ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/trunk/OOPSE/libmdtools/SimInfo.cpp
Revision: 941
Committed: Tue Jan 13 23:01:43 2004 UTC (20 years, 5 months ago) by gezelter
File size: 14120 byte(s)
Log Message:
Changes for adding direct charge-charge interactions (with switching function)

File Contents

# User Rev Content
1 gezelter 829 #include <stdlib.h>
2     #include <string.h>
3     #include <math.h>
4 mmeineke 377
5 mmeineke 572 #include <iostream>
6     using namespace std;
7 mmeineke 377
8     #include "SimInfo.hpp"
9     #define __C
10     #include "fSimulation.h"
11     #include "simError.h"
12    
13     #include "fortranWrappers.hpp"
14    
15 gezelter 490 #ifdef IS_MPI
16     #include "mpiSimulation.hpp"
17     #endif
18    
19 mmeineke 572 inline double roundMe( double x ){
20     return ( x >= 0 ) ? floor( x + 0.5 ) : ceil( x - 0.5 );
21     }
22    
23 mmeineke 860 inline double min( double a, double b ){
24     return (a < b ) ? a : b;
25     }
26 mmeineke 572
27 mmeineke 377 SimInfo* currentInfo;
28    
29     SimInfo::SimInfo(){
30     excludes = NULL;
31     n_constraints = 0;
32 tim 699 nZconstraints = 0;
33 mmeineke 377 n_oriented = 0;
34     n_dipoles = 0;
35 gezelter 458 ndf = 0;
36     ndfRaw = 0;
37 mmeineke 674 nZconstraints = 0;
38 mmeineke 377 the_integrator = NULL;
39     setTemp = 0;
40     thermalTime = 0.0;
41 mmeineke 642 currentTime = 0.0;
42 mmeineke 420 rCut = 0.0;
43 mmeineke 618 ecr = 0.0;
44 mmeineke 619 est = 0.0;
45 mmeineke 377
46 mmeineke 859 haveRcut = 0;
47     haveEcr = 0;
48 mmeineke 626 boxIsInit = 0;
49    
50 tim 781 resetTime = 1e99;
51 mmeineke 626
52 mmeineke 855 orthoTolerance = 1E-6;
53     useInitXSstate = true;
54    
55 mmeineke 377 usePBC = 0;
56     useLJ = 0;
57     useSticky = 0;
58 gezelter 941 useCharges = 0;
59     useDipoles = 0;
60 mmeineke 377 useReactionField = 0;
61     useGB = 0;
62     useEAM = 0;
63    
64 mmeineke 670 myConfiguration = new SimState();
65    
66 gezelter 457 wrapMeSimInfo( this );
67     }
68 mmeineke 377
69 mmeineke 670
70 tim 660 SimInfo::~SimInfo(){
71    
72 mmeineke 670 delete myConfiguration;
73    
74 tim 660 map<string, GenericData*>::iterator i;
75    
76     for(i = properties.begin(); i != properties.end(); i++)
77     delete (*i).second;
78 mmeineke 670
79 tim 660 }
80    
81 gezelter 457 void SimInfo::setBox(double newBox[3]) {
82 mmeineke 586
83 gezelter 588 int i, j;
84     double tempMat[3][3];
85 gezelter 463
86 gezelter 588 for(i=0; i<3; i++)
87     for (j=0; j<3; j++) tempMat[i][j] = 0.0;;
88 gezelter 463
89 gezelter 588 tempMat[0][0] = newBox[0];
90     tempMat[1][1] = newBox[1];
91     tempMat[2][2] = newBox[2];
92 gezelter 463
93 mmeineke 586 setBoxM( tempMat );
94 mmeineke 568
95 gezelter 457 }
96 mmeineke 377
97 gezelter 588 void SimInfo::setBoxM( double theBox[3][3] ){
98 mmeineke 568
99 mmeineke 787 int i, j;
100 gezelter 588 double FortranHmat[9]; // to preserve compatibility with Fortran the
101     // ordering in the array is as follows:
102     // [ 0 3 6 ]
103     // [ 1 4 7 ]
104     // [ 2 5 8 ]
105     double FortranHmatInv[9]; // the inverted Hmat (for Fortran);
106 mmeineke 568
107 mmeineke 626 if( !boxIsInit ) boxIsInit = 1;
108 mmeineke 586
109 gezelter 588 for(i=0; i < 3; i++)
110     for (j=0; j < 3; j++) Hmat[i][j] = theBox[i][j];
111    
112 mmeineke 568 calcBoxL();
113 gezelter 588 calcHmatInv();
114 mmeineke 568
115 gezelter 588 for(i=0; i < 3; i++) {
116     for (j=0; j < 3; j++) {
117     FortranHmat[3*j + i] = Hmat[i][j];
118     FortranHmatInv[3*j + i] = HmatInv[i][j];
119     }
120     }
121 mmeineke 586
122 mmeineke 590 setFortranBoxSize(FortranHmat, FortranHmatInv, &orthoRhombic);
123 mmeineke 568
124 mmeineke 377 }
125 gezelter 458
126 mmeineke 568
127 gezelter 588 void SimInfo::getBoxM (double theBox[3][3]) {
128 mmeineke 568
129 gezelter 588 int i, j;
130     for(i=0; i<3; i++)
131     for (j=0; j<3; j++) theBox[i][j] = Hmat[i][j];
132 mmeineke 568 }
133    
134 gezelter 574
135     void SimInfo::scaleBox(double scale) {
136 gezelter 588 double theBox[3][3];
137     int i, j;
138 gezelter 574
139 gezelter 617 // cerr << "Scaling box by " << scale << "\n";
140 mmeineke 586
141 gezelter 588 for(i=0; i<3; i++)
142     for (j=0; j<3; j++) theBox[i][j] = Hmat[i][j]*scale;
143 gezelter 574
144     setBoxM(theBox);
145    
146     }
147    
148 gezelter 588 void SimInfo::calcHmatInv( void ) {
149 mmeineke 590
150 mmeineke 853 int oldOrtho;
151 mmeineke 590 int i,j;
152 mmeineke 569 double smallDiag;
153     double tol;
154     double sanity[3][3];
155 mmeineke 568
156 gezelter 588 invertMat3( Hmat, HmatInv );
157 mmeineke 568
158 gezelter 588 // check to see if Hmat is orthorhombic
159 mmeineke 568
160 mmeineke 853 oldOrtho = orthoRhombic;
161    
162     smallDiag = fabs(Hmat[0][0]);
163     if(smallDiag > fabs(Hmat[1][1])) smallDiag = fabs(Hmat[1][1]);
164     if(smallDiag > fabs(Hmat[2][2])) smallDiag = fabs(Hmat[2][2]);
165 mmeineke 855 tol = smallDiag * orthoTolerance;
166 mmeineke 568
167 gezelter 588 orthoRhombic = 1;
168 mmeineke 568
169 gezelter 588 for (i = 0; i < 3; i++ ) {
170     for (j = 0 ; j < 3; j++) {
171     if (i != j) {
172     if (orthoRhombic) {
173 mmeineke 853 if ( fabs(Hmat[i][j]) >= tol) orthoRhombic = 0;
174 gezelter 588 }
175     }
176 mmeineke 568 }
177     }
178 mmeineke 853
179     if( oldOrtho != orthoRhombic ){
180    
181     if( orthoRhombic ){
182     sprintf( painCave.errMsg,
183     "Hmat is switching from Non-Orthorhombic to OrthoRhombic\n"
184 mmeineke 855 " If this is a bad thing, change the orthoBoxTolerance( currently %G ).\n",
185     orthoTolerance);
186 mmeineke 853 simError();
187     }
188     else {
189     sprintf( painCave.errMsg,
190     "Hmat is switching from Orthorhombic to Non-OrthoRhombic\n"
191 mmeineke 855 " If this is a bad thing, change the orthoBoxTolerance( currently %G ).\n",
192     orthoTolerance);
193 mmeineke 853 simError();
194     }
195     }
196 gezelter 588 }
197 mmeineke 569
198 gezelter 588 double SimInfo::matDet3(double a[3][3]) {
199     int i, j, k;
200     double determinant;
201 mmeineke 569
202 gezelter 588 determinant = 0.0;
203    
204     for(i = 0; i < 3; i++) {
205     j = (i+1)%3;
206     k = (i+2)%3;
207    
208     determinant += a[0][i] * (a[1][j]*a[2][k] - a[1][k]*a[2][j]);
209 mmeineke 569 }
210    
211 gezelter 588 return determinant;
212     }
213 mmeineke 569
214 gezelter 588 void SimInfo::invertMat3(double a[3][3], double b[3][3]) {
215 mmeineke 569
216 gezelter 588 int i, j, k, l, m, n;
217     double determinant;
218 mmeineke 569
219 gezelter 588 determinant = matDet3( a );
220    
221     if (determinant == 0.0) {
222     sprintf( painCave.errMsg,
223     "Can't invert a matrix with a zero determinant!\n");
224     painCave.isFatal = 1;
225     simError();
226     }
227    
228     for (i=0; i < 3; i++) {
229     j = (i+1)%3;
230     k = (i+2)%3;
231     for(l = 0; l < 3; l++) {
232     m = (l+1)%3;
233     n = (l+2)%3;
234    
235     b[l][i] = (a[j][m]*a[k][n] - a[j][n]*a[k][m]) / determinant;
236 mmeineke 569 }
237     }
238 mmeineke 568 }
239    
240 gezelter 588 void SimInfo::matMul3(double a[3][3], double b[3][3], double c[3][3]) {
241     double r00, r01, r02, r10, r11, r12, r20, r21, r22;
242    
243     r00 = a[0][0]*b[0][0] + a[0][1]*b[1][0] + a[0][2]*b[2][0];
244     r01 = a[0][0]*b[0][1] + a[0][1]*b[1][1] + a[0][2]*b[2][1];
245     r02 = a[0][0]*b[0][2] + a[0][1]*b[1][2] + a[0][2]*b[2][2];
246    
247     r10 = a[1][0]*b[0][0] + a[1][1]*b[1][0] + a[1][2]*b[2][0];
248     r11 = a[1][0]*b[0][1] + a[1][1]*b[1][1] + a[1][2]*b[2][1];
249     r12 = a[1][0]*b[0][2] + a[1][1]*b[1][2] + a[1][2]*b[2][2];
250    
251     r20 = a[2][0]*b[0][0] + a[2][1]*b[1][0] + a[2][2]*b[2][0];
252     r21 = a[2][0]*b[0][1] + a[2][1]*b[1][1] + a[2][2]*b[2][1];
253     r22 = a[2][0]*b[0][2] + a[2][1]*b[1][2] + a[2][2]*b[2][2];
254    
255     c[0][0] = r00; c[0][1] = r01; c[0][2] = r02;
256     c[1][0] = r10; c[1][1] = r11; c[1][2] = r12;
257     c[2][0] = r20; c[2][1] = r21; c[2][2] = r22;
258     }
259    
260     void SimInfo::matVecMul3(double m[3][3], double inVec[3], double outVec[3]) {
261     double a0, a1, a2;
262    
263     a0 = inVec[0]; a1 = inVec[1]; a2 = inVec[2];
264    
265     outVec[0] = m[0][0]*a0 + m[0][1]*a1 + m[0][2]*a2;
266     outVec[1] = m[1][0]*a0 + m[1][1]*a1 + m[1][2]*a2;
267     outVec[2] = m[2][0]*a0 + m[2][1]*a1 + m[2][2]*a2;
268     }
269 mmeineke 597
270     void SimInfo::transposeMat3(double in[3][3], double out[3][3]) {
271     double temp[3][3];
272     int i, j;
273    
274     for (i = 0; i < 3; i++) {
275     for (j = 0; j < 3; j++) {
276     temp[j][i] = in[i][j];
277     }
278     }
279     for (i = 0; i < 3; i++) {
280     for (j = 0; j < 3; j++) {
281     out[i][j] = temp[i][j];
282     }
283     }
284     }
285 gezelter 588
286 mmeineke 597 void SimInfo::printMat3(double A[3][3] ){
287    
288     std::cerr
289     << "[ " << A[0][0] << ", " << A[0][1] << ", " << A[0][2] << " ]\n"
290     << "[ " << A[1][0] << ", " << A[1][1] << ", " << A[1][2] << " ]\n"
291     << "[ " << A[2][0] << ", " << A[2][1] << ", " << A[2][2] << " ]\n";
292     }
293    
294     void SimInfo::printMat9(double A[9] ){
295    
296     std::cerr
297     << "[ " << A[0] << ", " << A[1] << ", " << A[2] << " ]\n"
298     << "[ " << A[3] << ", " << A[4] << ", " << A[5] << " ]\n"
299     << "[ " << A[6] << ", " << A[7] << ", " << A[8] << " ]\n";
300     }
301    
302 tim 781
303     void SimInfo::crossProduct3(double a[3],double b[3], double out[3]){
304    
305     out[0] = a[1] * b[2] - a[2] * b[1];
306     out[1] = a[2] * b[0] - a[0] * b[2] ;
307     out[2] = a[0] * b[1] - a[1] * b[0];
308    
309     }
310    
311     double SimInfo::dotProduct3(double a[3], double b[3]){
312     return a[0]*b[0] + a[1]*b[1]+ a[2]*b[2];
313     }
314    
315     double SimInfo::length3(double a[3]){
316     return sqrt(a[0]*a[0] + a[1]*a[1] + a[2]*a[2]);
317     }
318    
319 mmeineke 568 void SimInfo::calcBoxL( void ){
320    
321     double dx, dy, dz, dsq;
322    
323 gezelter 588 // boxVol = Determinant of Hmat
324 mmeineke 568
325 gezelter 588 boxVol = matDet3( Hmat );
326 mmeineke 568
327     // boxLx
328    
329 gezelter 588 dx = Hmat[0][0]; dy = Hmat[1][0]; dz = Hmat[2][0];
330 mmeineke 568 dsq = dx*dx + dy*dy + dz*dz;
331 gezelter 621 boxL[0] = sqrt( dsq );
332 tim 781 //maxCutoff = 0.5 * boxL[0];
333 mmeineke 568
334     // boxLy
335    
336 gezelter 588 dx = Hmat[0][1]; dy = Hmat[1][1]; dz = Hmat[2][1];
337 mmeineke 568 dsq = dx*dx + dy*dy + dz*dz;
338 gezelter 621 boxL[1] = sqrt( dsq );
339 tim 781 //if( (0.5 * boxL[1]) < maxCutoff ) maxCutoff = 0.5 * boxL[1];
340 mmeineke 568
341 tim 781
342 mmeineke 568 // boxLz
343    
344 gezelter 588 dx = Hmat[0][2]; dy = Hmat[1][2]; dz = Hmat[2][2];
345 mmeineke 568 dsq = dx*dx + dy*dy + dz*dz;
346 gezelter 621 boxL[2] = sqrt( dsq );
347 tim 781 //if( (0.5 * boxL[2]) < maxCutoff ) maxCutoff = 0.5 * boxL[2];
348    
349     //calculate the max cutoff
350     maxCutoff = calcMaxCutOff();
351 chuckv 669
352     checkCutOffs();
353 mmeineke 626
354 mmeineke 568 }
355    
356    
357 tim 781 double SimInfo::calcMaxCutOff(){
358    
359     double ri[3], rj[3], rk[3];
360     double rij[3], rjk[3], rki[3];
361     double minDist;
362    
363     ri[0] = Hmat[0][0];
364     ri[1] = Hmat[1][0];
365     ri[2] = Hmat[2][0];
366    
367     rj[0] = Hmat[0][1];
368     rj[1] = Hmat[1][1];
369     rj[2] = Hmat[2][1];
370    
371     rk[0] = Hmat[0][2];
372     rk[1] = Hmat[1][2];
373     rk[2] = Hmat[2][2];
374    
375     crossProduct3(ri,rj, rij);
376     distXY = dotProduct3(rk,rij) / length3(rij);
377    
378     crossProduct3(rj,rk, rjk);
379     distYZ = dotProduct3(ri,rjk) / length3(rjk);
380    
381     crossProduct3(rk,ri, rki);
382     distZX = dotProduct3(rj,rki) / length3(rki);
383    
384     minDist = min(min(distXY, distYZ), distZX);
385     return minDist/2;
386    
387     }
388    
389 mmeineke 568 void SimInfo::wrapVector( double thePos[3] ){
390    
391 mmeineke 787 int i;
392 mmeineke 568 double scaled[3];
393    
394 mmeineke 569 if( !orthoRhombic ){
395     // calc the scaled coordinates.
396 gezelter 588
397    
398     matVecMul3(HmatInv, thePos, scaled);
399 mmeineke 569
400     for(i=0; i<3; i++)
401 mmeineke 572 scaled[i] -= roundMe(scaled[i]);
402 mmeineke 569
403     // calc the wrapped real coordinates from the wrapped scaled coordinates
404    
405 gezelter 588 matVecMul3(Hmat, scaled, thePos);
406    
407 mmeineke 569 }
408     else{
409     // calc the scaled coordinates.
410    
411     for(i=0; i<3; i++)
412 gezelter 588 scaled[i] = thePos[i]*HmatInv[i][i];
413 mmeineke 569
414     // wrap the scaled coordinates
415    
416     for(i=0; i<3; i++)
417 mmeineke 572 scaled[i] -= roundMe(scaled[i]);
418 mmeineke 569
419     // calc the wrapped real coordinates from the wrapped scaled coordinates
420    
421     for(i=0; i<3; i++)
422 gezelter 588 thePos[i] = scaled[i]*Hmat[i][i];
423 mmeineke 569 }
424    
425 mmeineke 568 }
426    
427    
428 gezelter 458 int SimInfo::getNDF(){
429 mmeineke 790 int ndf_local;
430 gezelter 457
431 gezelter 458 ndf_local = 3 * n_atoms + 3 * n_oriented - n_constraints;
432    
433     #ifdef IS_MPI
434     MPI_Allreduce(&ndf_local,&ndf,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
435     #else
436     ndf = ndf_local;
437     #endif
438    
439 mmeineke 674 ndf = ndf - 3 - nZconstraints;
440 gezelter 458
441     return ndf;
442     }
443    
444     int SimInfo::getNDFraw() {
445 mmeineke 790 int ndfRaw_local;
446 gezelter 458
447     // Raw degrees of freedom that we have to set
448     ndfRaw_local = 3 * n_atoms + 3 * n_oriented;
449    
450     #ifdef IS_MPI
451     MPI_Allreduce(&ndfRaw_local,&ndfRaw,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
452     #else
453     ndfRaw = ndfRaw_local;
454     #endif
455    
456     return ndfRaw;
457     }
458 tim 767
459     int SimInfo::getNDFtranslational() {
460 mmeineke 790 int ndfTrans_local;
461 tim 767
462     ndfTrans_local = 3 * n_atoms - n_constraints;
463    
464     #ifdef IS_MPI
465     MPI_Allreduce(&ndfTrans_local,&ndfTrans,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
466     #else
467     ndfTrans = ndfTrans_local;
468     #endif
469    
470     ndfTrans = ndfTrans - 3 - nZconstraints;
471    
472     return ndfTrans;
473     }
474    
475 mmeineke 377 void SimInfo::refreshSim(){
476    
477     simtype fInfo;
478     int isError;
479 gezelter 490 int n_global;
480 mmeineke 424 int* excl;
481 mmeineke 626
482 mmeineke 469 fInfo.dielect = 0.0;
483 mmeineke 377
484 gezelter 941 if( useDipoles ){
485 mmeineke 469 if( useReactionField )fInfo.dielect = dielectric;
486     }
487    
488 mmeineke 377 fInfo.SIM_uses_PBC = usePBC;
489 mmeineke 443 //fInfo.SIM_uses_LJ = 0;
490 chuckv 439 fInfo.SIM_uses_LJ = useLJ;
491 mmeineke 443 fInfo.SIM_uses_sticky = useSticky;
492     //fInfo.SIM_uses_sticky = 0;
493 gezelter 941 fInfo.SIM_uses_charges = useCharges;
494     fInfo.SIM_uses_dipoles = useDipoles;
495 chuckv 482 //fInfo.SIM_uses_dipoles = 0;
496 mmeineke 443 //fInfo.SIM_uses_RF = useReactionField;
497     fInfo.SIM_uses_RF = 0;
498 mmeineke 377 fInfo.SIM_uses_GB = useGB;
499     fInfo.SIM_uses_EAM = useEAM;
500    
501 mmeineke 424 excl = Exclude::getArray();
502 mmeineke 377
503 gezelter 490 #ifdef IS_MPI
504     n_global = mpiSim->getTotAtoms();
505     #else
506     n_global = n_atoms;
507     #endif
508    
509 mmeineke 377 isError = 0;
510    
511 gezelter 490 setFsimulation( &fInfo, &n_global, &n_atoms, identArray, &n_exclude, excl,
512 gezelter 483 &nGlobalExcludes, globalExcludes, molMembershipArray,
513     &isError );
514 mmeineke 377
515     if( isError ){
516    
517     sprintf( painCave.errMsg,
518     "There was an error setting the simulation information in fortran.\n" );
519     painCave.isFatal = 1;
520     simError();
521     }
522    
523     #ifdef IS_MPI
524     sprintf( checkPointMsg,
525     "succesfully sent the simulation information to fortran.\n");
526     MPIcheckPoint();
527     #endif // is_mpi
528 gezelter 458
529 gezelter 474 this->ndf = this->getNDF();
530     this->ndfRaw = this->getNDFraw();
531 tim 767 this->ndfTrans = this->getNDFtranslational();
532 mmeineke 377 }
533    
534 mmeineke 841 void SimInfo::setDefaultRcut( double theRcut ){
535    
536 mmeineke 859 haveRcut = 1;
537 mmeineke 841 rCut = theRcut;
538 mmeineke 843
539 gezelter 845 ( rCut > ecr )? rList = rCut + 1.0: rList = ecr + 1.0;
540    
541 mmeineke 843 notifyFortranCutOffs( &rCut, &rList, &ecr, &est );
542 mmeineke 841 }
543    
544     void SimInfo::setDefaultEcr( double theEcr ){
545    
546 mmeineke 859 haveEcr = 1;
547 chrisfen 872 ecr = theEcr;
548 mmeineke 841
549 gezelter 845 ( rCut > ecr )? rList = rCut + 1.0: rList = ecr + 1.0;
550    
551 mmeineke 843 notifyFortranCutOffs( &rCut, &rList, &ecr, &est );
552 mmeineke 841 }
553    
554     void SimInfo::setDefaultEcr( double theEcr, double theEst ){
555 mmeineke 626
556 mmeineke 841 est = theEst;
557     setDefaultEcr( theEcr );
558     }
559    
560    
561 mmeineke 626 void SimInfo::checkCutOffs( void ){
562 gezelter 770
563 mmeineke 626 if( boxIsInit ){
564    
565     //we need to check cutOffs against the box
566 mmeineke 859
567     if( rCut > maxCutoff ){
568 mmeineke 626 sprintf( painCave.errMsg,
569 mmeineke 859 "Box size is too small for the long range cutoff radius, "
570 mmeineke 874 "%G, at time %G\n"
571     " [ %G %G %G ]\n"
572     " [ %G %G %G ]\n"
573     " [ %G %G %G ]\n",
574     rCut, currentTime,
575     Hmat[0][0], Hmat[0][1], Hmat[0][2],
576     Hmat[1][0], Hmat[1][1], Hmat[1][2],
577     Hmat[2][0], Hmat[2][1], Hmat[2][2]);
578 mmeineke 859 painCave.isFatal = 1;
579 mmeineke 626 simError();
580     }
581 mmeineke 859
582     if( haveEcr ){
583     if( ecr > maxCutoff ){
584     sprintf( painCave.errMsg,
585     "Box size is too small for the electrostatic cutoff radius, "
586 mmeineke 874 "%G, at time %G\n"
587     " [ %G %G %G ]\n"
588     " [ %G %G %G ]\n"
589     " [ %G %G %G ]\n",
590     ecr, currentTime,
591     Hmat[0][0], Hmat[0][1], Hmat[0][2],
592     Hmat[1][0], Hmat[1][1], Hmat[1][2],
593     Hmat[2][0], Hmat[2][1], Hmat[2][2]);
594 mmeineke 859 painCave.isFatal = 1;
595     simError();
596 tim 781 }
597     }
598 tim 767 } else {
599     // initialize this stuff before using it, OK?
600 gezelter 770 sprintf( painCave.errMsg,
601     "Trying to check cutoffs without a box. Be smarter.\n" );
602     painCave.isFatal = 1;
603     simError();
604 mmeineke 626 }
605 gezelter 770
606 mmeineke 626 }
607 tim 658
608     void SimInfo::addProperty(GenericData* prop){
609    
610     map<string, GenericData*>::iterator result;
611     result = properties.find(prop->getID());
612    
613     //we can't simply use properties[prop->getID()] = prop,
614     //it will cause memory leak if we already contain a propery which has the same name of prop
615    
616     if(result != properties.end()){
617    
618     delete (*result).second;
619     (*result).second = prop;
620    
621     }
622     else{
623    
624     properties[prop->getID()] = prop;
625    
626     }
627    
628     }
629    
630     GenericData* SimInfo::getProperty(const string& propName){
631    
632     map<string, GenericData*>::iterator result;
633    
634     //string lowerCaseName = ();
635    
636     result = properties.find(propName);
637    
638     if(result != properties.end())
639     return (*result).second;
640     else
641     return NULL;
642     }
643    
644     vector<GenericData*> SimInfo::getProperties(){
645    
646     vector<GenericData*> result;
647     map<string, GenericData*>::iterator i;
648    
649     for(i = properties.begin(); i != properties.end(); i++)
650     result.push_back((*i).second);
651    
652     return result;
653     }
654    
655 tim 763 double SimInfo::matTrace3(double m[3][3]){
656     double trace;
657     trace = m[0][0] + m[1][1] + m[2][2];
658 tim 658
659 tim 763 return trace;
660     }