ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/trunk/OOPSE/libmdtools/SimInfo.cpp
Revision: 941
Committed: Tue Jan 13 23:01:43 2004 UTC (20 years, 5 months ago) by gezelter
File size: 14120 byte(s)
Log Message:
Changes for adding direct charge-charge interactions (with switching function)

File Contents

# Content
1 #include <stdlib.h>
2 #include <string.h>
3 #include <math.h>
4
5 #include <iostream>
6 using namespace std;
7
8 #include "SimInfo.hpp"
9 #define __C
10 #include "fSimulation.h"
11 #include "simError.h"
12
13 #include "fortranWrappers.hpp"
14
15 #ifdef IS_MPI
16 #include "mpiSimulation.hpp"
17 #endif
18
19 inline double roundMe( double x ){
20 return ( x >= 0 ) ? floor( x + 0.5 ) : ceil( x - 0.5 );
21 }
22
23 inline double min( double a, double b ){
24 return (a < b ) ? a : b;
25 }
26
27 SimInfo* currentInfo;
28
29 SimInfo::SimInfo(){
30 excludes = NULL;
31 n_constraints = 0;
32 nZconstraints = 0;
33 n_oriented = 0;
34 n_dipoles = 0;
35 ndf = 0;
36 ndfRaw = 0;
37 nZconstraints = 0;
38 the_integrator = NULL;
39 setTemp = 0;
40 thermalTime = 0.0;
41 currentTime = 0.0;
42 rCut = 0.0;
43 ecr = 0.0;
44 est = 0.0;
45
46 haveRcut = 0;
47 haveEcr = 0;
48 boxIsInit = 0;
49
50 resetTime = 1e99;
51
52 orthoTolerance = 1E-6;
53 useInitXSstate = true;
54
55 usePBC = 0;
56 useLJ = 0;
57 useSticky = 0;
58 useCharges = 0;
59 useDipoles = 0;
60 useReactionField = 0;
61 useGB = 0;
62 useEAM = 0;
63
64 myConfiguration = new SimState();
65
66 wrapMeSimInfo( this );
67 }
68
69
70 SimInfo::~SimInfo(){
71
72 delete myConfiguration;
73
74 map<string, GenericData*>::iterator i;
75
76 for(i = properties.begin(); i != properties.end(); i++)
77 delete (*i).second;
78
79 }
80
81 void SimInfo::setBox(double newBox[3]) {
82
83 int i, j;
84 double tempMat[3][3];
85
86 for(i=0; i<3; i++)
87 for (j=0; j<3; j++) tempMat[i][j] = 0.0;;
88
89 tempMat[0][0] = newBox[0];
90 tempMat[1][1] = newBox[1];
91 tempMat[2][2] = newBox[2];
92
93 setBoxM( tempMat );
94
95 }
96
97 void SimInfo::setBoxM( double theBox[3][3] ){
98
99 int i, j;
100 double FortranHmat[9]; // to preserve compatibility with Fortran the
101 // ordering in the array is as follows:
102 // [ 0 3 6 ]
103 // [ 1 4 7 ]
104 // [ 2 5 8 ]
105 double FortranHmatInv[9]; // the inverted Hmat (for Fortran);
106
107 if( !boxIsInit ) boxIsInit = 1;
108
109 for(i=0; i < 3; i++)
110 for (j=0; j < 3; j++) Hmat[i][j] = theBox[i][j];
111
112 calcBoxL();
113 calcHmatInv();
114
115 for(i=0; i < 3; i++) {
116 for (j=0; j < 3; j++) {
117 FortranHmat[3*j + i] = Hmat[i][j];
118 FortranHmatInv[3*j + i] = HmatInv[i][j];
119 }
120 }
121
122 setFortranBoxSize(FortranHmat, FortranHmatInv, &orthoRhombic);
123
124 }
125
126
127 void SimInfo::getBoxM (double theBox[3][3]) {
128
129 int i, j;
130 for(i=0; i<3; i++)
131 for (j=0; j<3; j++) theBox[i][j] = Hmat[i][j];
132 }
133
134
135 void SimInfo::scaleBox(double scale) {
136 double theBox[3][3];
137 int i, j;
138
139 // cerr << "Scaling box by " << scale << "\n";
140
141 for(i=0; i<3; i++)
142 for (j=0; j<3; j++) theBox[i][j] = Hmat[i][j]*scale;
143
144 setBoxM(theBox);
145
146 }
147
148 void SimInfo::calcHmatInv( void ) {
149
150 int oldOrtho;
151 int i,j;
152 double smallDiag;
153 double tol;
154 double sanity[3][3];
155
156 invertMat3( Hmat, HmatInv );
157
158 // check to see if Hmat is orthorhombic
159
160 oldOrtho = orthoRhombic;
161
162 smallDiag = fabs(Hmat[0][0]);
163 if(smallDiag > fabs(Hmat[1][1])) smallDiag = fabs(Hmat[1][1]);
164 if(smallDiag > fabs(Hmat[2][2])) smallDiag = fabs(Hmat[2][2]);
165 tol = smallDiag * orthoTolerance;
166
167 orthoRhombic = 1;
168
169 for (i = 0; i < 3; i++ ) {
170 for (j = 0 ; j < 3; j++) {
171 if (i != j) {
172 if (orthoRhombic) {
173 if ( fabs(Hmat[i][j]) >= tol) orthoRhombic = 0;
174 }
175 }
176 }
177 }
178
179 if( oldOrtho != orthoRhombic ){
180
181 if( orthoRhombic ){
182 sprintf( painCave.errMsg,
183 "Hmat is switching from Non-Orthorhombic to OrthoRhombic\n"
184 " If this is a bad thing, change the orthoBoxTolerance( currently %G ).\n",
185 orthoTolerance);
186 simError();
187 }
188 else {
189 sprintf( painCave.errMsg,
190 "Hmat is switching from Orthorhombic to Non-OrthoRhombic\n"
191 " If this is a bad thing, change the orthoBoxTolerance( currently %G ).\n",
192 orthoTolerance);
193 simError();
194 }
195 }
196 }
197
198 double SimInfo::matDet3(double a[3][3]) {
199 int i, j, k;
200 double determinant;
201
202 determinant = 0.0;
203
204 for(i = 0; i < 3; i++) {
205 j = (i+1)%3;
206 k = (i+2)%3;
207
208 determinant += a[0][i] * (a[1][j]*a[2][k] - a[1][k]*a[2][j]);
209 }
210
211 return determinant;
212 }
213
214 void SimInfo::invertMat3(double a[3][3], double b[3][3]) {
215
216 int i, j, k, l, m, n;
217 double determinant;
218
219 determinant = matDet3( a );
220
221 if (determinant == 0.0) {
222 sprintf( painCave.errMsg,
223 "Can't invert a matrix with a zero determinant!\n");
224 painCave.isFatal = 1;
225 simError();
226 }
227
228 for (i=0; i < 3; i++) {
229 j = (i+1)%3;
230 k = (i+2)%3;
231 for(l = 0; l < 3; l++) {
232 m = (l+1)%3;
233 n = (l+2)%3;
234
235 b[l][i] = (a[j][m]*a[k][n] - a[j][n]*a[k][m]) / determinant;
236 }
237 }
238 }
239
240 void SimInfo::matMul3(double a[3][3], double b[3][3], double c[3][3]) {
241 double r00, r01, r02, r10, r11, r12, r20, r21, r22;
242
243 r00 = a[0][0]*b[0][0] + a[0][1]*b[1][0] + a[0][2]*b[2][0];
244 r01 = a[0][0]*b[0][1] + a[0][1]*b[1][1] + a[0][2]*b[2][1];
245 r02 = a[0][0]*b[0][2] + a[0][1]*b[1][2] + a[0][2]*b[2][2];
246
247 r10 = a[1][0]*b[0][0] + a[1][1]*b[1][0] + a[1][2]*b[2][0];
248 r11 = a[1][0]*b[0][1] + a[1][1]*b[1][1] + a[1][2]*b[2][1];
249 r12 = a[1][0]*b[0][2] + a[1][1]*b[1][2] + a[1][2]*b[2][2];
250
251 r20 = a[2][0]*b[0][0] + a[2][1]*b[1][0] + a[2][2]*b[2][0];
252 r21 = a[2][0]*b[0][1] + a[2][1]*b[1][1] + a[2][2]*b[2][1];
253 r22 = a[2][0]*b[0][2] + a[2][1]*b[1][2] + a[2][2]*b[2][2];
254
255 c[0][0] = r00; c[0][1] = r01; c[0][2] = r02;
256 c[1][0] = r10; c[1][1] = r11; c[1][2] = r12;
257 c[2][0] = r20; c[2][1] = r21; c[2][2] = r22;
258 }
259
260 void SimInfo::matVecMul3(double m[3][3], double inVec[3], double outVec[3]) {
261 double a0, a1, a2;
262
263 a0 = inVec[0]; a1 = inVec[1]; a2 = inVec[2];
264
265 outVec[0] = m[0][0]*a0 + m[0][1]*a1 + m[0][2]*a2;
266 outVec[1] = m[1][0]*a0 + m[1][1]*a1 + m[1][2]*a2;
267 outVec[2] = m[2][0]*a0 + m[2][1]*a1 + m[2][2]*a2;
268 }
269
270 void SimInfo::transposeMat3(double in[3][3], double out[3][3]) {
271 double temp[3][3];
272 int i, j;
273
274 for (i = 0; i < 3; i++) {
275 for (j = 0; j < 3; j++) {
276 temp[j][i] = in[i][j];
277 }
278 }
279 for (i = 0; i < 3; i++) {
280 for (j = 0; j < 3; j++) {
281 out[i][j] = temp[i][j];
282 }
283 }
284 }
285
286 void SimInfo::printMat3(double A[3][3] ){
287
288 std::cerr
289 << "[ " << A[0][0] << ", " << A[0][1] << ", " << A[0][2] << " ]\n"
290 << "[ " << A[1][0] << ", " << A[1][1] << ", " << A[1][2] << " ]\n"
291 << "[ " << A[2][0] << ", " << A[2][1] << ", " << A[2][2] << " ]\n";
292 }
293
294 void SimInfo::printMat9(double A[9] ){
295
296 std::cerr
297 << "[ " << A[0] << ", " << A[1] << ", " << A[2] << " ]\n"
298 << "[ " << A[3] << ", " << A[4] << ", " << A[5] << " ]\n"
299 << "[ " << A[6] << ", " << A[7] << ", " << A[8] << " ]\n";
300 }
301
302
303 void SimInfo::crossProduct3(double a[3],double b[3], double out[3]){
304
305 out[0] = a[1] * b[2] - a[2] * b[1];
306 out[1] = a[2] * b[0] - a[0] * b[2] ;
307 out[2] = a[0] * b[1] - a[1] * b[0];
308
309 }
310
311 double SimInfo::dotProduct3(double a[3], double b[3]){
312 return a[0]*b[0] + a[1]*b[1]+ a[2]*b[2];
313 }
314
315 double SimInfo::length3(double a[3]){
316 return sqrt(a[0]*a[0] + a[1]*a[1] + a[2]*a[2]);
317 }
318
319 void SimInfo::calcBoxL( void ){
320
321 double dx, dy, dz, dsq;
322
323 // boxVol = Determinant of Hmat
324
325 boxVol = matDet3( Hmat );
326
327 // boxLx
328
329 dx = Hmat[0][0]; dy = Hmat[1][0]; dz = Hmat[2][0];
330 dsq = dx*dx + dy*dy + dz*dz;
331 boxL[0] = sqrt( dsq );
332 //maxCutoff = 0.5 * boxL[0];
333
334 // boxLy
335
336 dx = Hmat[0][1]; dy = Hmat[1][1]; dz = Hmat[2][1];
337 dsq = dx*dx + dy*dy + dz*dz;
338 boxL[1] = sqrt( dsq );
339 //if( (0.5 * boxL[1]) < maxCutoff ) maxCutoff = 0.5 * boxL[1];
340
341
342 // boxLz
343
344 dx = Hmat[0][2]; dy = Hmat[1][2]; dz = Hmat[2][2];
345 dsq = dx*dx + dy*dy + dz*dz;
346 boxL[2] = sqrt( dsq );
347 //if( (0.5 * boxL[2]) < maxCutoff ) maxCutoff = 0.5 * boxL[2];
348
349 //calculate the max cutoff
350 maxCutoff = calcMaxCutOff();
351
352 checkCutOffs();
353
354 }
355
356
357 double SimInfo::calcMaxCutOff(){
358
359 double ri[3], rj[3], rk[3];
360 double rij[3], rjk[3], rki[3];
361 double minDist;
362
363 ri[0] = Hmat[0][0];
364 ri[1] = Hmat[1][0];
365 ri[2] = Hmat[2][0];
366
367 rj[0] = Hmat[0][1];
368 rj[1] = Hmat[1][1];
369 rj[2] = Hmat[2][1];
370
371 rk[0] = Hmat[0][2];
372 rk[1] = Hmat[1][2];
373 rk[2] = Hmat[2][2];
374
375 crossProduct3(ri,rj, rij);
376 distXY = dotProduct3(rk,rij) / length3(rij);
377
378 crossProduct3(rj,rk, rjk);
379 distYZ = dotProduct3(ri,rjk) / length3(rjk);
380
381 crossProduct3(rk,ri, rki);
382 distZX = dotProduct3(rj,rki) / length3(rki);
383
384 minDist = min(min(distXY, distYZ), distZX);
385 return minDist/2;
386
387 }
388
389 void SimInfo::wrapVector( double thePos[3] ){
390
391 int i;
392 double scaled[3];
393
394 if( !orthoRhombic ){
395 // calc the scaled coordinates.
396
397
398 matVecMul3(HmatInv, thePos, scaled);
399
400 for(i=0; i<3; i++)
401 scaled[i] -= roundMe(scaled[i]);
402
403 // calc the wrapped real coordinates from the wrapped scaled coordinates
404
405 matVecMul3(Hmat, scaled, thePos);
406
407 }
408 else{
409 // calc the scaled coordinates.
410
411 for(i=0; i<3; i++)
412 scaled[i] = thePos[i]*HmatInv[i][i];
413
414 // wrap the scaled coordinates
415
416 for(i=0; i<3; i++)
417 scaled[i] -= roundMe(scaled[i]);
418
419 // calc the wrapped real coordinates from the wrapped scaled coordinates
420
421 for(i=0; i<3; i++)
422 thePos[i] = scaled[i]*Hmat[i][i];
423 }
424
425 }
426
427
428 int SimInfo::getNDF(){
429 int ndf_local;
430
431 ndf_local = 3 * n_atoms + 3 * n_oriented - n_constraints;
432
433 #ifdef IS_MPI
434 MPI_Allreduce(&ndf_local,&ndf,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
435 #else
436 ndf = ndf_local;
437 #endif
438
439 ndf = ndf - 3 - nZconstraints;
440
441 return ndf;
442 }
443
444 int SimInfo::getNDFraw() {
445 int ndfRaw_local;
446
447 // Raw degrees of freedom that we have to set
448 ndfRaw_local = 3 * n_atoms + 3 * n_oriented;
449
450 #ifdef IS_MPI
451 MPI_Allreduce(&ndfRaw_local,&ndfRaw,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
452 #else
453 ndfRaw = ndfRaw_local;
454 #endif
455
456 return ndfRaw;
457 }
458
459 int SimInfo::getNDFtranslational() {
460 int ndfTrans_local;
461
462 ndfTrans_local = 3 * n_atoms - n_constraints;
463
464 #ifdef IS_MPI
465 MPI_Allreduce(&ndfTrans_local,&ndfTrans,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
466 #else
467 ndfTrans = ndfTrans_local;
468 #endif
469
470 ndfTrans = ndfTrans - 3 - nZconstraints;
471
472 return ndfTrans;
473 }
474
475 void SimInfo::refreshSim(){
476
477 simtype fInfo;
478 int isError;
479 int n_global;
480 int* excl;
481
482 fInfo.dielect = 0.0;
483
484 if( useDipoles ){
485 if( useReactionField )fInfo.dielect = dielectric;
486 }
487
488 fInfo.SIM_uses_PBC = usePBC;
489 //fInfo.SIM_uses_LJ = 0;
490 fInfo.SIM_uses_LJ = useLJ;
491 fInfo.SIM_uses_sticky = useSticky;
492 //fInfo.SIM_uses_sticky = 0;
493 fInfo.SIM_uses_charges = useCharges;
494 fInfo.SIM_uses_dipoles = useDipoles;
495 //fInfo.SIM_uses_dipoles = 0;
496 //fInfo.SIM_uses_RF = useReactionField;
497 fInfo.SIM_uses_RF = 0;
498 fInfo.SIM_uses_GB = useGB;
499 fInfo.SIM_uses_EAM = useEAM;
500
501 excl = Exclude::getArray();
502
503 #ifdef IS_MPI
504 n_global = mpiSim->getTotAtoms();
505 #else
506 n_global = n_atoms;
507 #endif
508
509 isError = 0;
510
511 setFsimulation( &fInfo, &n_global, &n_atoms, identArray, &n_exclude, excl,
512 &nGlobalExcludes, globalExcludes, molMembershipArray,
513 &isError );
514
515 if( isError ){
516
517 sprintf( painCave.errMsg,
518 "There was an error setting the simulation information in fortran.\n" );
519 painCave.isFatal = 1;
520 simError();
521 }
522
523 #ifdef IS_MPI
524 sprintf( checkPointMsg,
525 "succesfully sent the simulation information to fortran.\n");
526 MPIcheckPoint();
527 #endif // is_mpi
528
529 this->ndf = this->getNDF();
530 this->ndfRaw = this->getNDFraw();
531 this->ndfTrans = this->getNDFtranslational();
532 }
533
534 void SimInfo::setDefaultRcut( double theRcut ){
535
536 haveRcut = 1;
537 rCut = theRcut;
538
539 ( rCut > ecr )? rList = rCut + 1.0: rList = ecr + 1.0;
540
541 notifyFortranCutOffs( &rCut, &rList, &ecr, &est );
542 }
543
544 void SimInfo::setDefaultEcr( double theEcr ){
545
546 haveEcr = 1;
547 ecr = theEcr;
548
549 ( rCut > ecr )? rList = rCut + 1.0: rList = ecr + 1.0;
550
551 notifyFortranCutOffs( &rCut, &rList, &ecr, &est );
552 }
553
554 void SimInfo::setDefaultEcr( double theEcr, double theEst ){
555
556 est = theEst;
557 setDefaultEcr( theEcr );
558 }
559
560
561 void SimInfo::checkCutOffs( void ){
562
563 if( boxIsInit ){
564
565 //we need to check cutOffs against the box
566
567 if( rCut > maxCutoff ){
568 sprintf( painCave.errMsg,
569 "Box size is too small for the long range cutoff radius, "
570 "%G, at time %G\n"
571 " [ %G %G %G ]\n"
572 " [ %G %G %G ]\n"
573 " [ %G %G %G ]\n",
574 rCut, currentTime,
575 Hmat[0][0], Hmat[0][1], Hmat[0][2],
576 Hmat[1][0], Hmat[1][1], Hmat[1][2],
577 Hmat[2][0], Hmat[2][1], Hmat[2][2]);
578 painCave.isFatal = 1;
579 simError();
580 }
581
582 if( haveEcr ){
583 if( ecr > maxCutoff ){
584 sprintf( painCave.errMsg,
585 "Box size is too small for the electrostatic cutoff radius, "
586 "%G, at time %G\n"
587 " [ %G %G %G ]\n"
588 " [ %G %G %G ]\n"
589 " [ %G %G %G ]\n",
590 ecr, currentTime,
591 Hmat[0][0], Hmat[0][1], Hmat[0][2],
592 Hmat[1][0], Hmat[1][1], Hmat[1][2],
593 Hmat[2][0], Hmat[2][1], Hmat[2][2]);
594 painCave.isFatal = 1;
595 simError();
596 }
597 }
598 } else {
599 // initialize this stuff before using it, OK?
600 sprintf( painCave.errMsg,
601 "Trying to check cutoffs without a box. Be smarter.\n" );
602 painCave.isFatal = 1;
603 simError();
604 }
605
606 }
607
608 void SimInfo::addProperty(GenericData* prop){
609
610 map<string, GenericData*>::iterator result;
611 result = properties.find(prop->getID());
612
613 //we can't simply use properties[prop->getID()] = prop,
614 //it will cause memory leak if we already contain a propery which has the same name of prop
615
616 if(result != properties.end()){
617
618 delete (*result).second;
619 (*result).second = prop;
620
621 }
622 else{
623
624 properties[prop->getID()] = prop;
625
626 }
627
628 }
629
630 GenericData* SimInfo::getProperty(const string& propName){
631
632 map<string, GenericData*>::iterator result;
633
634 //string lowerCaseName = ();
635
636 result = properties.find(propName);
637
638 if(result != properties.end())
639 return (*result).second;
640 else
641 return NULL;
642 }
643
644 vector<GenericData*> SimInfo::getProperties(){
645
646 vector<GenericData*> result;
647 map<string, GenericData*>::iterator i;
648
649 for(i = properties.begin(); i != properties.end(); i++)
650 result.push_back((*i).second);
651
652 return result;
653 }
654
655 double SimInfo::matTrace3(double m[3][3]){
656 double trace;
657 trace = m[0][0] + m[1][1] + m[2][2];
658
659 return trace;
660 }