ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/trunk/OOPSE/libmdtools/SimInfo.cpp
(Generate patch)

Comparing trunk/OOPSE/libmdtools/SimInfo.cpp (file contents):
Revision 393 by mmeineke, Mon Mar 24 18:33:51 2003 UTC vs.
Revision 1031 by tim, Fri Feb 6 18:58:06 2004 UTC

# Line 1 | Line 1
1 < #include <cstdlib>
2 < #include <cstring>
1 > #include <stdlib.h>
2 > #include <string.h>
3 > #include <math.h>
4  
5 + #include <iostream>
6 + using namespace std;
7  
8   #include "SimInfo.hpp"
9   #define __C
# Line 9 | Line 12 | SimInfo* currentInfo;
12  
13   #include "fortranWrappers.hpp"
14  
15 + #ifdef IS_MPI
16 + #include "mpiSimulation.hpp"
17 + #endif
18 +
19 + inline double roundMe( double x ){
20 +  return ( x >= 0 ) ? floor( x + 0.5 ) : ceil( x - 0.5 );
21 + }
22 +          
23 + inline double min( double a, double b ){
24 +  return (a < b ) ? a : b;
25 + }
26 +
27   SimInfo* currentInfo;
28  
29   SimInfo::SimInfo(){
30    excludes = NULL;
31    n_constraints = 0;
32 +  nZconstraints = 0;
33    n_oriented = 0;
34    n_dipoles = 0;
35 +  ndf = 0;
36 +  ndfRaw = 0;
37 +  nZconstraints = 0;
38    the_integrator = NULL;
39    setTemp = 0;
40    thermalTime = 0.0;
41 +  currentTime = 0.0;
42 +  rCut = 0.0;
43 +  ecr = 0.0;
44 +  est = 0.0;
45  
46 +  haveRcut = 0;
47 +  haveEcr = 0;
48 +  boxIsInit = 0;
49 +  
50 +  resetTime = 1e99;
51 +
52 +  orthoTolerance = 1E-6;
53 +  useInitXSstate = true;
54 +
55    usePBC = 0;
56    useLJ = 0;
57    useSticky = 0;
58 <  useDipole = 0;
58 >  useCharges = 0;
59 >  useDipoles = 0;
60    useReactionField = 0;
61    useGB = 0;
62    useEAM = 0;
63  
64 +  myConfiguration = new SimState();
65  
66 +  has_minimizer = false;
67 +  the_minimizer =NULL;
68  
69    wrapMeSimInfo( this );
70 + }
71 +
72 +
73 + SimInfo::~SimInfo(){
74 +
75 +  delete myConfiguration;
76 +
77 +  map<string, GenericData*>::iterator i;
78 +  
79 +  for(i = properties.begin(); i != properties.end(); i++)
80 +    delete (*i).second;
81 +    
82 + }
83 +
84 + void SimInfo::setBox(double newBox[3]) {
85 +  
86 +  int i, j;
87 +  double tempMat[3][3];
88 +
89 +  for(i=0; i<3; i++)
90 +    for (j=0; j<3; j++) tempMat[i][j] = 0.0;;
91 +
92 +  tempMat[0][0] = newBox[0];
93 +  tempMat[1][1] = newBox[1];
94 +  tempMat[2][2] = newBox[2];
95 +
96 +  setBoxM( tempMat );
97 +
98 + }
99 +
100 + void SimInfo::setBoxM( double theBox[3][3] ){
101 +  
102 +  int i, j;
103 +  double FortranHmat[9]; // to preserve compatibility with Fortran the
104 +                         // ordering in the array is as follows:
105 +                         // [ 0 3 6 ]
106 +                         // [ 1 4 7 ]
107 +                         // [ 2 5 8 ]
108 +  double FortranHmatInv[9]; // the inverted Hmat (for Fortran);
109 +
110 +  if( !boxIsInit ) boxIsInit = 1;
111 +
112 +  for(i=0; i < 3; i++)
113 +    for (j=0; j < 3; j++) Hmat[i][j] = theBox[i][j];
114 +  
115 +  calcBoxL();
116 +  calcHmatInv();
117 +
118 +  for(i=0; i < 3; i++) {
119 +    for (j=0; j < 3; j++) {
120 +      FortranHmat[3*j + i] = Hmat[i][j];
121 +      FortranHmatInv[3*j + i] = HmatInv[i][j];
122 +    }
123 +  }
124 +
125 +  setFortranBoxSize(FortranHmat, FortranHmatInv, &orthoRhombic);
126 +
127 + }
128 +
129 +
130 + void SimInfo::getBoxM (double theBox[3][3]) {
131 +
132 +  int i, j;
133 +  for(i=0; i<3; i++)
134 +    for (j=0; j<3; j++) theBox[i][j] = Hmat[i][j];
135 + }
136 +
137 +
138 + void SimInfo::scaleBox(double scale) {
139 +  double theBox[3][3];
140 +  int i, j;
141 +
142 +  // cerr << "Scaling box by " << scale << "\n";
143 +
144 +  for(i=0; i<3; i++)
145 +    for (j=0; j<3; j++) theBox[i][j] = Hmat[i][j]*scale;
146 +
147 +  setBoxM(theBox);
148 +
149 + }
150 +
151 + void SimInfo::calcHmatInv( void ) {
152 +  
153 +  int oldOrtho;
154 +  int i,j;
155 +  double smallDiag;
156 +  double tol;
157 +  double sanity[3][3];
158 +
159 +  invertMat3( Hmat, HmatInv );
160 +
161 +  // check to see if Hmat is orthorhombic
162 +  
163 +  oldOrtho = orthoRhombic;
164 +
165 +  smallDiag = fabs(Hmat[0][0]);
166 +  if(smallDiag > fabs(Hmat[1][1])) smallDiag = fabs(Hmat[1][1]);
167 +  if(smallDiag > fabs(Hmat[2][2])) smallDiag = fabs(Hmat[2][2]);
168 +  tol = smallDiag * orthoTolerance;
169 +
170 +  orthoRhombic = 1;
171 +  
172 +  for (i = 0; i < 3; i++ ) {
173 +    for (j = 0 ; j < 3; j++) {
174 +      if (i != j) {
175 +        if (orthoRhombic) {
176 +          if ( fabs(Hmat[i][j]) >= tol) orthoRhombic = 0;
177 +        }        
178 +      }
179 +    }
180 +  }
181 +
182 +  if( oldOrtho != orthoRhombic ){
183 +    
184 +    if( orthoRhombic ){
185 +      sprintf( painCave.errMsg,
186 +               "Hmat is switching from Non-Orthorhombic to Orthorhombic Box.\n"
187 +               "\tIf this is a bad thing, change the orthoBoxTolerance\n"
188 +               "\tvariable ( currently set to %G ).\n",
189 +               orthoTolerance);
190 +      simError();
191 +    }
192 +    else {
193 +      sprintf( painCave.errMsg,
194 +               "Hmat is switching from Orthorhombic to Non-Orthorhombic Box.\n"
195 +               "\tIf this is a bad thing, change the orthoBoxTolerance\n"
196 +               "\tvariable ( currently set to %G ).\n",
197 +               orthoTolerance);
198 +      simError();
199 +    }
200 +  }
201 + }
202 +
203 + double SimInfo::matDet3(double a[3][3]) {
204 +  int i, j, k;
205 +  double determinant;
206 +
207 +  determinant = 0.0;
208 +
209 +  for(i = 0; i < 3; i++) {
210 +    j = (i+1)%3;
211 +    k = (i+2)%3;
212 +
213 +    determinant += a[0][i] * (a[1][j]*a[2][k] - a[1][k]*a[2][j]);
214 +  }
215 +
216 +  return determinant;
217 + }
218 +
219 + void SimInfo::invertMat3(double a[3][3], double b[3][3]) {
220 +  
221 +  int  i, j, k, l, m, n;
222 +  double determinant;
223 +
224 +  determinant = matDet3( a );
225 +
226 +  if (determinant == 0.0) {
227 +    sprintf( painCave.errMsg,
228 +             "Can't invert a matrix with a zero determinant!\n");
229 +    painCave.isFatal = 1;
230 +    simError();
231 +  }
232 +
233 +  for (i=0; i < 3; i++) {
234 +    j = (i+1)%3;
235 +    k = (i+2)%3;
236 +    for(l = 0; l < 3; l++) {
237 +      m = (l+1)%3;
238 +      n = (l+2)%3;
239 +      
240 +      b[l][i] = (a[j][m]*a[k][n] - a[j][n]*a[k][m]) / determinant;
241 +    }
242 +  }
243 + }
244 +
245 + void SimInfo::matMul3(double a[3][3], double b[3][3], double c[3][3]) {
246 +  double r00, r01, r02, r10, r11, r12, r20, r21, r22;
247 +
248 +  r00 = a[0][0]*b[0][0] + a[0][1]*b[1][0] + a[0][2]*b[2][0];
249 +  r01 = a[0][0]*b[0][1] + a[0][1]*b[1][1] + a[0][2]*b[2][1];
250 +  r02 = a[0][0]*b[0][2] + a[0][1]*b[1][2] + a[0][2]*b[2][2];
251 +  
252 +  r10 = a[1][0]*b[0][0] + a[1][1]*b[1][0] + a[1][2]*b[2][0];
253 +  r11 = a[1][0]*b[0][1] + a[1][1]*b[1][1] + a[1][2]*b[2][1];
254 +  r12 = a[1][0]*b[0][2] + a[1][1]*b[1][2] + a[1][2]*b[2][2];
255 +  
256 +  r20 = a[2][0]*b[0][0] + a[2][1]*b[1][0] + a[2][2]*b[2][0];
257 +  r21 = a[2][0]*b[0][1] + a[2][1]*b[1][1] + a[2][2]*b[2][1];
258 +  r22 = a[2][0]*b[0][2] + a[2][1]*b[1][2] + a[2][2]*b[2][2];
259 +  
260 +  c[0][0] = r00; c[0][1] = r01; c[0][2] = r02;
261 +  c[1][0] = r10; c[1][1] = r11; c[1][2] = r12;
262 +  c[2][0] = r20; c[2][1] = r21; c[2][2] = r22;
263 + }
264 +
265 + void SimInfo::matVecMul3(double m[3][3], double inVec[3], double outVec[3]) {
266 +  double a0, a1, a2;
267 +
268 +  a0 = inVec[0];  a1 = inVec[1];  a2 = inVec[2];
269 +
270 +  outVec[0] = m[0][0]*a0 + m[0][1]*a1 + m[0][2]*a2;
271 +  outVec[1] = m[1][0]*a0 + m[1][1]*a1 + m[1][2]*a2;
272 +  outVec[2] = m[2][0]*a0 + m[2][1]*a1 + m[2][2]*a2;
273 + }
274 +
275 + void SimInfo::transposeMat3(double in[3][3], double out[3][3]) {
276 +  double temp[3][3];
277 +  int i, j;
278 +
279 +  for (i = 0; i < 3; i++) {
280 +    for (j = 0; j < 3; j++) {
281 +      temp[j][i] = in[i][j];
282 +    }
283 +  }
284 +  for (i = 0; i < 3; i++) {
285 +    for (j = 0; j < 3; j++) {
286 +      out[i][j] = temp[i][j];
287 +    }
288 +  }
289 + }
290 +  
291 + void SimInfo::printMat3(double A[3][3] ){
292 +
293 +  std::cerr
294 +            << "[ " << A[0][0] << ", " << A[0][1] << ", " << A[0][2] << " ]\n"
295 +            << "[ " << A[1][0] << ", " << A[1][1] << ", " << A[1][2] << " ]\n"
296 +            << "[ " << A[2][0] << ", " << A[2][1] << ", " << A[2][2] << " ]\n";
297 + }
298 +
299 + void SimInfo::printMat9(double A[9] ){
300 +
301 +  std::cerr
302 +            << "[ " << A[0] << ", " << A[1] << ", " << A[2] << " ]\n"
303 +            << "[ " << A[3] << ", " << A[4] << ", " << A[5] << " ]\n"
304 +            << "[ " << A[6] << ", " << A[7] << ", " << A[8] << " ]\n";
305 + }
306 +
307 +
308 + void SimInfo::crossProduct3(double a[3],double b[3], double out[3]){
309 +
310 +      out[0] = a[1] * b[2] - a[2] * b[1];
311 +      out[1] = a[2] * b[0] - a[0] * b[2] ;
312 +      out[2] = a[0] * b[1] - a[1] * b[0];
313 +      
314 + }
315 +
316 + double SimInfo::dotProduct3(double a[3], double b[3]){
317 +  return a[0]*b[0] + a[1]*b[1]+ a[2]*b[2];
318 + }
319 +
320 + double SimInfo::length3(double a[3]){
321 +  return sqrt(a[0]*a[0] + a[1]*a[1] + a[2]*a[2]);
322 + }
323 +
324 + void SimInfo::calcBoxL( void ){
325 +
326 +  double dx, dy, dz, dsq;
327 +
328 +  // boxVol = Determinant of Hmat
329 +
330 +  boxVol = matDet3( Hmat );
331 +
332 +  // boxLx
333 +  
334 +  dx = Hmat[0][0]; dy = Hmat[1][0]; dz = Hmat[2][0];
335 +  dsq = dx*dx + dy*dy + dz*dz;
336 +  boxL[0] = sqrt( dsq );
337 +  //maxCutoff = 0.5 * boxL[0];
338 +
339 +  // boxLy
340 +  
341 +  dx = Hmat[0][1]; dy = Hmat[1][1]; dz = Hmat[2][1];
342 +  dsq = dx*dx + dy*dy + dz*dz;
343 +  boxL[1] = sqrt( dsq );
344 +  //if( (0.5 * boxL[1]) < maxCutoff ) maxCutoff = 0.5 * boxL[1];
345 +
346 +
347 +  // boxLz
348 +  
349 +  dx = Hmat[0][2]; dy = Hmat[1][2]; dz = Hmat[2][2];
350 +  dsq = dx*dx + dy*dy + dz*dz;
351 +  boxL[2] = sqrt( dsq );
352 +  //if( (0.5 * boxL[2]) < maxCutoff ) maxCutoff = 0.5 * boxL[2];
353 +
354 +  //calculate the max cutoff
355 +  maxCutoff =  calcMaxCutOff();
356 +  
357 +  checkCutOffs();
358 +
359   }
360  
361 +
362 + double SimInfo::calcMaxCutOff(){
363 +
364 +  double ri[3], rj[3], rk[3];
365 +  double rij[3], rjk[3], rki[3];
366 +  double minDist;
367 +
368 +  ri[0] = Hmat[0][0];
369 +  ri[1] = Hmat[1][0];
370 +  ri[2] = Hmat[2][0];
371 +
372 +  rj[0] = Hmat[0][1];
373 +  rj[1] = Hmat[1][1];
374 +  rj[2] = Hmat[2][1];
375 +
376 +  rk[0] = Hmat[0][2];
377 +  rk[1] = Hmat[1][2];
378 +  rk[2] = Hmat[2][2];
379 +  
380 +  crossProduct3(ri,rj, rij);
381 +  distXY = dotProduct3(rk,rij) / length3(rij);
382 +
383 +  crossProduct3(rj,rk, rjk);
384 +  distYZ = dotProduct3(ri,rjk) / length3(rjk);
385 +
386 +  crossProduct3(rk,ri, rki);
387 +  distZX = dotProduct3(rj,rki) / length3(rki);
388 +
389 +  minDist = min(min(distXY, distYZ), distZX);
390 +  return minDist/2;
391 +  
392 + }
393 +
394 + void SimInfo::wrapVector( double thePos[3] ){
395 +
396 +  int i;
397 +  double scaled[3];
398 +
399 +  if( !orthoRhombic ){
400 +    // calc the scaled coordinates.
401 +  
402 +
403 +    matVecMul3(HmatInv, thePos, scaled);
404 +    
405 +    for(i=0; i<3; i++)
406 +      scaled[i] -= roundMe(scaled[i]);
407 +    
408 +    // calc the wrapped real coordinates from the wrapped scaled coordinates
409 +    
410 +    matVecMul3(Hmat, scaled, thePos);
411 +
412 +  }
413 +  else{
414 +    // calc the scaled coordinates.
415 +    
416 +    for(i=0; i<3; i++)
417 +      scaled[i] = thePos[i]*HmatInv[i][i];
418 +    
419 +    // wrap the scaled coordinates
420 +    
421 +    for(i=0; i<3; i++)
422 +      scaled[i] -= roundMe(scaled[i]);
423 +    
424 +    // calc the wrapped real coordinates from the wrapped scaled coordinates
425 +    
426 +    for(i=0; i<3; i++)
427 +      thePos[i] = scaled[i]*Hmat[i][i];
428 +  }
429 +    
430 + }
431 +
432 +
433 + int SimInfo::getNDF(){
434 +  int ndf_local;
435 +  
436 +  ndf_local = 3 * n_atoms + 3 * n_oriented - n_constraints;
437 +
438 + #ifdef IS_MPI
439 +  MPI_Allreduce(&ndf_local,&ndf,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
440 + #else
441 +  ndf = ndf_local;
442 + #endif
443 +
444 +  ndf = ndf - 3 - nZconstraints;
445 +
446 +  return ndf;
447 + }
448 +
449 + int SimInfo::getNDFraw() {
450 +  int ndfRaw_local;
451 +
452 +  // Raw degrees of freedom that we have to set
453 +  ndfRaw_local = 3 * n_atoms + 3 * n_oriented;
454 +  
455 + #ifdef IS_MPI
456 +  MPI_Allreduce(&ndfRaw_local,&ndfRaw,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
457 + #else
458 +  ndfRaw = ndfRaw_local;
459 + #endif
460 +
461 +  return ndfRaw;
462 + }
463 +
464 + int SimInfo::getNDFtranslational() {
465 +  int ndfTrans_local;
466 +
467 +  ndfTrans_local = 3 * n_atoms - n_constraints;
468 +
469 + #ifdef IS_MPI
470 +  MPI_Allreduce(&ndfTrans_local,&ndfTrans,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
471 + #else
472 +  ndfTrans = ndfTrans_local;
473 + #endif
474 +
475 +  ndfTrans = ndfTrans - 3 - nZconstraints;
476 +
477 +  return ndfTrans;
478 + }
479 +
480   void SimInfo::refreshSim(){
481  
482    simtype fInfo;
483    int isError;
484 +  int n_global;
485 +  int* excl;
486  
487 <  fInfo.box[0] = box_x;
42 <  fInfo.box[1] = box_y;
43 <  fInfo.box[2] = box_z;
487 >  fInfo.dielect = 0.0;
488  
489 <  fInfo.rlist = rList;
490 <  fInfo.rcut = rCut;
491 <  fInfo.rrf = rRF;
48 <  fInfo.rt = 0.95 * rRF;
49 <  fInfo.dielect = dielectric;
50 <
489 >  if( useDipoles ){
490 >    if( useReactionField )fInfo.dielect = dielectric;
491 >  }
492  
493    fInfo.SIM_uses_PBC = usePBC;
494 +  //fInfo.SIM_uses_LJ = 0;
495    fInfo.SIM_uses_LJ = useLJ;
496    fInfo.SIM_uses_sticky = useSticky;
497 <  fInfo.SIM_uses_dipoles = 0;
498 <  //  fInfo.SIM_uses_dipoles = useDipole;
499 <  fInfo.SIM_uses_RF = 0;
500 <  //  fInfo.SIM_uses_RF = useReactionField;
497 >  //fInfo.SIM_uses_sticky = 0;
498 >  fInfo.SIM_uses_charges = useCharges;
499 >  fInfo.SIM_uses_dipoles = useDipoles;
500 >  //fInfo.SIM_uses_dipoles = 0;
501 >  fInfo.SIM_uses_RF = useReactionField;
502 >  //fInfo.SIM_uses_RF = 0;
503    fInfo.SIM_uses_GB = useGB;
504    fInfo.SIM_uses_EAM = useEAM;
505  
506 +  excl = Exclude::getArray();
507  
508 + #ifdef IS_MPI
509 +  n_global = mpiSim->getTotAtoms();
510 + #else
511 +  n_global = n_atoms;
512 + #endif
513 +
514    isError = 0;
515  
516 <  fInfo;
517 <  n_atoms;
518 <  identArray;
68 <  n_exclude;
69 <  excludes;
70 <  nGlobalExcludes;
71 <  globalExcludes;
72 <  isError;
516 >  setFsimulation( &fInfo, &n_global, &n_atoms, identArray, &n_exclude, excl,
517 >                  &nGlobalExcludes, globalExcludes, molMembershipArray,
518 >                  &isError );
519  
74  setFsimulation( &fInfo, &n_atoms, identArray, &n_exclude, excludes, &nGlobalExcludes, globalExcludes, &isError );
75
520    if( isError ){
521  
522      sprintf( painCave.errMsg,
# Line 86 | Line 530 | void SimInfo::refreshSim(){
530             "succesfully sent the simulation information to fortran.\n");
531    MPIcheckPoint();
532   #endif // is_mpi
533 +
534 +  this->ndf = this->getNDF();
535 +  this->ndfRaw = this->getNDFraw();
536 +  this->ndfTrans = this->getNDFtranslational();
537   }
538  
539 + void SimInfo::setDefaultRcut( double theRcut ){
540 +
541 +  haveRcut = 1;
542 +  rCut = theRcut;
543 +
544 +  ( rCut > ecr )? rList = rCut + 1.0: rList = ecr + 1.0;
545 +
546 +  notifyFortranCutOffs( &rCut, &rList, &ecr, &est );
547 + }
548 +
549 + void SimInfo::setDefaultEcr( double theEcr ){
550 +
551 +  haveEcr = 1;
552 +  ecr = theEcr;
553 +  
554 +  ( rCut > ecr )? rList = rCut + 1.0: rList = ecr + 1.0;
555 +
556 +  notifyFortranCutOffs( &rCut, &rList, &ecr, &est );
557 + }
558 +
559 + void SimInfo::setDefaultEcr( double theEcr, double theEst ){
560 +
561 +  est = theEst;
562 +  setDefaultEcr( theEcr );
563 + }
564 +
565 +
566 + void SimInfo::checkCutOffs( void ){
567 +  
568 +  if( boxIsInit ){
569 +    
570 +    //we need to check cutOffs against the box
571 +    
572 +    if( rCut > maxCutoff ){
573 +      sprintf( painCave.errMsg,
574 +               "Box size is too small for the long range cutoff radius, "
575 +               "%G, at time %G\n"
576 +               "\t[ %G %G %G ]\n"
577 +               "\t[ %G %G %G ]\n"
578 +               "\t[ %G %G %G ]\n",
579 +               rCut, currentTime,
580 +               Hmat[0][0], Hmat[0][1], Hmat[0][2],
581 +               Hmat[1][0], Hmat[1][1], Hmat[1][2],
582 +               Hmat[2][0], Hmat[2][1], Hmat[2][2]);
583 +      painCave.isFatal = 1;
584 +      simError();
585 +    }
586 +    
587 +    if( haveEcr ){
588 +      if( ecr > maxCutoff ){
589 +        sprintf( painCave.errMsg,
590 +                 "Box size is too small for the electrostatic cutoff radius, "
591 +                 "%G, at time %G\n"
592 +                 "\t[ %G %G %G ]\n"
593 +                 "\t[ %G %G %G ]\n"
594 +                 "\t[ %G %G %G ]\n",
595 +                 ecr, currentTime,
596 +                 Hmat[0][0], Hmat[0][1], Hmat[0][2],
597 +                 Hmat[1][0], Hmat[1][1], Hmat[1][2],
598 +                 Hmat[2][0], Hmat[2][1], Hmat[2][2]);
599 +        painCave.isFatal = 1;
600 +        simError();
601 +      }
602 +    }
603 +  } else {
604 +    // initialize this stuff before using it, OK?
605 +    sprintf( painCave.errMsg,
606 +             "Trying to check cutoffs without a box.\n"
607 +             "\tOOPSE should have better programmers than that.\n" );
608 +    painCave.isFatal = 1;
609 +    simError();      
610 +  }
611 +  
612 + }
613 +
614 + void SimInfo::addProperty(GenericData* prop){
615 +
616 +  map<string, GenericData*>::iterator result;
617 +  result = properties.find(prop->getID());
618 +  
619 +  //we can't simply use  properties[prop->getID()] = prop,
620 +  //it will cause memory leak if we already contain a propery which has the same name of prop
621 +  
622 +  if(result != properties.end()){
623 +    
624 +    delete (*result).second;
625 +    (*result).second = prop;
626 +      
627 +  }
628 +  else{
629 +
630 +    properties[prop->getID()] = prop;
631 +
632 +  }
633 +    
634 + }
635 +
636 + GenericData* SimInfo::getProperty(const string& propName){
637 +
638 +  map<string, GenericData*>::iterator result;
639 +  
640 +  //string lowerCaseName = ();
641 +  
642 +  result = properties.find(propName);
643 +  
644 +  if(result != properties.end())
645 +    return (*result).second;  
646 +  else  
647 +    return NULL;  
648 + }
649 +
650 + vector<GenericData*> SimInfo::getProperties(){
651 +
652 +  vector<GenericData*> result;
653 +  map<string, GenericData*>::iterator i;
654 +  
655 +  for(i = properties.begin(); i != properties.end(); i++)
656 +    result.push_back((*i).second);
657 +    
658 +  return result;
659 + }
660 +
661 + double SimInfo::matTrace3(double m[3][3]){
662 +  double trace;
663 +  trace = m[0][0] + m[1][1] + m[2][2];
664 +
665 +  return trace;
666 + }

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines