and propagate a half step |
631 |
< |
|
611 |
> |
tempTrq = crossProduct(refCoor, force); |
612 |
> |
sd->lab2Body(tempTrq.vec); |
613 |
> |
tempJi = dtOver2* tempTrq; |
614 |
|
sd->getJ(ji.vec); |
615 |
< |
|
634 |
< |
ji += eConvert * dtOver2* Tb; |
635 |
< |
|
615 |
> |
ji += tempJi; |
616 |
|
sd->setJ(ji.vec); |
617 |
|
} |
618 |
|
|