| 7 |
|
//////////////////////////////////////////////////////////////////////////////// |
| 8 |
|
//Implementation of DCRollAFunctor |
| 9 |
|
//////////////////////////////////////////////////////////////////////////////// |
| 10 |
< |
int DCRollAFunctor::operator()(ConstraintRigidBody* consRB1, ConstraintRigidBody* consRB2){ |
| 10 |
> |
int DCRollAFunctor::operator()(ConstraintAtom* consAtom1, ConstraintAtom* consAtom2){ |
| 11 |
|
Vector3d posA; |
| 12 |
|
Vector3d posB; |
| 13 |
|
Vector3d oldPosA; |
| 17 |
|
Vector3d pab; |
| 18 |
|
Vector3d tempPab; |
| 19 |
|
Vector3d rab; |
| 20 |
< |
Vector3d rma; |
| 21 |
< |
Vector3d rmb; |
| 20 |
> |
Vector3d zetaA; |
| 21 |
> |
Vector3d zetaB; |
| 22 |
> |
Vector3d zeta; |
| 23 |
|
Vector3d consForce; |
| 24 |
|
Vector3d bondDirUnitVec; |
| 25 |
|
double dx, dy, dz; |
| 28 |
|
double diffsq; |
| 29 |
|
double gab; |
| 30 |
|
double dt; |
| 31 |
< |
double pabDotInvMassVec; |
| 31 |
> |
double pabDotZeta; |
| 32 |
> |
double pabDotZeta2; |
| 33 |
> |
double zeta2; |
| 34 |
> |
double forceScalar; |
| 35 |
> |
|
| 36 |
> |
const int conRBMaxIter = 10; |
| 37 |
> |
|
| 38 |
> |
dt = info->dt; |
| 39 |
> |
|
| 40 |
> |
consAtom1->getOldPos(oldPosA.vec); |
| 41 |
> |
consAtom2->getOldPos(oldPosB.vec); |
| 42 |
> |
|
| 43 |
> |
|
| 44 |
> |
for(int i=0 ; i < conRBMaxIter; i++){ |
| 45 |
> |
consAtom1->getPos(posA.vec); |
| 46 |
> |
consAtom2->getPos(posB.vec); |
| 47 |
> |
|
| 48 |
> |
//discard the vector convention in alan tidesley's code |
| 49 |
> |
//rij = rj - ri; |
| 50 |
> |
pab = posB - posA; |
| 51 |
> |
|
| 52 |
> |
//periodic boundary condition |
| 53 |
> |
|
| 54 |
> |
info->wrapVector(pab.vec); |
| 55 |
> |
|
| 56 |
> |
pabsq = dotProduct(pab, pab); |
| 57 |
> |
|
| 58 |
> |
rabsq = curPair->getBondLength2(); |
| 59 |
> |
diffsq = pabsq -rabsq; |
| 60 |
> |
|
| 61 |
> |
if (fabs(diffsq) > (consTolerance * rabsq * 2)){ |
| 62 |
> |
rab = oldPosB - oldPosA; |
| 63 |
> |
info->wrapVector(rab.vec); |
| 64 |
> |
|
| 65 |
> |
//rpab = dotProduct(rab, pab); |
| 66 |
> |
|
| 67 |
> |
//rpabsq = rpab * rpab; |
| 68 |
> |
|
| 69 |
> |
|
| 70 |
> |
//if (rpabsq < (rabsq * -diffsq)){ |
| 71 |
> |
// return consFail; |
| 72 |
> |
//} |
| 73 |
> |
|
| 74 |
> |
bondDirUnitVec = pab; |
| 75 |
> |
bondDirUnitVec.normalize(); |
| 76 |
> |
|
| 77 |
> |
calcZeta(consAtom1, bondDirUnitVec, zetaA); |
| 78 |
> |
|
| 79 |
> |
calcZeta(consAtom2, bondDirUnitVec, zetaB); |
| 80 |
> |
|
| 81 |
> |
zeta = zetaA + zetaB; |
| 82 |
> |
zeta2 = dotProduct(zeta, zeta); |
| 83 |
> |
|
| 84 |
> |
pabDotZeta = dotProduct(pab, zeta); |
| 85 |
> |
pabDotZeta2 = pabDotZeta * pabDotZeta; |
| 86 |
> |
|
| 87 |
> |
//solve quadratic equation |
| 88 |
> |
//dt^4 * zeta^2 * G^2 + 2* h^2 * pab * zeta * G + pab^2 - d^2 |
| 89 |
> |
//dt : time step |
| 90 |
> |
// pab : |
| 91 |
> |
//G : constraint force scalar |
| 92 |
> |
//d: equilibrium bond length |
| 93 |
> |
|
| 94 |
> |
if (pabDotZeta2 - zeta2 * diffsq < 0) |
| 95 |
> |
return consFail; |
| 96 |
> |
|
| 97 |
> |
//forceScalar = (pabDotZeta + sqrt(pabDotZeta2 - zeta2 * diffsq)) / dt * dt * zeta2; |
| 98 |
> |
forceScalar = diffsq / (2 * dt * dt * pabDotZeta); |
| 99 |
> |
// |
| 100 |
> |
consForce = forceScalar * bondDirUnitVec; |
| 101 |
> |
//integrate consRB1 using constraint force; |
| 102 |
> |
integrate(consAtom1, consForce); |
| 103 |
> |
|
| 104 |
> |
//integrate consRB2 using constraint force; |
| 105 |
> |
integrate(consAtom2, -consForce); |
| 106 |
> |
|
| 107 |
> |
} |
| 108 |
> |
else{ |
| 109 |
> |
if (i ==0) |
| 110 |
> |
return consAlready; |
| 111 |
> |
else |
| 112 |
> |
return consSuccess; |
| 113 |
> |
} |
| 114 |
> |
} |
| 115 |
> |
|
| 116 |
> |
return consExceedMaxIter; |
| 117 |
> |
|
| 118 |
> |
} |
| 119 |
> |
void DCRollAFunctor::calcZeta(ConstraintAtom* consAtom, const Vector3d& bondDir, Vector3d&zeta){ |
| 120 |
> |
double invMass; |
| 121 |
> |
invMass = 1.0 / consAtom ->getMass(); |
| 122 |
> |
|
| 123 |
> |
zeta = invMass * bondDir; |
| 124 |
> |
} |
| 125 |
> |
|
| 126 |
> |
void DCRollAFunctor::integrate(ConstraintAtom* consAtom, const Vector3d& force){ |
| 127 |
> |
StuntDouble* sd; |
| 128 |
> |
Vector3d vel; |
| 129 |
> |
Vector3d pos; |
| 130 |
> |
Vector3d tempPos; |
| 131 |
> |
Vector3d tempVel; |
| 132 |
> |
|
| 133 |
> |
double mass; |
| 134 |
> |
double dtOver2; |
| 135 |
> |
double dt; |
| 136 |
> |
const double eConvert = 4.184e-4; |
| 137 |
> |
|
| 138 |
> |
dt = info->dt; |
| 139 |
> |
dtOver2 = dt /2; |
| 140 |
> |
sd = consAtom->getStuntDouble(); |
| 141 |
> |
|
| 142 |
> |
sd->getVel(vel.vec); |
| 143 |
> |
sd->getPos(pos.vec); |
| 144 |
> |
|
| 145 |
> |
mass = sd->getMass(); |
| 146 |
|
|
| 147 |
+ |
tempVel = eConvert * dtOver2/mass * force; |
| 148 |
+ |
tempPos = dt * tempVel; |
| 149 |
+ |
|
| 150 |
+ |
vel += tempVel; |
| 151 |
+ |
pos += tempPos; |
| 152 |
|
|
| 153 |
+ |
sd->setVel(vel.vec); |
| 154 |
+ |
sd->setPos(pos.vec); |
| 155 |
+ |
} |
| 156 |
+ |
|
| 157 |
+ |
int DCRollAFunctor::operator()(ConstraintRigidBody* consRB1, ConstraintRigidBody* consRB2){ |
| 158 |
+ |
Vector3d posA; |
| 159 |
+ |
Vector3d posB; |
| 160 |
+ |
Vector3d oldPosA; |
| 161 |
+ |
Vector3d oldPosB; |
| 162 |
+ |
Vector3d velA; |
| 163 |
+ |
Vector3d velB; |
| 164 |
+ |
Vector3d pab; |
| 165 |
+ |
Vector3d tempPab; |
| 166 |
+ |
Vector3d rab; |
| 167 |
+ |
Vector3d zetaA; |
| 168 |
+ |
Vector3d zetaB; |
| 169 |
+ |
Vector3d zeta; |
| 170 |
+ |
Vector3d consForce; |
| 171 |
+ |
Vector3d bondDirUnitVec; |
| 172 |
+ |
double dx, dy, dz; |
| 173 |
+ |
double rpab; |
| 174 |
+ |
double rabsq, pabsq, rpabsq; |
| 175 |
+ |
double diffsq; |
| 176 |
+ |
double gab; |
| 177 |
+ |
double dt; |
| 178 |
+ |
double pabDotZeta; |
| 179 |
+ |
double pabDotZeta2; |
| 180 |
+ |
double zeta2; |
| 181 |
+ |
double forceScalar; |
| 182 |
+ |
|
| 183 |
|
const int conRBMaxIter = 10; |
| 184 |
|
|
| 185 |
|
dt = info->dt; |
| 192 |
|
consRB1->getCurAtomPos(posA.vec); |
| 193 |
|
consRB2->getCurAtomPos(posB.vec); |
| 194 |
|
|
| 195 |
< |
pab = posA - posB; |
| 195 |
> |
//discard the vector convention in alan tidesley's code |
| 196 |
> |
//rij = rj - ri; |
| 197 |
> |
pab = posB - posA; |
| 198 |
|
|
| 199 |
|
//periodic boundary condition |
| 200 |
|
|
| 203 |
|
pabsq = dotProduct(pab, pab); |
| 204 |
|
|
| 205 |
|
rabsq = curPair->getBondLength2(); |
| 206 |
< |
diffsq = rabsq - pabsq; |
| 206 |
> |
diffsq = pabsq -rabsq; |
| 207 |
|
|
| 208 |
|
if (fabs(diffsq) > (consTolerance * rabsq * 2)){ |
| 209 |
< |
rab = oldPosA - oldPosB; |
| 209 |
> |
rab = oldPosB - oldPosA; |
| 210 |
|
info->wrapVector(rab.vec); |
| 211 |
|
|
| 212 |
< |
rpab = dotProduct(rab, pab); |
| 212 |
> |
//rpab = dotProduct(rab, pab); |
| 213 |
|
|
| 214 |
< |
rpabsq = rpab * rpab; |
| 214 |
> |
//rpabsq = rpab * rpab; |
| 215 |
|
|
| 216 |
|
|
| 217 |
|
//if (rpabsq < (rabsq * -diffsq)){ |
| 221 |
|
bondDirUnitVec = pab; |
| 222 |
|
bondDirUnitVec.normalize(); |
| 223 |
|
|
| 224 |
< |
getEffInvMassVec(consRB1, bondDirUnitVec, rma); |
| 224 |
> |
calcZeta(consRB1, bondDirUnitVec, zetaA); |
| 225 |
|
|
| 226 |
< |
getEffInvMassVec(consRB2, -bondDirUnitVec, rmb); |
| 226 |
> |
calcZeta(consRB2, bondDirUnitVec, zetaB); |
| 227 |
|
|
| 228 |
< |
pabDotInvMassVec = dotProduct(pab, rma + rmb); |
| 228 |
> |
zeta = zetaA + zetaB; |
| 229 |
> |
zeta2 = dotProduct(zeta, zeta); |
| 230 |
|
|
| 231 |
< |
consForce = diffsq /(2 * dt * dt * pabDotInvMassVec) * bondDirUnitVec; |
| 231 |
> |
pabDotZeta = dotProduct(pab, zeta); |
| 232 |
> |
pabDotZeta2 = pabDotZeta * pabDotZeta; |
| 233 |
> |
|
| 234 |
> |
//solve quadratic equation |
| 235 |
> |
//dt^4 * zeta^2 * G^2 + 2* h^2 * pab * zeta * G + pab^2 - d^2 |
| 236 |
> |
//dt : time step |
| 237 |
> |
// pab : |
| 238 |
> |
//G : constraint force scalar |
| 239 |
> |
//d: equilibrium bond length |
| 240 |
> |
|
| 241 |
> |
if (pabDotZeta2 - zeta2 * diffsq < 0) |
| 242 |
> |
return consFail; |
| 243 |
> |
|
| 244 |
> |
//forceScalar = (pabDotZeta + sqrt(pabDotZeta2 - zeta2 * diffsq)) / dt * dt * zeta2; |
| 245 |
> |
forceScalar = diffsq / (2 * dt * dt * pabDotZeta); |
| 246 |
> |
// |
| 247 |
> |
consForce = forceScalar * bondDirUnitVec; |
| 248 |
|
//integrate consRB1 using constraint force; |
| 249 |
< |
integrate(consRB1,consForce); |
| 249 |
> |
integrate(consRB1, consForce); |
| 250 |
|
|
| 251 |
|
//integrate consRB2 using constraint force; |
| 252 |
|
integrate(consRB2, -consForce); |
| 264 |
|
|
| 265 |
|
} |
| 266 |
|
|
| 267 |
< |
void DCRollAFunctor::getEffInvMassVec(ConstraintRigidBody* consRB, const Vector3d& bondDir, Vector3d& invMassVec){ |
| 267 |
> |
void DCRollAFunctor::calcZeta(ConstraintRigidBody* consRB, const Vector3d& bondDir, Vector3d& zeta){ |
| 268 |
|
double invMass; |
| 269 |
|
Vector3d tempVec1; |
| 270 |
|
Vector3d tempVec2; |
| 279 |
|
|
| 280 |
|
invMass = 1.0 / consRB ->getMass(); |
| 281 |
|
|
| 282 |
< |
invMassVec = invMass * bondDir; |
| 282 |
> |
zeta = invMass * bondDir; |
| 283 |
|
|
| 284 |
|
consRB->getRefCoor(refCoor.vec); |
| 285 |
|
consRB->getA(a.element); |
| 295 |
|
tempVec1 = invIFrame * refCrossBond; |
| 296 |
|
tempVec2 = crossProduct(tempVec1, refCoor); |
| 297 |
|
|
| 298 |
< |
invMassVec += tempVec2; |
| 298 |
> |
zeta += tempVec2; |
| 299 |
|
|
| 300 |
|
} |
| 301 |
|
|
| 305 |
|
Vector3d pos; |
| 306 |
|
Vector3d Tb; |
| 307 |
|
Vector3d ji; |
| 308 |
+ |
Vector3d tempPos; |
| 309 |
+ |
Vector3d tempVel; |
| 310 |
+ |
Vector3d tempTrq; |
| 311 |
+ |
Vector3d tempJi; |
| 312 |
|
double mass; |
| 313 |
|
double dtOver2; |
| 314 |
|
double dt; |
| 323 |
|
|
| 324 |
|
mass = sd->getMass(); |
| 325 |
|
|
| 326 |
< |
vel += eConvert * dtOver2/mass * force; |
| 327 |
< |
pos += dt * vel; |
| 326 |
> |
tempVel = eConvert * dtOver2/mass * force; |
| 327 |
> |
tempPos = dt * tempVel; |
| 328 |
> |
|
| 329 |
> |
vel += tempVel; |
| 330 |
> |
pos += tempPos; |
| 331 |
|
|
| 332 |
|
sd->setVel(vel.vec); |
| 333 |
|
sd->setPos(pos.vec); |
| 540 |
|
|
| 541 |
|
getEffInvMassVec(consRB1, bondDirUnitVec, rma); |
| 542 |
|
|
| 543 |
< |
getEffInvMassVec(consRB2, -bondDirUnitVec, rmb); |
| 543 |
> |
getEffInvMassVec(consRB2, bondDirUnitVec, rmb); |
| 544 |
|
|
| 545 |
|
pabcDotvab = dotProduct(pab, vab); |
| 546 |
|
pabDotInvMassVec = dotProduct(pab, rma + rmb); |