ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/trunk/OOPSE/libmdtools/SimInfo.cpp
Revision: 660
Committed: Thu Jul 31 19:59:34 2003 UTC (20 years, 11 months ago) by tim
File size: 11978 byte(s)
Log Message:
add index range checking into ZConstraint

File Contents

# User Rev Content
1 mmeineke 377 #include <cstdlib>
2     #include <cstring>
3 mmeineke 568 #include <cmath>
4 mmeineke 377
5 mmeineke 572 #include <iostream>
6     using namespace std;
7 mmeineke 377
8     #include "SimInfo.hpp"
9     #define __C
10     #include "fSimulation.h"
11     #include "simError.h"
12    
13     #include "fortranWrappers.hpp"
14    
15 gezelter 490 #ifdef IS_MPI
16     #include "mpiSimulation.hpp"
17     #endif
18    
19 mmeineke 572 inline double roundMe( double x ){
20     return ( x >= 0 ) ? floor( x + 0.5 ) : ceil( x - 0.5 );
21     }
22    
23    
24 mmeineke 377 SimInfo* currentInfo;
25    
26     SimInfo::SimInfo(){
27     excludes = NULL;
28     n_constraints = 0;
29     n_oriented = 0;
30     n_dipoles = 0;
31 gezelter 458 ndf = 0;
32     ndfRaw = 0;
33 mmeineke 377 the_integrator = NULL;
34     setTemp = 0;
35     thermalTime = 0.0;
36 mmeineke 642 currentTime = 0.0;
37 mmeineke 420 rCut = 0.0;
38 mmeineke 618 ecr = 0.0;
39 mmeineke 619 est = 0.0;
40 mmeineke 626 oldEcr = 0.0;
41     oldRcut = 0.0;
42 mmeineke 377
43 mmeineke 626 haveOrigRcut = 0;
44     haveOrigEcr = 0;
45     boxIsInit = 0;
46    
47    
48    
49 mmeineke 377 usePBC = 0;
50     useLJ = 0;
51     useSticky = 0;
52     useDipole = 0;
53     useReactionField = 0;
54     useGB = 0;
55     useEAM = 0;
56    
57 gezelter 457 wrapMeSimInfo( this );
58     }
59 mmeineke 377
60 tim 660 SimInfo::~SimInfo(){
61    
62     map<string, GenericData*>::iterator i;
63    
64     for(i = properties.begin(); i != properties.end(); i++)
65     delete (*i).second;
66    
67    
68     }
69    
70 gezelter 457 void SimInfo::setBox(double newBox[3]) {
71 mmeineke 586
72 gezelter 588 int i, j;
73     double tempMat[3][3];
74 gezelter 463
75 gezelter 588 for(i=0; i<3; i++)
76     for (j=0; j<3; j++) tempMat[i][j] = 0.0;;
77 gezelter 463
78 gezelter 588 tempMat[0][0] = newBox[0];
79     tempMat[1][1] = newBox[1];
80     tempMat[2][2] = newBox[2];
81 gezelter 463
82 mmeineke 586 setBoxM( tempMat );
83 mmeineke 568
84 gezelter 457 }
85 mmeineke 377
86 gezelter 588 void SimInfo::setBoxM( double theBox[3][3] ){
87 mmeineke 568
88 gezelter 588 int i, j, status;
89 mmeineke 568 double smallestBoxL, maxCutoff;
90 gezelter 588 double FortranHmat[9]; // to preserve compatibility with Fortran the
91     // ordering in the array is as follows:
92     // [ 0 3 6 ]
93     // [ 1 4 7 ]
94     // [ 2 5 8 ]
95     double FortranHmatInv[9]; // the inverted Hmat (for Fortran);
96 mmeineke 568
97 mmeineke 626
98     if( !boxIsInit ) boxIsInit = 1;
99 mmeineke 586
100 gezelter 588 for(i=0; i < 3; i++)
101     for (j=0; j < 3; j++) Hmat[i][j] = theBox[i][j];
102    
103 mmeineke 568 calcBoxL();
104 gezelter 588 calcHmatInv();
105 mmeineke 568
106 gezelter 588 for(i=0; i < 3; i++) {
107     for (j=0; j < 3; j++) {
108     FortranHmat[3*j + i] = Hmat[i][j];
109     FortranHmatInv[3*j + i] = HmatInv[i][j];
110     }
111     }
112 mmeineke 586
113 mmeineke 590 setFortranBoxSize(FortranHmat, FortranHmatInv, &orthoRhombic);
114 mmeineke 568
115 mmeineke 377 }
116 gezelter 458
117 mmeineke 568
118 gezelter 588 void SimInfo::getBoxM (double theBox[3][3]) {
119 mmeineke 568
120 gezelter 588 int i, j;
121     for(i=0; i<3; i++)
122     for (j=0; j<3; j++) theBox[i][j] = Hmat[i][j];
123 mmeineke 568 }
124    
125 gezelter 574
126     void SimInfo::scaleBox(double scale) {
127 gezelter 588 double theBox[3][3];
128     int i, j;
129 gezelter 574
130 gezelter 617 // cerr << "Scaling box by " << scale << "\n";
131 mmeineke 586
132 gezelter 588 for(i=0; i<3; i++)
133     for (j=0; j<3; j++) theBox[i][j] = Hmat[i][j]*scale;
134 gezelter 574
135     setBoxM(theBox);
136    
137     }
138    
139 gezelter 588 void SimInfo::calcHmatInv( void ) {
140 mmeineke 590
141     int i,j;
142 mmeineke 569 double smallDiag;
143     double tol;
144     double sanity[3][3];
145 mmeineke 568
146 gezelter 588 invertMat3( Hmat, HmatInv );
147 mmeineke 568
148 gezelter 588 // Check the inverse to make sure it is sane:
149 mmeineke 568
150 gezelter 588 matMul3( Hmat, HmatInv, sanity );
151    
152     // check to see if Hmat is orthorhombic
153 mmeineke 568
154 gezelter 588 smallDiag = Hmat[0][0];
155     if(smallDiag > Hmat[1][1]) smallDiag = Hmat[1][1];
156     if(smallDiag > Hmat[2][2]) smallDiag = Hmat[2][2];
157     tol = smallDiag * 1E-6;
158 mmeineke 568
159 gezelter 588 orthoRhombic = 1;
160 mmeineke 568
161 gezelter 588 for (i = 0; i < 3; i++ ) {
162     for (j = 0 ; j < 3; j++) {
163     if (i != j) {
164     if (orthoRhombic) {
165     if (Hmat[i][j] >= tol) orthoRhombic = 0;
166     }
167     }
168 mmeineke 568 }
169     }
170 gezelter 588 }
171 mmeineke 569
172 gezelter 588 double SimInfo::matDet3(double a[3][3]) {
173     int i, j, k;
174     double determinant;
175 mmeineke 569
176 gezelter 588 determinant = 0.0;
177    
178     for(i = 0; i < 3; i++) {
179     j = (i+1)%3;
180     k = (i+2)%3;
181    
182     determinant += a[0][i] * (a[1][j]*a[2][k] - a[1][k]*a[2][j]);
183 mmeineke 569 }
184    
185 gezelter 588 return determinant;
186     }
187 mmeineke 569
188 gezelter 588 void SimInfo::invertMat3(double a[3][3], double b[3][3]) {
189 mmeineke 569
190 gezelter 588 int i, j, k, l, m, n;
191     double determinant;
192 mmeineke 569
193 gezelter 588 determinant = matDet3( a );
194    
195     if (determinant == 0.0) {
196     sprintf( painCave.errMsg,
197     "Can't invert a matrix with a zero determinant!\n");
198     painCave.isFatal = 1;
199     simError();
200     }
201    
202     for (i=0; i < 3; i++) {
203     j = (i+1)%3;
204     k = (i+2)%3;
205     for(l = 0; l < 3; l++) {
206     m = (l+1)%3;
207     n = (l+2)%3;
208    
209     b[l][i] = (a[j][m]*a[k][n] - a[j][n]*a[k][m]) / determinant;
210 mmeineke 569 }
211     }
212 mmeineke 568 }
213    
214 gezelter 588 void SimInfo::matMul3(double a[3][3], double b[3][3], double c[3][3]) {
215     double r00, r01, r02, r10, r11, r12, r20, r21, r22;
216    
217     r00 = a[0][0]*b[0][0] + a[0][1]*b[1][0] + a[0][2]*b[2][0];
218     r01 = a[0][0]*b[0][1] + a[0][1]*b[1][1] + a[0][2]*b[2][1];
219     r02 = a[0][0]*b[0][2] + a[0][1]*b[1][2] + a[0][2]*b[2][2];
220    
221     r10 = a[1][0]*b[0][0] + a[1][1]*b[1][0] + a[1][2]*b[2][0];
222     r11 = a[1][0]*b[0][1] + a[1][1]*b[1][1] + a[1][2]*b[2][1];
223     r12 = a[1][0]*b[0][2] + a[1][1]*b[1][2] + a[1][2]*b[2][2];
224    
225     r20 = a[2][0]*b[0][0] + a[2][1]*b[1][0] + a[2][2]*b[2][0];
226     r21 = a[2][0]*b[0][1] + a[2][1]*b[1][1] + a[2][2]*b[2][1];
227     r22 = a[2][0]*b[0][2] + a[2][1]*b[1][2] + a[2][2]*b[2][2];
228    
229     c[0][0] = r00; c[0][1] = r01; c[0][2] = r02;
230     c[1][0] = r10; c[1][1] = r11; c[1][2] = r12;
231     c[2][0] = r20; c[2][1] = r21; c[2][2] = r22;
232     }
233    
234     void SimInfo::matVecMul3(double m[3][3], double inVec[3], double outVec[3]) {
235     double a0, a1, a2;
236    
237     a0 = inVec[0]; a1 = inVec[1]; a2 = inVec[2];
238    
239     outVec[0] = m[0][0]*a0 + m[0][1]*a1 + m[0][2]*a2;
240     outVec[1] = m[1][0]*a0 + m[1][1]*a1 + m[1][2]*a2;
241     outVec[2] = m[2][0]*a0 + m[2][1]*a1 + m[2][2]*a2;
242     }
243 mmeineke 597
244     void SimInfo::transposeMat3(double in[3][3], double out[3][3]) {
245     double temp[3][3];
246     int i, j;
247    
248     for (i = 0; i < 3; i++) {
249     for (j = 0; j < 3; j++) {
250     temp[j][i] = in[i][j];
251     }
252     }
253     for (i = 0; i < 3; i++) {
254     for (j = 0; j < 3; j++) {
255     out[i][j] = temp[i][j];
256     }
257     }
258     }
259 gezelter 588
260 mmeineke 597 void SimInfo::printMat3(double A[3][3] ){
261    
262     std::cerr
263     << "[ " << A[0][0] << ", " << A[0][1] << ", " << A[0][2] << " ]\n"
264     << "[ " << A[1][0] << ", " << A[1][1] << ", " << A[1][2] << " ]\n"
265     << "[ " << A[2][0] << ", " << A[2][1] << ", " << A[2][2] << " ]\n";
266     }
267    
268     void SimInfo::printMat9(double A[9] ){
269    
270     std::cerr
271     << "[ " << A[0] << ", " << A[1] << ", " << A[2] << " ]\n"
272     << "[ " << A[3] << ", " << A[4] << ", " << A[5] << " ]\n"
273     << "[ " << A[6] << ", " << A[7] << ", " << A[8] << " ]\n";
274     }
275    
276 mmeineke 568 void SimInfo::calcBoxL( void ){
277    
278     double dx, dy, dz, dsq;
279     int i;
280    
281 gezelter 588 // boxVol = Determinant of Hmat
282 mmeineke 568
283 gezelter 588 boxVol = matDet3( Hmat );
284 mmeineke 568
285     // boxLx
286    
287 gezelter 588 dx = Hmat[0][0]; dy = Hmat[1][0]; dz = Hmat[2][0];
288 mmeineke 568 dsq = dx*dx + dy*dy + dz*dz;
289 gezelter 621 boxL[0] = sqrt( dsq );
290 mmeineke 626 maxCutoff = 0.5 * boxL[0];
291 mmeineke 568
292     // boxLy
293    
294 gezelter 588 dx = Hmat[0][1]; dy = Hmat[1][1]; dz = Hmat[2][1];
295 mmeineke 568 dsq = dx*dx + dy*dy + dz*dz;
296 gezelter 621 boxL[1] = sqrt( dsq );
297 mmeineke 626 if( (0.5 * boxL[1]) < maxCutoff ) maxCutoff = 0.5 * boxL[1];
298 mmeineke 568
299     // boxLz
300    
301 gezelter 588 dx = Hmat[0][2]; dy = Hmat[1][2]; dz = Hmat[2][2];
302 mmeineke 568 dsq = dx*dx + dy*dy + dz*dz;
303 gezelter 621 boxL[2] = sqrt( dsq );
304 mmeineke 626 if( (0.5 * boxL[2]) < maxCutoff ) maxCutoff = 0.5 * boxL[2];
305    
306 mmeineke 568 }
307    
308    
309     void SimInfo::wrapVector( double thePos[3] ){
310    
311     int i, j, k;
312     double scaled[3];
313    
314 mmeineke 569 if( !orthoRhombic ){
315     // calc the scaled coordinates.
316 gezelter 588
317    
318     matVecMul3(HmatInv, thePos, scaled);
319 mmeineke 569
320     for(i=0; i<3; i++)
321 mmeineke 572 scaled[i] -= roundMe(scaled[i]);
322 mmeineke 569
323     // calc the wrapped real coordinates from the wrapped scaled coordinates
324    
325 gezelter 588 matVecMul3(Hmat, scaled, thePos);
326    
327 mmeineke 569 }
328     else{
329     // calc the scaled coordinates.
330    
331     for(i=0; i<3; i++)
332 gezelter 588 scaled[i] = thePos[i]*HmatInv[i][i];
333 mmeineke 569
334     // wrap the scaled coordinates
335    
336     for(i=0; i<3; i++)
337 mmeineke 572 scaled[i] -= roundMe(scaled[i]);
338 mmeineke 569
339     // calc the wrapped real coordinates from the wrapped scaled coordinates
340    
341     for(i=0; i<3; i++)
342 gezelter 588 thePos[i] = scaled[i]*Hmat[i][i];
343 mmeineke 569 }
344    
345 mmeineke 568 }
346    
347    
348 gezelter 458 int SimInfo::getNDF(){
349     int ndf_local, ndf;
350 gezelter 457
351 gezelter 458 ndf_local = 3 * n_atoms + 3 * n_oriented - n_constraints;
352    
353     #ifdef IS_MPI
354     MPI_Allreduce(&ndf_local,&ndf,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
355     #else
356     ndf = ndf_local;
357     #endif
358    
359     ndf = ndf - 3;
360    
361     return ndf;
362     }
363    
364     int SimInfo::getNDFraw() {
365     int ndfRaw_local, ndfRaw;
366    
367     // Raw degrees of freedom that we have to set
368     ndfRaw_local = 3 * n_atoms + 3 * n_oriented;
369    
370     #ifdef IS_MPI
371     MPI_Allreduce(&ndfRaw_local,&ndfRaw,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
372     #else
373     ndfRaw = ndfRaw_local;
374     #endif
375    
376     return ndfRaw;
377     }
378    
379 mmeineke 377 void SimInfo::refreshSim(){
380    
381     simtype fInfo;
382     int isError;
383 gezelter 490 int n_global;
384 mmeineke 424 int* excl;
385 mmeineke 626
386 mmeineke 469 fInfo.dielect = 0.0;
387 mmeineke 377
388 mmeineke 469 if( useDipole ){
389     if( useReactionField )fInfo.dielect = dielectric;
390     }
391    
392 mmeineke 377 fInfo.SIM_uses_PBC = usePBC;
393 mmeineke 443 //fInfo.SIM_uses_LJ = 0;
394 chuckv 439 fInfo.SIM_uses_LJ = useLJ;
395 mmeineke 443 fInfo.SIM_uses_sticky = useSticky;
396     //fInfo.SIM_uses_sticky = 0;
397 chuckv 482 fInfo.SIM_uses_dipoles = useDipole;
398     //fInfo.SIM_uses_dipoles = 0;
399 mmeineke 443 //fInfo.SIM_uses_RF = useReactionField;
400     fInfo.SIM_uses_RF = 0;
401 mmeineke 377 fInfo.SIM_uses_GB = useGB;
402     fInfo.SIM_uses_EAM = useEAM;
403    
404 mmeineke 424 excl = Exclude::getArray();
405 mmeineke 377
406 gezelter 490 #ifdef IS_MPI
407     n_global = mpiSim->getTotAtoms();
408     #else
409     n_global = n_atoms;
410     #endif
411    
412 mmeineke 377 isError = 0;
413    
414 gezelter 490 setFsimulation( &fInfo, &n_global, &n_atoms, identArray, &n_exclude, excl,
415 gezelter 483 &nGlobalExcludes, globalExcludes, molMembershipArray,
416     &isError );
417 mmeineke 377
418     if( isError ){
419    
420     sprintf( painCave.errMsg,
421     "There was an error setting the simulation information in fortran.\n" );
422     painCave.isFatal = 1;
423     simError();
424     }
425    
426     #ifdef IS_MPI
427     sprintf( checkPointMsg,
428     "succesfully sent the simulation information to fortran.\n");
429     MPIcheckPoint();
430     #endif // is_mpi
431 gezelter 458
432 gezelter 474 this->ndf = this->getNDF();
433     this->ndfRaw = this->getNDFraw();
434 gezelter 458
435 mmeineke 377 }
436    
437 mmeineke 626
438     void SimInfo::setRcut( double theRcut ){
439    
440     if( !haveOrigRcut ){
441     haveOrigRcut = 1;
442     origRcut = theRcut;
443     }
444    
445     rCut = theRcut;
446     checkCutOffs();
447     }
448    
449     void SimInfo::setEcr( double theEcr ){
450    
451     if( !haveOrigEcr ){
452     haveOrigEcr = 1;
453     origEcr = theEcr;
454     }
455    
456     ecr = theEcr;
457     checkCutOffs();
458     }
459    
460     void SimInfo::setEcr( double theEcr, double theEst ){
461    
462     est = theEst;
463     setEcr( theEcr );
464     }
465    
466    
467     void SimInfo::checkCutOffs( void ){
468    
469     int cutChanged = 0;
470    
471     if( boxIsInit ){
472    
473     //we need to check cutOffs against the box
474    
475     if( maxCutoff > rCut ){
476     if( rCut < origRcut ){
477     rCut = origRcut;
478     if (rCut > maxCutoff) rCut = maxCutoff;
479    
480     sprintf( painCave.errMsg,
481     "New Box size is setting the long range cutoff radius "
482     "to %lf\n",
483     rCut );
484     painCave.isFatal = 0;
485     simError();
486     }
487     }
488    
489     if( maxCutoff > ecr ){
490     if( ecr < origEcr ){
491     rCut = origEcr;
492     if (ecr > maxCutoff) ecr = maxCutoff;
493    
494     sprintf( painCave.errMsg,
495     "New Box size is setting the electrostaticCutoffRadius "
496     "to %lf\n",
497     ecr );
498     painCave.isFatal = 0;
499     simError();
500     }
501     }
502    
503    
504     if (rCut > maxCutoff) {
505     sprintf( painCave.errMsg,
506     "New Box size is setting the long range cutoff radius "
507     "to %lf\n",
508     maxCutoff );
509     painCave.isFatal = 0;
510     simError();
511     rCut = maxCutoff;
512     }
513    
514     if( ecr > maxCutoff){
515     sprintf( painCave.errMsg,
516     "New Box size is setting the electrostaticCutoffRadius "
517     "to %lf\n",
518     maxCutoff );
519     painCave.isFatal = 0;
520     simError();
521     ecr = maxCutoff;
522     }
523    
524    
525     }
526    
527    
528     if( (oldEcr != ecr) || ( oldRcut != rCut ) ) cutChanged = 1;
529    
530     // rlist is the 1.0 plus max( rcut, ecr )
531    
532     ( rCut > ecr )? rList = rCut + 1.0: rList = ecr + 1.0;
533    
534     if( cutChanged ){
535    
536     notifyFortranCutOffs( &rCut, &rList, &ecr, &est );
537     }
538    
539     oldEcr = ecr;
540     oldRcut = rCut;
541     }
542 tim 658
543     void SimInfo::addProperty(GenericData* prop){
544    
545     map<string, GenericData*>::iterator result;
546     result = properties.find(prop->getID());
547    
548     //we can't simply use properties[prop->getID()] = prop,
549     //it will cause memory leak if we already contain a propery which has the same name of prop
550    
551     if(result != properties.end()){
552    
553     delete (*result).second;
554     (*result).second = prop;
555    
556     }
557     else{
558    
559     properties[prop->getID()] = prop;
560    
561     }
562    
563     }
564    
565     GenericData* SimInfo::getProperty(const string& propName){
566    
567     map<string, GenericData*>::iterator result;
568    
569     //string lowerCaseName = ();
570    
571     result = properties.find(propName);
572    
573     if(result != properties.end())
574     return (*result).second;
575     else
576     return NULL;
577     }
578    
579     vector<GenericData*> SimInfo::getProperties(){
580    
581     vector<GenericData*> result;
582     map<string, GenericData*>::iterator i;
583    
584     for(i = properties.begin(); i != properties.end(); i++)
585     result.push_back((*i).second);
586    
587     return result;
588     }
589    
590