ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/trunk/OOPSE/libmdtools/SimInfo.cpp
Revision: 763
Committed: Mon Sep 15 16:52:02 2003 UTC (20 years, 9 months ago) by tim
File size: 12301 byte(s)
Log Message:
add conserved quantity to statWriter
fix bug of vector wrapping at NPTi

File Contents

# User Rev Content
1 mmeineke 377 #include <cstdlib>
2     #include <cstring>
3 mmeineke 568 #include <cmath>
4 mmeineke 377
5 mmeineke 572 #include <iostream>
6     using namespace std;
7 mmeineke 377
8     #include "SimInfo.hpp"
9     #define __C
10     #include "fSimulation.h"
11     #include "simError.h"
12    
13     #include "fortranWrappers.hpp"
14    
15 gezelter 490 #ifdef IS_MPI
16     #include "mpiSimulation.hpp"
17     #endif
18    
19 mmeineke 572 inline double roundMe( double x ){
20     return ( x >= 0 ) ? floor( x + 0.5 ) : ceil( x - 0.5 );
21     }
22    
23    
24 mmeineke 377 SimInfo* currentInfo;
25    
26     SimInfo::SimInfo(){
27     excludes = NULL;
28     n_constraints = 0;
29 tim 699 nZconstraints = 0;
30 mmeineke 377 n_oriented = 0;
31     n_dipoles = 0;
32 gezelter 458 ndf = 0;
33     ndfRaw = 0;
34 mmeineke 674 nZconstraints = 0;
35 mmeineke 377 the_integrator = NULL;
36     setTemp = 0;
37     thermalTime = 0.0;
38 mmeineke 642 currentTime = 0.0;
39 mmeineke 420 rCut = 0.0;
40 mmeineke 690 origRcut = -1.0;
41 mmeineke 618 ecr = 0.0;
42 mmeineke 690 origEcr = -1.0;
43 mmeineke 619 est = 0.0;
44 mmeineke 626 oldEcr = 0.0;
45     oldRcut = 0.0;
46 mmeineke 377
47 mmeineke 626 haveOrigRcut = 0;
48     haveOrigEcr = 0;
49     boxIsInit = 0;
50    
51    
52    
53 mmeineke 377 usePBC = 0;
54     useLJ = 0;
55     useSticky = 0;
56     useDipole = 0;
57     useReactionField = 0;
58     useGB = 0;
59     useEAM = 0;
60    
61 mmeineke 670 myConfiguration = new SimState();
62    
63 gezelter 457 wrapMeSimInfo( this );
64     }
65 mmeineke 377
66 mmeineke 670
67 tim 660 SimInfo::~SimInfo(){
68    
69 mmeineke 670 delete myConfiguration;
70    
71 tim 660 map<string, GenericData*>::iterator i;
72    
73     for(i = properties.begin(); i != properties.end(); i++)
74     delete (*i).second;
75 mmeineke 670
76 tim 660 }
77    
78 gezelter 457 void SimInfo::setBox(double newBox[3]) {
79 mmeineke 586
80 gezelter 588 int i, j;
81     double tempMat[3][3];
82 gezelter 463
83 gezelter 588 for(i=0; i<3; i++)
84     for (j=0; j<3; j++) tempMat[i][j] = 0.0;;
85 gezelter 463
86 gezelter 588 tempMat[0][0] = newBox[0];
87     tempMat[1][1] = newBox[1];
88     tempMat[2][2] = newBox[2];
89 gezelter 463
90 mmeineke 586 setBoxM( tempMat );
91 mmeineke 568
92 gezelter 457 }
93 mmeineke 377
94 gezelter 588 void SimInfo::setBoxM( double theBox[3][3] ){
95 mmeineke 568
96 gezelter 588 int i, j, status;
97 mmeineke 568 double smallestBoxL, maxCutoff;
98 gezelter 588 double FortranHmat[9]; // to preserve compatibility with Fortran the
99     // ordering in the array is as follows:
100     // [ 0 3 6 ]
101     // [ 1 4 7 ]
102     // [ 2 5 8 ]
103     double FortranHmatInv[9]; // the inverted Hmat (for Fortran);
104 mmeineke 568
105 mmeineke 626
106     if( !boxIsInit ) boxIsInit = 1;
107 mmeineke 586
108 gezelter 588 for(i=0; i < 3; i++)
109     for (j=0; j < 3; j++) Hmat[i][j] = theBox[i][j];
110    
111 mmeineke 568 calcBoxL();
112 gezelter 588 calcHmatInv();
113 mmeineke 568
114 gezelter 588 for(i=0; i < 3; i++) {
115     for (j=0; j < 3; j++) {
116     FortranHmat[3*j + i] = Hmat[i][j];
117     FortranHmatInv[3*j + i] = HmatInv[i][j];
118     }
119     }
120 mmeineke 586
121 mmeineke 590 setFortranBoxSize(FortranHmat, FortranHmatInv, &orthoRhombic);
122 mmeineke 568
123 mmeineke 377 }
124 gezelter 458
125 mmeineke 568
126 gezelter 588 void SimInfo::getBoxM (double theBox[3][3]) {
127 mmeineke 568
128 gezelter 588 int i, j;
129     for(i=0; i<3; i++)
130     for (j=0; j<3; j++) theBox[i][j] = Hmat[i][j];
131 mmeineke 568 }
132    
133 gezelter 574
134     void SimInfo::scaleBox(double scale) {
135 gezelter 588 double theBox[3][3];
136     int i, j;
137 gezelter 574
138 gezelter 617 // cerr << "Scaling box by " << scale << "\n";
139 mmeineke 586
140 gezelter 588 for(i=0; i<3; i++)
141     for (j=0; j<3; j++) theBox[i][j] = Hmat[i][j]*scale;
142 gezelter 574
143     setBoxM(theBox);
144    
145     }
146    
147 gezelter 588 void SimInfo::calcHmatInv( void ) {
148 mmeineke 590
149     int i,j;
150 mmeineke 569 double smallDiag;
151     double tol;
152     double sanity[3][3];
153 mmeineke 568
154 gezelter 588 invertMat3( Hmat, HmatInv );
155 mmeineke 568
156 gezelter 588 // Check the inverse to make sure it is sane:
157 mmeineke 568
158 gezelter 588 matMul3( Hmat, HmatInv, sanity );
159    
160     // check to see if Hmat is orthorhombic
161 mmeineke 568
162 gezelter 588 smallDiag = Hmat[0][0];
163     if(smallDiag > Hmat[1][1]) smallDiag = Hmat[1][1];
164     if(smallDiag > Hmat[2][2]) smallDiag = Hmat[2][2];
165     tol = smallDiag * 1E-6;
166 mmeineke 568
167 gezelter 588 orthoRhombic = 1;
168 mmeineke 568
169 gezelter 588 for (i = 0; i < 3; i++ ) {
170     for (j = 0 ; j < 3; j++) {
171     if (i != j) {
172     if (orthoRhombic) {
173     if (Hmat[i][j] >= tol) orthoRhombic = 0;
174     }
175     }
176 mmeineke 568 }
177     }
178 gezelter 588 }
179 mmeineke 569
180 gezelter 588 double SimInfo::matDet3(double a[3][3]) {
181     int i, j, k;
182     double determinant;
183 mmeineke 569
184 gezelter 588 determinant = 0.0;
185    
186     for(i = 0; i < 3; i++) {
187     j = (i+1)%3;
188     k = (i+2)%3;
189    
190     determinant += a[0][i] * (a[1][j]*a[2][k] - a[1][k]*a[2][j]);
191 mmeineke 569 }
192    
193 gezelter 588 return determinant;
194     }
195 mmeineke 569
196 gezelter 588 void SimInfo::invertMat3(double a[3][3], double b[3][3]) {
197 mmeineke 569
198 gezelter 588 int i, j, k, l, m, n;
199     double determinant;
200 mmeineke 569
201 gezelter 588 determinant = matDet3( a );
202    
203     if (determinant == 0.0) {
204     sprintf( painCave.errMsg,
205     "Can't invert a matrix with a zero determinant!\n");
206     painCave.isFatal = 1;
207     simError();
208     }
209    
210     for (i=0; i < 3; i++) {
211     j = (i+1)%3;
212     k = (i+2)%3;
213     for(l = 0; l < 3; l++) {
214     m = (l+1)%3;
215     n = (l+2)%3;
216    
217     b[l][i] = (a[j][m]*a[k][n] - a[j][n]*a[k][m]) / determinant;
218 mmeineke 569 }
219     }
220 mmeineke 568 }
221    
222 gezelter 588 void SimInfo::matMul3(double a[3][3], double b[3][3], double c[3][3]) {
223     double r00, r01, r02, r10, r11, r12, r20, r21, r22;
224    
225     r00 = a[0][0]*b[0][0] + a[0][1]*b[1][0] + a[0][2]*b[2][0];
226     r01 = a[0][0]*b[0][1] + a[0][1]*b[1][1] + a[0][2]*b[2][1];
227     r02 = a[0][0]*b[0][2] + a[0][1]*b[1][2] + a[0][2]*b[2][2];
228    
229     r10 = a[1][0]*b[0][0] + a[1][1]*b[1][0] + a[1][2]*b[2][0];
230     r11 = a[1][0]*b[0][1] + a[1][1]*b[1][1] + a[1][2]*b[2][1];
231     r12 = a[1][0]*b[0][2] + a[1][1]*b[1][2] + a[1][2]*b[2][2];
232    
233     r20 = a[2][0]*b[0][0] + a[2][1]*b[1][0] + a[2][2]*b[2][0];
234     r21 = a[2][0]*b[0][1] + a[2][1]*b[1][1] + a[2][2]*b[2][1];
235     r22 = a[2][0]*b[0][2] + a[2][1]*b[1][2] + a[2][2]*b[2][2];
236    
237     c[0][0] = r00; c[0][1] = r01; c[0][2] = r02;
238     c[1][0] = r10; c[1][1] = r11; c[1][2] = r12;
239     c[2][0] = r20; c[2][1] = r21; c[2][2] = r22;
240     }
241    
242     void SimInfo::matVecMul3(double m[3][3], double inVec[3], double outVec[3]) {
243     double a0, a1, a2;
244    
245     a0 = inVec[0]; a1 = inVec[1]; a2 = inVec[2];
246    
247     outVec[0] = m[0][0]*a0 + m[0][1]*a1 + m[0][2]*a2;
248     outVec[1] = m[1][0]*a0 + m[1][1]*a1 + m[1][2]*a2;
249     outVec[2] = m[2][0]*a0 + m[2][1]*a1 + m[2][2]*a2;
250     }
251 mmeineke 597
252     void SimInfo::transposeMat3(double in[3][3], double out[3][3]) {
253     double temp[3][3];
254     int i, j;
255    
256     for (i = 0; i < 3; i++) {
257     for (j = 0; j < 3; j++) {
258     temp[j][i] = in[i][j];
259     }
260     }
261     for (i = 0; i < 3; i++) {
262     for (j = 0; j < 3; j++) {
263     out[i][j] = temp[i][j];
264     }
265     }
266     }
267 gezelter 588
268 mmeineke 597 void SimInfo::printMat3(double A[3][3] ){
269    
270     std::cerr
271     << "[ " << A[0][0] << ", " << A[0][1] << ", " << A[0][2] << " ]\n"
272     << "[ " << A[1][0] << ", " << A[1][1] << ", " << A[1][2] << " ]\n"
273     << "[ " << A[2][0] << ", " << A[2][1] << ", " << A[2][2] << " ]\n";
274     }
275    
276     void SimInfo::printMat9(double A[9] ){
277    
278     std::cerr
279     << "[ " << A[0] << ", " << A[1] << ", " << A[2] << " ]\n"
280     << "[ " << A[3] << ", " << A[4] << ", " << A[5] << " ]\n"
281     << "[ " << A[6] << ", " << A[7] << ", " << A[8] << " ]\n";
282     }
283    
284 mmeineke 568 void SimInfo::calcBoxL( void ){
285    
286     double dx, dy, dz, dsq;
287     int i;
288    
289 gezelter 588 // boxVol = Determinant of Hmat
290 mmeineke 568
291 gezelter 588 boxVol = matDet3( Hmat );
292 mmeineke 568
293     // boxLx
294    
295 gezelter 588 dx = Hmat[0][0]; dy = Hmat[1][0]; dz = Hmat[2][0];
296 mmeineke 568 dsq = dx*dx + dy*dy + dz*dz;
297 gezelter 621 boxL[0] = sqrt( dsq );
298 mmeineke 626 maxCutoff = 0.5 * boxL[0];
299 mmeineke 568
300     // boxLy
301    
302 gezelter 588 dx = Hmat[0][1]; dy = Hmat[1][1]; dz = Hmat[2][1];
303 mmeineke 568 dsq = dx*dx + dy*dy + dz*dz;
304 gezelter 621 boxL[1] = sqrt( dsq );
305 mmeineke 626 if( (0.5 * boxL[1]) < maxCutoff ) maxCutoff = 0.5 * boxL[1];
306 mmeineke 568
307     // boxLz
308    
309 gezelter 588 dx = Hmat[0][2]; dy = Hmat[1][2]; dz = Hmat[2][2];
310 mmeineke 568 dsq = dx*dx + dy*dy + dz*dz;
311 gezelter 621 boxL[2] = sqrt( dsq );
312 mmeineke 626 if( (0.5 * boxL[2]) < maxCutoff ) maxCutoff = 0.5 * boxL[2];
313 chuckv 669
314     checkCutOffs();
315 mmeineke 626
316 mmeineke 568 }
317    
318    
319     void SimInfo::wrapVector( double thePos[3] ){
320    
321     int i, j, k;
322     double scaled[3];
323    
324 mmeineke 569 if( !orthoRhombic ){
325     // calc the scaled coordinates.
326 gezelter 588
327    
328     matVecMul3(HmatInv, thePos, scaled);
329 mmeineke 569
330     for(i=0; i<3; i++)
331 mmeineke 572 scaled[i] -= roundMe(scaled[i]);
332 mmeineke 569
333     // calc the wrapped real coordinates from the wrapped scaled coordinates
334    
335 gezelter 588 matVecMul3(Hmat, scaled, thePos);
336    
337 mmeineke 569 }
338     else{
339     // calc the scaled coordinates.
340    
341     for(i=0; i<3; i++)
342 gezelter 588 scaled[i] = thePos[i]*HmatInv[i][i];
343 mmeineke 569
344     // wrap the scaled coordinates
345    
346     for(i=0; i<3; i++)
347 mmeineke 572 scaled[i] -= roundMe(scaled[i]);
348 mmeineke 569
349     // calc the wrapped real coordinates from the wrapped scaled coordinates
350    
351     for(i=0; i<3; i++)
352 gezelter 588 thePos[i] = scaled[i]*Hmat[i][i];
353 mmeineke 569 }
354    
355 mmeineke 568 }
356    
357    
358 gezelter 458 int SimInfo::getNDF(){
359     int ndf_local, ndf;
360 gezelter 457
361 gezelter 458 ndf_local = 3 * n_atoms + 3 * n_oriented - n_constraints;
362    
363     #ifdef IS_MPI
364     MPI_Allreduce(&ndf_local,&ndf,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
365     #else
366     ndf = ndf_local;
367     #endif
368    
369 mmeineke 674 ndf = ndf - 3 - nZconstraints;
370 gezelter 458
371     return ndf;
372     }
373    
374     int SimInfo::getNDFraw() {
375     int ndfRaw_local, ndfRaw;
376    
377     // Raw degrees of freedom that we have to set
378     ndfRaw_local = 3 * n_atoms + 3 * n_oriented;
379    
380     #ifdef IS_MPI
381     MPI_Allreduce(&ndfRaw_local,&ndfRaw,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
382     #else
383     ndfRaw = ndfRaw_local;
384     #endif
385    
386     return ndfRaw;
387     }
388    
389 mmeineke 377 void SimInfo::refreshSim(){
390    
391     simtype fInfo;
392     int isError;
393 gezelter 490 int n_global;
394 mmeineke 424 int* excl;
395 mmeineke 626
396 mmeineke 469 fInfo.dielect = 0.0;
397 mmeineke 377
398 mmeineke 469 if( useDipole ){
399     if( useReactionField )fInfo.dielect = dielectric;
400     }
401    
402 mmeineke 377 fInfo.SIM_uses_PBC = usePBC;
403 mmeineke 443 //fInfo.SIM_uses_LJ = 0;
404 chuckv 439 fInfo.SIM_uses_LJ = useLJ;
405 mmeineke 443 fInfo.SIM_uses_sticky = useSticky;
406     //fInfo.SIM_uses_sticky = 0;
407 chuckv 482 fInfo.SIM_uses_dipoles = useDipole;
408     //fInfo.SIM_uses_dipoles = 0;
409 mmeineke 443 //fInfo.SIM_uses_RF = useReactionField;
410     fInfo.SIM_uses_RF = 0;
411 mmeineke 377 fInfo.SIM_uses_GB = useGB;
412     fInfo.SIM_uses_EAM = useEAM;
413    
414 mmeineke 424 excl = Exclude::getArray();
415 mmeineke 377
416 gezelter 490 #ifdef IS_MPI
417     n_global = mpiSim->getTotAtoms();
418     #else
419     n_global = n_atoms;
420     #endif
421    
422 mmeineke 377 isError = 0;
423    
424 gezelter 490 setFsimulation( &fInfo, &n_global, &n_atoms, identArray, &n_exclude, excl,
425 gezelter 483 &nGlobalExcludes, globalExcludes, molMembershipArray,
426     &isError );
427 mmeineke 377
428     if( isError ){
429    
430     sprintf( painCave.errMsg,
431     "There was an error setting the simulation information in fortran.\n" );
432     painCave.isFatal = 1;
433     simError();
434     }
435    
436     #ifdef IS_MPI
437     sprintf( checkPointMsg,
438     "succesfully sent the simulation information to fortran.\n");
439     MPIcheckPoint();
440     #endif // is_mpi
441 gezelter 458
442 gezelter 474 this->ndf = this->getNDF();
443     this->ndfRaw = this->getNDFraw();
444 gezelter 458
445 mmeineke 377 }
446    
447 mmeineke 626
448     void SimInfo::setRcut( double theRcut ){
449    
450     if( !haveOrigRcut ){
451     haveOrigRcut = 1;
452     origRcut = theRcut;
453     }
454    
455     rCut = theRcut;
456     checkCutOffs();
457     }
458    
459     void SimInfo::setEcr( double theEcr ){
460    
461     if( !haveOrigEcr ){
462     haveOrigEcr = 1;
463     origEcr = theEcr;
464     }
465    
466     ecr = theEcr;
467     checkCutOffs();
468     }
469    
470     void SimInfo::setEcr( double theEcr, double theEst ){
471    
472     est = theEst;
473     setEcr( theEcr );
474     }
475    
476    
477     void SimInfo::checkCutOffs( void ){
478    
479     int cutChanged = 0;
480    
481 chuckv 669
482    
483 mmeineke 626 if( boxIsInit ){
484    
485     //we need to check cutOffs against the box
486 chuckv 669
487     if(( maxCutoff > rCut )&&(usePBC)){
488 mmeineke 626 if( rCut < origRcut ){
489     rCut = origRcut;
490     if (rCut > maxCutoff) rCut = maxCutoff;
491    
492     sprintf( painCave.errMsg,
493     "New Box size is setting the long range cutoff radius "
494     "to %lf\n",
495     rCut );
496     painCave.isFatal = 0;
497     simError();
498     }
499     }
500    
501     if( maxCutoff > ecr ){
502     if( ecr < origEcr ){
503     rCut = origEcr;
504     if (ecr > maxCutoff) ecr = maxCutoff;
505    
506     sprintf( painCave.errMsg,
507     "New Box size is setting the electrostaticCutoffRadius "
508     "to %lf\n",
509     ecr );
510     painCave.isFatal = 0;
511     simError();
512     }
513     }
514    
515    
516 chuckv 669 if ((rCut > maxCutoff)&&(usePBC)) {
517 mmeineke 626 sprintf( painCave.errMsg,
518     "New Box size is setting the long range cutoff radius "
519     "to %lf\n",
520     maxCutoff );
521     painCave.isFatal = 0;
522     simError();
523     rCut = maxCutoff;
524     }
525    
526     if( ecr > maxCutoff){
527     sprintf( painCave.errMsg,
528     "New Box size is setting the electrostaticCutoffRadius "
529     "to %lf\n",
530     maxCutoff );
531     painCave.isFatal = 0;
532     simError();
533     ecr = maxCutoff;
534     }
535    
536    
537     }
538    
539    
540     if( (oldEcr != ecr) || ( oldRcut != rCut ) ) cutChanged = 1;
541    
542     // rlist is the 1.0 plus max( rcut, ecr )
543    
544     ( rCut > ecr )? rList = rCut + 1.0: rList = ecr + 1.0;
545    
546     if( cutChanged ){
547    
548     notifyFortranCutOffs( &rCut, &rList, &ecr, &est );
549     }
550    
551     oldEcr = ecr;
552     oldRcut = rCut;
553     }
554 tim 658
555     void SimInfo::addProperty(GenericData* prop){
556    
557     map<string, GenericData*>::iterator result;
558     result = properties.find(prop->getID());
559    
560     //we can't simply use properties[prop->getID()] = prop,
561     //it will cause memory leak if we already contain a propery which has the same name of prop
562    
563     if(result != properties.end()){
564    
565     delete (*result).second;
566     (*result).second = prop;
567    
568     }
569     else{
570    
571     properties[prop->getID()] = prop;
572    
573     }
574    
575     }
576    
577     GenericData* SimInfo::getProperty(const string& propName){
578    
579     map<string, GenericData*>::iterator result;
580    
581     //string lowerCaseName = ();
582    
583     result = properties.find(propName);
584    
585     if(result != properties.end())
586     return (*result).second;
587     else
588     return NULL;
589     }
590    
591     vector<GenericData*> SimInfo::getProperties(){
592    
593     vector<GenericData*> result;
594     map<string, GenericData*>::iterator i;
595    
596     for(i = properties.begin(); i != properties.end(); i++)
597     result.push_back((*i).second);
598    
599     return result;
600     }
601    
602 tim 763 double SimInfo::matTrace3(double m[3][3]){
603     double trace;
604     trace = m[0][0] + m[1][1] + m[2][2];
605 tim 658
606 tim 763 return trace;
607     }