ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/trunk/OOPSE/libmdtools/SimInfo.cpp
Revision: 588
Committed: Thu Jul 10 17:10:56 2003 UTC (21 years ago) by gezelter
File size: 9527 byte(s)
Log Message:
Bunch of 1-d array -> 2-d array stuff

File Contents

# User Rev Content
1 mmeineke 377 #include <cstdlib>
2     #include <cstring>
3 mmeineke 568 #include <cmath>
4 mmeineke 377
5 mmeineke 572 #include <iostream>
6     using namespace std;
7 mmeineke 377
8     #include "SimInfo.hpp"
9     #define __C
10     #include "fSimulation.h"
11     #include "simError.h"
12    
13     #include "fortranWrappers.hpp"
14    
15 gezelter 490 #ifdef IS_MPI
16     #include "mpiSimulation.hpp"
17     #endif
18    
19 mmeineke 572 inline double roundMe( double x ){
20     return ( x >= 0 ) ? floor( x + 0.5 ) : ceil( x - 0.5 );
21     }
22    
23    
24 mmeineke 377 SimInfo* currentInfo;
25    
26     SimInfo::SimInfo(){
27     excludes = NULL;
28     n_constraints = 0;
29     n_oriented = 0;
30     n_dipoles = 0;
31 gezelter 458 ndf = 0;
32     ndfRaw = 0;
33 mmeineke 377 the_integrator = NULL;
34     setTemp = 0;
35     thermalTime = 0.0;
36 mmeineke 420 rCut = 0.0;
37 mmeineke 377
38     usePBC = 0;
39     useLJ = 0;
40     useSticky = 0;
41     useDipole = 0;
42     useReactionField = 0;
43     useGB = 0;
44     useEAM = 0;
45    
46 gezelter 457 wrapMeSimInfo( this );
47     }
48 mmeineke 377
49 gezelter 457 void SimInfo::setBox(double newBox[3]) {
50 mmeineke 586
51 gezelter 588 int i, j;
52     double tempMat[3][3];
53 gezelter 463
54 gezelter 588 for(i=0; i<3; i++)
55     for (j=0; j<3; j++) tempMat[i][j] = 0.0;;
56 gezelter 463
57 gezelter 588 tempMat[0][0] = newBox[0];
58     tempMat[1][1] = newBox[1];
59     tempMat[2][2] = newBox[2];
60 gezelter 463
61 mmeineke 586 setBoxM( tempMat );
62 mmeineke 568
63 gezelter 457 }
64 mmeineke 377
65 gezelter 588 void SimInfo::setBoxM( double theBox[3][3] ){
66 mmeineke 568
67 gezelter 588 int i, j, status;
68 mmeineke 568 double smallestBoxL, maxCutoff;
69 gezelter 588 double FortranHmat[9]; // to preserve compatibility with Fortran the
70     // ordering in the array is as follows:
71     // [ 0 3 6 ]
72     // [ 1 4 7 ]
73     // [ 2 5 8 ]
74     double FortranHmatInv[9]; // the inverted Hmat (for Fortran);
75 mmeineke 568
76 mmeineke 586
77 gezelter 588 for(i=0; i < 3; i++)
78     for (j=0; j < 3; j++) Hmat[i][j] = theBox[i][j];
79    
80 mmeineke 586 cerr
81     << "setting Hmat ->\n"
82 gezelter 588 << "[ " << Hmat[0][0] << ", " << Hmat[0][1] << ", " << Hmat[0][2] << " ]\n"
83     << "[ " << Hmat[1][0] << ", " << Hmat[1][1] << ", " << Hmat[1][2] << " ]\n"
84     << "[ " << Hmat[2][0] << ", " << Hmat[2][1] << ", " << Hmat[2][2] << " ]\n";
85 mmeineke 586
86 mmeineke 568 calcBoxL();
87 gezelter 588 calcHmatInv();
88 mmeineke 568
89 gezelter 588 for(i=0; i < 3; i++) {
90     for (j=0; j < 3; j++) {
91     FortranHmat[3*j + i] = Hmat[i][j];
92     FortranHmatInv[3*j + i] = HmatInv[i][j];
93     }
94     }
95 mmeineke 586
96 gezelter 588 setFortranBoxSize(FortranHmat, FortranHmatI, &orthoRhombic);
97 mmeineke 568
98     smallestBoxL = boxLx;
99     if (boxLy < smallestBoxL) smallestBoxL = boxLy;
100     if (boxLz < smallestBoxL) smallestBoxL = boxLz;
101    
102     maxCutoff = smallestBoxL / 2.0;
103    
104     if (rList > maxCutoff) {
105     sprintf( painCave.errMsg,
106     "New Box size is forcing neighborlist radius down to %lf\n",
107     maxCutoff );
108     painCave.isFatal = 0;
109     simError();
110    
111     rList = maxCutoff;
112    
113     sprintf( painCave.errMsg,
114     "New Box size is forcing cutoff radius down to %lf\n",
115     maxCutoff - 1.0 );
116     painCave.isFatal = 0;
117     simError();
118    
119     rCut = rList - 1.0;
120    
121     // list radius changed so we have to refresh the simulation structure.
122     refreshSim();
123     }
124    
125     if (rCut > maxCutoff) {
126     sprintf( painCave.errMsg,
127     "New Box size is forcing cutoff radius down to %lf\n",
128     maxCutoff );
129     painCave.isFatal = 0;
130     simError();
131    
132     status = 0;
133     LJ_new_rcut(&rCut, &status);
134     if (status != 0) {
135     sprintf( painCave.errMsg,
136     "Error in recomputing LJ shifts based on new rcut\n");
137     painCave.isFatal = 1;
138     simError();
139     }
140     }
141 mmeineke 377 }
142 gezelter 458
143 mmeineke 568
144 gezelter 588 void SimInfo::getBoxM (double theBox[3][3]) {
145 mmeineke 568
146 gezelter 588 int i, j;
147     for(i=0; i<3; i++)
148     for (j=0; j<3; j++) theBox[i][j] = Hmat[i][j];
149 mmeineke 568 }
150    
151 gezelter 574
152     void SimInfo::scaleBox(double scale) {
153 gezelter 588 double theBox[3][3];
154     int i, j;
155 gezelter 574
156 mmeineke 586 cerr << "Scaling box by " << scale << "\n";
157    
158 gezelter 588 for(i=0; i<3; i++)
159     for (j=0; j<3; j++) theBox[i][j] = Hmat[i][j]*scale;
160 gezelter 574
161     setBoxM(theBox);
162    
163     }
164    
165 gezelter 588 void SimInfo::calcHmatInv( void ) {
166 mmeineke 568
167 mmeineke 569 double smallDiag;
168     double tol;
169     double sanity[3][3];
170 mmeineke 568
171 gezelter 588 invertMat3( Hmat, HmatInv );
172 mmeineke 568
173 gezelter 588 // Check the inverse to make sure it is sane:
174 mmeineke 568
175 gezelter 588 matMul3( Hmat, HmatInv, sanity );
176 mmeineke 568
177 gezelter 588 cerr << "sanity => \n"
178     << sanity[0][0] << "\t" << sanity[0][1] << "\t" << sanity [0][2] << "\n"
179     << sanity[1][0] << "\t" << sanity[1][1] << "\t" << sanity [1][2] << "\n"
180     << sanity[2][0] << "\t" << sanity[2][1] << "\t" << sanity [2][2]
181     << "\n";
182    
183     // check to see if Hmat is orthorhombic
184 mmeineke 568
185 gezelter 588 smallDiag = Hmat[0][0];
186     if(smallDiag > Hmat[1][1]) smallDiag = Hmat[1][1];
187     if(smallDiag > Hmat[2][2]) smallDiag = Hmat[2][2];
188     tol = smallDiag * 1E-6;
189 mmeineke 568
190 gezelter 588 orthoRhombic = 1;
191 mmeineke 568
192 gezelter 588 for (i = 0; i < 3; i++ ) {
193     for (j = 0 ; j < 3; j++) {
194     if (i != j) {
195     if (orthoRhombic) {
196     if (Hmat[i][j] >= tol) orthoRhombic = 0;
197     }
198     }
199 mmeineke 568 }
200     }
201 gezelter 588 }
202 mmeineke 569
203 gezelter 588 double SimInfo::matDet3(double a[3][3]) {
204     int i, j, k;
205     double determinant;
206 mmeineke 569
207 gezelter 588 determinant = 0.0;
208    
209     for(i = 0; i < 3; i++) {
210     j = (i+1)%3;
211     k = (i+2)%3;
212    
213     determinant += a[0][i] * (a[1][j]*a[2][k] - a[1][k]*a[2][j]);
214 mmeineke 569 }
215    
216 gezelter 588 return determinant;
217     }
218 mmeineke 569
219 gezelter 588 void SimInfo::invertMat3(double a[3][3], double b[3][3]) {
220 mmeineke 569
221 gezelter 588 int i, j, k, l, m, n;
222     double determinant;
223 mmeineke 569
224 gezelter 588 determinant = matDet3( a );
225    
226     if (determinant == 0.0) {
227     sprintf( painCave.errMsg,
228     "Can't invert a matrix with a zero determinant!\n");
229     painCave.isFatal = 1;
230     simError();
231     }
232    
233     for (i=0; i < 3; i++) {
234     j = (i+1)%3;
235     k = (i+2)%3;
236     for(l = 0; l < 3; l++) {
237     m = (l+1)%3;
238     n = (l+2)%3;
239    
240     b[l][i] = (a[j][m]*a[k][n] - a[j][n]*a[k][m]) / determinant;
241 mmeineke 569 }
242     }
243 mmeineke 568 }
244    
245 gezelter 588 void SimInfo::matMul3(double a[3][3], double b[3][3], double c[3][3]) {
246     double r00, r01, r02, r10, r11, r12, r20, r21, r22;
247    
248     r00 = a[0][0]*b[0][0] + a[0][1]*b[1][0] + a[0][2]*b[2][0];
249     r01 = a[0][0]*b[0][1] + a[0][1]*b[1][1] + a[0][2]*b[2][1];
250     r02 = a[0][0]*b[0][2] + a[0][1]*b[1][2] + a[0][2]*b[2][2];
251    
252     r10 = a[1][0]*b[0][0] + a[1][1]*b[1][0] + a[1][2]*b[2][0];
253     r11 = a[1][0]*b[0][1] + a[1][1]*b[1][1] + a[1][2]*b[2][1];
254     r12 = a[1][0]*b[0][2] + a[1][1]*b[1][2] + a[1][2]*b[2][2];
255    
256     r20 = a[2][0]*b[0][0] + a[2][1]*b[1][0] + a[2][2]*b[2][0];
257     r21 = a[2][0]*b[0][1] + a[2][1]*b[1][1] + a[2][2]*b[2][1];
258     r22 = a[2][0]*b[0][2] + a[2][1]*b[1][2] + a[2][2]*b[2][2];
259    
260     c[0][0] = r00; c[0][1] = r01; c[0][2] = r02;
261     c[1][0] = r10; c[1][1] = r11; c[1][2] = r12;
262     c[2][0] = r20; c[2][1] = r21; c[2][2] = r22;
263     }
264    
265     void SimInfo::matVecMul3(double m[3][3], double inVec[3], double outVec[3]) {
266     double a0, a1, a2;
267    
268     a0 = inVec[0]; a1 = inVec[1]; a2 = inVec[2];
269    
270     outVec[0] = m[0][0]*a0 + m[0][1]*a1 + m[0][2]*a2;
271     outVec[1] = m[1][0]*a0 + m[1][1]*a1 + m[1][2]*a2;
272     outVec[2] = m[2][0]*a0 + m[2][1]*a1 + m[2][2]*a2;
273     }
274    
275 mmeineke 568 void SimInfo::calcBoxL( void ){
276    
277     double dx, dy, dz, dsq;
278     int i;
279    
280 gezelter 588 // boxVol = Determinant of Hmat
281 mmeineke 568
282 gezelter 588 boxVol = matDet3( Hmat );
283 mmeineke 568
284     // boxLx
285    
286 gezelter 588 dx = Hmat[0][0]; dy = Hmat[1][0]; dz = Hmat[2][0];
287 mmeineke 568 dsq = dx*dx + dy*dy + dz*dz;
288     boxLx = sqrt( dsq );
289    
290     // boxLy
291    
292 gezelter 588 dx = Hmat[0][1]; dy = Hmat[1][1]; dz = Hmat[2][1];
293 mmeineke 568 dsq = dx*dx + dy*dy + dz*dz;
294     boxLy = sqrt( dsq );
295    
296     // boxLz
297    
298 gezelter 588 dx = Hmat[0][2]; dy = Hmat[1][2]; dz = Hmat[2][2];
299 mmeineke 568 dsq = dx*dx + dy*dy + dz*dz;
300     boxLz = sqrt( dsq );
301    
302     }
303    
304    
305     void SimInfo::wrapVector( double thePos[3] ){
306    
307     int i, j, k;
308     double scaled[3];
309    
310 mmeineke 569 if( !orthoRhombic ){
311     // calc the scaled coordinates.
312 gezelter 588
313    
314     matVecMul3(HmatInv, thePos, scaled);
315 mmeineke 569
316     for(i=0; i<3; i++)
317 mmeineke 572 scaled[i] -= roundMe(scaled[i]);
318 mmeineke 569
319     // calc the wrapped real coordinates from the wrapped scaled coordinates
320    
321 gezelter 588 matVecMul3(Hmat, scaled, thePos);
322    
323 mmeineke 569 }
324     else{
325     // calc the scaled coordinates.
326    
327     for(i=0; i<3; i++)
328 gezelter 588 scaled[i] = thePos[i]*HmatInv[i][i];
329 mmeineke 569
330     // wrap the scaled coordinates
331    
332     for(i=0; i<3; i++)
333 mmeineke 572 scaled[i] -= roundMe(scaled[i]);
334 mmeineke 569
335     // calc the wrapped real coordinates from the wrapped scaled coordinates
336    
337     for(i=0; i<3; i++)
338 gezelter 588 thePos[i] = scaled[i]*Hmat[i][i];
339 mmeineke 569 }
340    
341 mmeineke 568 }
342    
343    
344 gezelter 458 int SimInfo::getNDF(){
345     int ndf_local, ndf;
346 gezelter 457
347 gezelter 458 ndf_local = 3 * n_atoms + 3 * n_oriented - n_constraints;
348    
349     #ifdef IS_MPI
350     MPI_Allreduce(&ndf_local,&ndf,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
351     #else
352     ndf = ndf_local;
353     #endif
354    
355     ndf = ndf - 3;
356    
357     return ndf;
358     }
359    
360     int SimInfo::getNDFraw() {
361     int ndfRaw_local, ndfRaw;
362    
363     // Raw degrees of freedom that we have to set
364     ndfRaw_local = 3 * n_atoms + 3 * n_oriented;
365    
366     #ifdef IS_MPI
367     MPI_Allreduce(&ndfRaw_local,&ndfRaw,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
368     #else
369     ndfRaw = ndfRaw_local;
370     #endif
371    
372     return ndfRaw;
373     }
374    
375 mmeineke 377 void SimInfo::refreshSim(){
376    
377     simtype fInfo;
378     int isError;
379 gezelter 490 int n_global;
380 mmeineke 424 int* excl;
381 mmeineke 469
382     fInfo.rrf = 0.0;
383     fInfo.rt = 0.0;
384     fInfo.dielect = 0.0;
385 mmeineke 377
386     fInfo.rlist = rList;
387     fInfo.rcut = rCut;
388    
389 mmeineke 469 if( useDipole ){
390     fInfo.rrf = ecr;
391     fInfo.rt = ecr - est;
392     if( useReactionField )fInfo.dielect = dielectric;
393     }
394    
395 mmeineke 377 fInfo.SIM_uses_PBC = usePBC;
396 mmeineke 443 //fInfo.SIM_uses_LJ = 0;
397 chuckv 439 fInfo.SIM_uses_LJ = useLJ;
398 mmeineke 443 fInfo.SIM_uses_sticky = useSticky;
399     //fInfo.SIM_uses_sticky = 0;
400 chuckv 482 fInfo.SIM_uses_dipoles = useDipole;
401     //fInfo.SIM_uses_dipoles = 0;
402 mmeineke 443 //fInfo.SIM_uses_RF = useReactionField;
403     fInfo.SIM_uses_RF = 0;
404 mmeineke 377 fInfo.SIM_uses_GB = useGB;
405     fInfo.SIM_uses_EAM = useEAM;
406    
407 mmeineke 424 excl = Exclude::getArray();
408 mmeineke 377
409 gezelter 490 #ifdef IS_MPI
410     n_global = mpiSim->getTotAtoms();
411     #else
412     n_global = n_atoms;
413     #endif
414    
415 mmeineke 377 isError = 0;
416    
417 gezelter 490 setFsimulation( &fInfo, &n_global, &n_atoms, identArray, &n_exclude, excl,
418 gezelter 483 &nGlobalExcludes, globalExcludes, molMembershipArray,
419     &isError );
420 mmeineke 377
421     if( isError ){
422    
423     sprintf( painCave.errMsg,
424     "There was an error setting the simulation information in fortran.\n" );
425     painCave.isFatal = 1;
426     simError();
427     }
428    
429     #ifdef IS_MPI
430     sprintf( checkPointMsg,
431     "succesfully sent the simulation information to fortran.\n");
432     MPIcheckPoint();
433     #endif // is_mpi
434 gezelter 458
435 gezelter 474 this->ndf = this->getNDF();
436     this->ndfRaw = this->getNDFraw();
437 gezelter 458
438 mmeineke 377 }
439