ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/trunk/OOPSE/libmdtools/SimInfo.cpp
Revision: 674
Committed: Mon Aug 11 18:29:46 2003 UTC (20 years, 11 months ago) by mmeineke
File size: 12127 byte(s)
Log Message:
changed the number of degrees of freedom to account for zConstreints

File Contents

# User Rev Content
1 mmeineke 377 #include <cstdlib>
2     #include <cstring>
3 mmeineke 568 #include <cmath>
4 mmeineke 377
5 mmeineke 572 #include <iostream>
6     using namespace std;
7 mmeineke 377
8     #include "SimInfo.hpp"
9     #define __C
10     #include "fSimulation.h"
11     #include "simError.h"
12    
13     #include "fortranWrappers.hpp"
14    
15 gezelter 490 #ifdef IS_MPI
16     #include "mpiSimulation.hpp"
17     #endif
18    
19 mmeineke 572 inline double roundMe( double x ){
20     return ( x >= 0 ) ? floor( x + 0.5 ) : ceil( x - 0.5 );
21     }
22    
23    
24 mmeineke 377 SimInfo* currentInfo;
25    
26     SimInfo::SimInfo(){
27     excludes = NULL;
28     n_constraints = 0;
29     n_oriented = 0;
30     n_dipoles = 0;
31 gezelter 458 ndf = 0;
32     ndfRaw = 0;
33 mmeineke 674 nZconstraints = 0;
34 mmeineke 377 the_integrator = NULL;
35     setTemp = 0;
36     thermalTime = 0.0;
37 mmeineke 642 currentTime = 0.0;
38 mmeineke 420 rCut = 0.0;
39 mmeineke 618 ecr = 0.0;
40 mmeineke 619 est = 0.0;
41 mmeineke 626 oldEcr = 0.0;
42     oldRcut = 0.0;
43 mmeineke 377
44 mmeineke 626 haveOrigRcut = 0;
45     haveOrigEcr = 0;
46     boxIsInit = 0;
47    
48    
49    
50 mmeineke 377 usePBC = 0;
51     useLJ = 0;
52     useSticky = 0;
53     useDipole = 0;
54     useReactionField = 0;
55     useGB = 0;
56     useEAM = 0;
57    
58 mmeineke 670 myConfiguration = new SimState();
59    
60 gezelter 457 wrapMeSimInfo( this );
61     }
62 mmeineke 377
63 mmeineke 670
64 tim 660 SimInfo::~SimInfo(){
65    
66 mmeineke 670 delete myConfiguration;
67    
68 tim 660 map<string, GenericData*>::iterator i;
69    
70     for(i = properties.begin(); i != properties.end(); i++)
71     delete (*i).second;
72 mmeineke 670
73 tim 660 }
74    
75 gezelter 457 void SimInfo::setBox(double newBox[3]) {
76 mmeineke 586
77 gezelter 588 int i, j;
78     double tempMat[3][3];
79 gezelter 463
80 gezelter 588 for(i=0; i<3; i++)
81     for (j=0; j<3; j++) tempMat[i][j] = 0.0;;
82 gezelter 463
83 gezelter 588 tempMat[0][0] = newBox[0];
84     tempMat[1][1] = newBox[1];
85     tempMat[2][2] = newBox[2];
86 gezelter 463
87 mmeineke 586 setBoxM( tempMat );
88 mmeineke 568
89 gezelter 457 }
90 mmeineke 377
91 gezelter 588 void SimInfo::setBoxM( double theBox[3][3] ){
92 mmeineke 568
93 gezelter 588 int i, j, status;
94 mmeineke 568 double smallestBoxL, maxCutoff;
95 gezelter 588 double FortranHmat[9]; // to preserve compatibility with Fortran the
96     // ordering in the array is as follows:
97     // [ 0 3 6 ]
98     // [ 1 4 7 ]
99     // [ 2 5 8 ]
100     double FortranHmatInv[9]; // the inverted Hmat (for Fortran);
101 mmeineke 568
102 mmeineke 626
103     if( !boxIsInit ) boxIsInit = 1;
104 mmeineke 586
105 gezelter 588 for(i=0; i < 3; i++)
106     for (j=0; j < 3; j++) Hmat[i][j] = theBox[i][j];
107    
108 mmeineke 568 calcBoxL();
109 gezelter 588 calcHmatInv();
110 mmeineke 568
111 gezelter 588 for(i=0; i < 3; i++) {
112     for (j=0; j < 3; j++) {
113     FortranHmat[3*j + i] = Hmat[i][j];
114     FortranHmatInv[3*j + i] = HmatInv[i][j];
115     }
116     }
117 mmeineke 586
118 mmeineke 590 setFortranBoxSize(FortranHmat, FortranHmatInv, &orthoRhombic);
119 mmeineke 568
120 mmeineke 377 }
121 gezelter 458
122 mmeineke 568
123 gezelter 588 void SimInfo::getBoxM (double theBox[3][3]) {
124 mmeineke 568
125 gezelter 588 int i, j;
126     for(i=0; i<3; i++)
127     for (j=0; j<3; j++) theBox[i][j] = Hmat[i][j];
128 mmeineke 568 }
129    
130 gezelter 574
131     void SimInfo::scaleBox(double scale) {
132 gezelter 588 double theBox[3][3];
133     int i, j;
134 gezelter 574
135 gezelter 617 // cerr << "Scaling box by " << scale << "\n";
136 mmeineke 586
137 gezelter 588 for(i=0; i<3; i++)
138     for (j=0; j<3; j++) theBox[i][j] = Hmat[i][j]*scale;
139 gezelter 574
140     setBoxM(theBox);
141    
142     }
143    
144 gezelter 588 void SimInfo::calcHmatInv( void ) {
145 mmeineke 590
146     int i,j;
147 mmeineke 569 double smallDiag;
148     double tol;
149     double sanity[3][3];
150 mmeineke 568
151 gezelter 588 invertMat3( Hmat, HmatInv );
152 mmeineke 568
153 gezelter 588 // Check the inverse to make sure it is sane:
154 mmeineke 568
155 gezelter 588 matMul3( Hmat, HmatInv, sanity );
156    
157     // check to see if Hmat is orthorhombic
158 mmeineke 568
159 gezelter 588 smallDiag = Hmat[0][0];
160     if(smallDiag > Hmat[1][1]) smallDiag = Hmat[1][1];
161     if(smallDiag > Hmat[2][2]) smallDiag = Hmat[2][2];
162     tol = smallDiag * 1E-6;
163 mmeineke 568
164 gezelter 588 orthoRhombic = 1;
165 mmeineke 568
166 gezelter 588 for (i = 0; i < 3; i++ ) {
167     for (j = 0 ; j < 3; j++) {
168     if (i != j) {
169     if (orthoRhombic) {
170     if (Hmat[i][j] >= tol) orthoRhombic = 0;
171     }
172     }
173 mmeineke 568 }
174     }
175 gezelter 588 }
176 mmeineke 569
177 gezelter 588 double SimInfo::matDet3(double a[3][3]) {
178     int i, j, k;
179     double determinant;
180 mmeineke 569
181 gezelter 588 determinant = 0.0;
182    
183     for(i = 0; i < 3; i++) {
184     j = (i+1)%3;
185     k = (i+2)%3;
186    
187     determinant += a[0][i] * (a[1][j]*a[2][k] - a[1][k]*a[2][j]);
188 mmeineke 569 }
189    
190 gezelter 588 return determinant;
191     }
192 mmeineke 569
193 gezelter 588 void SimInfo::invertMat3(double a[3][3], double b[3][3]) {
194 mmeineke 569
195 gezelter 588 int i, j, k, l, m, n;
196     double determinant;
197 mmeineke 569
198 gezelter 588 determinant = matDet3( a );
199    
200     if (determinant == 0.0) {
201     sprintf( painCave.errMsg,
202     "Can't invert a matrix with a zero determinant!\n");
203     painCave.isFatal = 1;
204     simError();
205     }
206    
207     for (i=0; i < 3; i++) {
208     j = (i+1)%3;
209     k = (i+2)%3;
210     for(l = 0; l < 3; l++) {
211     m = (l+1)%3;
212     n = (l+2)%3;
213    
214     b[l][i] = (a[j][m]*a[k][n] - a[j][n]*a[k][m]) / determinant;
215 mmeineke 569 }
216     }
217 mmeineke 568 }
218    
219 gezelter 588 void SimInfo::matMul3(double a[3][3], double b[3][3], double c[3][3]) {
220     double r00, r01, r02, r10, r11, r12, r20, r21, r22;
221    
222     r00 = a[0][0]*b[0][0] + a[0][1]*b[1][0] + a[0][2]*b[2][0];
223     r01 = a[0][0]*b[0][1] + a[0][1]*b[1][1] + a[0][2]*b[2][1];
224     r02 = a[0][0]*b[0][2] + a[0][1]*b[1][2] + a[0][2]*b[2][2];
225    
226     r10 = a[1][0]*b[0][0] + a[1][1]*b[1][0] + a[1][2]*b[2][0];
227     r11 = a[1][0]*b[0][1] + a[1][1]*b[1][1] + a[1][2]*b[2][1];
228     r12 = a[1][0]*b[0][2] + a[1][1]*b[1][2] + a[1][2]*b[2][2];
229    
230     r20 = a[2][0]*b[0][0] + a[2][1]*b[1][0] + a[2][2]*b[2][0];
231     r21 = a[2][0]*b[0][1] + a[2][1]*b[1][1] + a[2][2]*b[2][1];
232     r22 = a[2][0]*b[0][2] + a[2][1]*b[1][2] + a[2][2]*b[2][2];
233    
234     c[0][0] = r00; c[0][1] = r01; c[0][2] = r02;
235     c[1][0] = r10; c[1][1] = r11; c[1][2] = r12;
236     c[2][0] = r20; c[2][1] = r21; c[2][2] = r22;
237     }
238    
239     void SimInfo::matVecMul3(double m[3][3], double inVec[3], double outVec[3]) {
240     double a0, a1, a2;
241    
242     a0 = inVec[0]; a1 = inVec[1]; a2 = inVec[2];
243    
244     outVec[0] = m[0][0]*a0 + m[0][1]*a1 + m[0][2]*a2;
245     outVec[1] = m[1][0]*a0 + m[1][1]*a1 + m[1][2]*a2;
246     outVec[2] = m[2][0]*a0 + m[2][1]*a1 + m[2][2]*a2;
247     }
248 mmeineke 597
249     void SimInfo::transposeMat3(double in[3][3], double out[3][3]) {
250     double temp[3][3];
251     int i, j;
252    
253     for (i = 0; i < 3; i++) {
254     for (j = 0; j < 3; j++) {
255     temp[j][i] = in[i][j];
256     }
257     }
258     for (i = 0; i < 3; i++) {
259     for (j = 0; j < 3; j++) {
260     out[i][j] = temp[i][j];
261     }
262     }
263     }
264 gezelter 588
265 mmeineke 597 void SimInfo::printMat3(double A[3][3] ){
266    
267     std::cerr
268     << "[ " << A[0][0] << ", " << A[0][1] << ", " << A[0][2] << " ]\n"
269     << "[ " << A[1][0] << ", " << A[1][1] << ", " << A[1][2] << " ]\n"
270     << "[ " << A[2][0] << ", " << A[2][1] << ", " << A[2][2] << " ]\n";
271     }
272    
273     void SimInfo::printMat9(double A[9] ){
274    
275     std::cerr
276     << "[ " << A[0] << ", " << A[1] << ", " << A[2] << " ]\n"
277     << "[ " << A[3] << ", " << A[4] << ", " << A[5] << " ]\n"
278     << "[ " << A[6] << ", " << A[7] << ", " << A[8] << " ]\n";
279     }
280    
281 mmeineke 568 void SimInfo::calcBoxL( void ){
282    
283     double dx, dy, dz, dsq;
284     int i;
285    
286 gezelter 588 // boxVol = Determinant of Hmat
287 mmeineke 568
288 gezelter 588 boxVol = matDet3( Hmat );
289 mmeineke 568
290     // boxLx
291    
292 gezelter 588 dx = Hmat[0][0]; dy = Hmat[1][0]; dz = Hmat[2][0];
293 mmeineke 568 dsq = dx*dx + dy*dy + dz*dz;
294 gezelter 621 boxL[0] = sqrt( dsq );
295 mmeineke 626 maxCutoff = 0.5 * boxL[0];
296 mmeineke 568
297     // boxLy
298    
299 gezelter 588 dx = Hmat[0][1]; dy = Hmat[1][1]; dz = Hmat[2][1];
300 mmeineke 568 dsq = dx*dx + dy*dy + dz*dz;
301 gezelter 621 boxL[1] = sqrt( dsq );
302 mmeineke 626 if( (0.5 * boxL[1]) < maxCutoff ) maxCutoff = 0.5 * boxL[1];
303 mmeineke 568
304     // boxLz
305    
306 gezelter 588 dx = Hmat[0][2]; dy = Hmat[1][2]; dz = Hmat[2][2];
307 mmeineke 568 dsq = dx*dx + dy*dy + dz*dz;
308 gezelter 621 boxL[2] = sqrt( dsq );
309 mmeineke 626 if( (0.5 * boxL[2]) < maxCutoff ) maxCutoff = 0.5 * boxL[2];
310 chuckv 669
311     checkCutOffs();
312 mmeineke 626
313 mmeineke 568 }
314    
315    
316     void SimInfo::wrapVector( double thePos[3] ){
317    
318     int i, j, k;
319     double scaled[3];
320    
321 mmeineke 569 if( !orthoRhombic ){
322     // calc the scaled coordinates.
323 gezelter 588
324    
325     matVecMul3(HmatInv, thePos, scaled);
326 mmeineke 569
327     for(i=0; i<3; i++)
328 mmeineke 572 scaled[i] -= roundMe(scaled[i]);
329 mmeineke 569
330     // calc the wrapped real coordinates from the wrapped scaled coordinates
331    
332 gezelter 588 matVecMul3(Hmat, scaled, thePos);
333    
334 mmeineke 569 }
335     else{
336     // calc the scaled coordinates.
337    
338     for(i=0; i<3; i++)
339 gezelter 588 scaled[i] = thePos[i]*HmatInv[i][i];
340 mmeineke 569
341     // wrap the scaled coordinates
342    
343     for(i=0; i<3; i++)
344 mmeineke 572 scaled[i] -= roundMe(scaled[i]);
345 mmeineke 569
346     // calc the wrapped real coordinates from the wrapped scaled coordinates
347    
348     for(i=0; i<3; i++)
349 gezelter 588 thePos[i] = scaled[i]*Hmat[i][i];
350 mmeineke 569 }
351    
352 mmeineke 568 }
353    
354    
355 gezelter 458 int SimInfo::getNDF(){
356     int ndf_local, ndf;
357 gezelter 457
358 gezelter 458 ndf_local = 3 * n_atoms + 3 * n_oriented - n_constraints;
359    
360     #ifdef IS_MPI
361     MPI_Allreduce(&ndf_local,&ndf,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
362     #else
363     ndf = ndf_local;
364     #endif
365    
366 mmeineke 674 ndf = ndf - 3 - nZconstraints;
367 gezelter 458
368     return ndf;
369     }
370    
371     int SimInfo::getNDFraw() {
372     int ndfRaw_local, ndfRaw;
373    
374     // Raw degrees of freedom that we have to set
375     ndfRaw_local = 3 * n_atoms + 3 * n_oriented;
376    
377     #ifdef IS_MPI
378     MPI_Allreduce(&ndfRaw_local,&ndfRaw,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
379     #else
380     ndfRaw = ndfRaw_local;
381     #endif
382    
383     return ndfRaw;
384     }
385    
386 mmeineke 377 void SimInfo::refreshSim(){
387    
388     simtype fInfo;
389     int isError;
390 gezelter 490 int n_global;
391 mmeineke 424 int* excl;
392 mmeineke 626
393 mmeineke 469 fInfo.dielect = 0.0;
394 mmeineke 377
395 mmeineke 469 if( useDipole ){
396     if( useReactionField )fInfo.dielect = dielectric;
397     }
398    
399 mmeineke 377 fInfo.SIM_uses_PBC = usePBC;
400 mmeineke 443 //fInfo.SIM_uses_LJ = 0;
401 chuckv 439 fInfo.SIM_uses_LJ = useLJ;
402 mmeineke 443 fInfo.SIM_uses_sticky = useSticky;
403     //fInfo.SIM_uses_sticky = 0;
404 chuckv 482 fInfo.SIM_uses_dipoles = useDipole;
405     //fInfo.SIM_uses_dipoles = 0;
406 mmeineke 443 //fInfo.SIM_uses_RF = useReactionField;
407     fInfo.SIM_uses_RF = 0;
408 mmeineke 377 fInfo.SIM_uses_GB = useGB;
409     fInfo.SIM_uses_EAM = useEAM;
410    
411 mmeineke 424 excl = Exclude::getArray();
412 mmeineke 377
413 gezelter 490 #ifdef IS_MPI
414     n_global = mpiSim->getTotAtoms();
415     #else
416     n_global = n_atoms;
417     #endif
418    
419 mmeineke 377 isError = 0;
420    
421 gezelter 490 setFsimulation( &fInfo, &n_global, &n_atoms, identArray, &n_exclude, excl,
422 gezelter 483 &nGlobalExcludes, globalExcludes, molMembershipArray,
423     &isError );
424 mmeineke 377
425     if( isError ){
426    
427     sprintf( painCave.errMsg,
428     "There was an error setting the simulation information in fortran.\n" );
429     painCave.isFatal = 1;
430     simError();
431     }
432    
433     #ifdef IS_MPI
434     sprintf( checkPointMsg,
435     "succesfully sent the simulation information to fortran.\n");
436     MPIcheckPoint();
437     #endif // is_mpi
438 gezelter 458
439 gezelter 474 this->ndf = this->getNDF();
440     this->ndfRaw = this->getNDFraw();
441 gezelter 458
442 mmeineke 377 }
443    
444 mmeineke 626
445     void SimInfo::setRcut( double theRcut ){
446    
447     if( !haveOrigRcut ){
448     haveOrigRcut = 1;
449     origRcut = theRcut;
450     }
451    
452     rCut = theRcut;
453     checkCutOffs();
454     }
455    
456     void SimInfo::setEcr( double theEcr ){
457    
458     if( !haveOrigEcr ){
459     haveOrigEcr = 1;
460     origEcr = theEcr;
461     }
462    
463     ecr = theEcr;
464     checkCutOffs();
465     }
466    
467     void SimInfo::setEcr( double theEcr, double theEst ){
468    
469     est = theEst;
470     setEcr( theEcr );
471     }
472    
473    
474     void SimInfo::checkCutOffs( void ){
475    
476     int cutChanged = 0;
477    
478 chuckv 669
479    
480 mmeineke 626 if( boxIsInit ){
481    
482     //we need to check cutOffs against the box
483 chuckv 669
484     if(( maxCutoff > rCut )&&(usePBC)){
485 mmeineke 626 if( rCut < origRcut ){
486     rCut = origRcut;
487     if (rCut > maxCutoff) rCut = maxCutoff;
488    
489     sprintf( painCave.errMsg,
490     "New Box size is setting the long range cutoff radius "
491     "to %lf\n",
492     rCut );
493     painCave.isFatal = 0;
494     simError();
495     }
496     }
497    
498     if( maxCutoff > ecr ){
499     if( ecr < origEcr ){
500     rCut = origEcr;
501     if (ecr > maxCutoff) ecr = maxCutoff;
502    
503     sprintf( painCave.errMsg,
504     "New Box size is setting the electrostaticCutoffRadius "
505     "to %lf\n",
506     ecr );
507     painCave.isFatal = 0;
508     simError();
509     }
510     }
511    
512    
513 chuckv 669 if ((rCut > maxCutoff)&&(usePBC)) {
514 mmeineke 626 sprintf( painCave.errMsg,
515     "New Box size is setting the long range cutoff radius "
516     "to %lf\n",
517     maxCutoff );
518     painCave.isFatal = 0;
519     simError();
520     rCut = maxCutoff;
521     }
522    
523     if( ecr > maxCutoff){
524     sprintf( painCave.errMsg,
525     "New Box size is setting the electrostaticCutoffRadius "
526     "to %lf\n",
527     maxCutoff );
528     painCave.isFatal = 0;
529     simError();
530     ecr = maxCutoff;
531     }
532    
533    
534     }
535    
536    
537     if( (oldEcr != ecr) || ( oldRcut != rCut ) ) cutChanged = 1;
538    
539     // rlist is the 1.0 plus max( rcut, ecr )
540    
541     ( rCut > ecr )? rList = rCut + 1.0: rList = ecr + 1.0;
542    
543     if( cutChanged ){
544    
545     notifyFortranCutOffs( &rCut, &rList, &ecr, &est );
546     }
547    
548     oldEcr = ecr;
549     oldRcut = rCut;
550     }
551 tim 658
552     void SimInfo::addProperty(GenericData* prop){
553    
554     map<string, GenericData*>::iterator result;
555     result = properties.find(prop->getID());
556    
557     //we can't simply use properties[prop->getID()] = prop,
558     //it will cause memory leak if we already contain a propery which has the same name of prop
559    
560     if(result != properties.end()){
561    
562     delete (*result).second;
563     (*result).second = prop;
564    
565     }
566     else{
567    
568     properties[prop->getID()] = prop;
569    
570     }
571    
572     }
573    
574     GenericData* SimInfo::getProperty(const string& propName){
575    
576     map<string, GenericData*>::iterator result;
577    
578     //string lowerCaseName = ();
579    
580     result = properties.find(propName);
581    
582     if(result != properties.end())
583     return (*result).second;
584     else
585     return NULL;
586     }
587    
588     vector<GenericData*> SimInfo::getProperties(){
589    
590     vector<GenericData*> result;
591     map<string, GenericData*>::iterator i;
592    
593     for(i = properties.begin(); i != properties.end(); i++)
594     result.push_back((*i).second);
595    
596     return result;
597     }
598    
599