ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/trunk/OOPSE/libmdtools/SimInfo.cpp
(Generate patch)

Comparing trunk/OOPSE/libmdtools/SimInfo.cpp (file contents):
Revision 393 by mmeineke, Mon Mar 24 18:33:51 2003 UTC vs.
Revision 874 by mmeineke, Fri Nov 21 20:10:02 2003 UTC

# Line 1 | Line 1
1 < #include <cstdlib>
2 < #include <cstring>
1 > #include <stdlib.h>
2 > #include <string.h>
3 > #include <math.h>
4  
5 + #include <iostream>
6 + using namespace std;
7  
8   #include "SimInfo.hpp"
9   #define __C
# Line 9 | Line 12 | SimInfo* currentInfo;
12  
13   #include "fortranWrappers.hpp"
14  
15 + #ifdef IS_MPI
16 + #include "mpiSimulation.hpp"
17 + #endif
18 +
19 + inline double roundMe( double x ){
20 +  return ( x >= 0 ) ? floor( x + 0.5 ) : ceil( x - 0.5 );
21 + }
22 +          
23 + inline double min( double a, double b ){
24 +  return (a < b ) ? a : b;
25 + }
26 +
27   SimInfo* currentInfo;
28  
29   SimInfo::SimInfo(){
30    excludes = NULL;
31    n_constraints = 0;
32 +  nZconstraints = 0;
33    n_oriented = 0;
34    n_dipoles = 0;
35 +  ndf = 0;
36 +  ndfRaw = 0;
37 +  nZconstraints = 0;
38    the_integrator = NULL;
39    setTemp = 0;
40    thermalTime = 0.0;
41 +  currentTime = 0.0;
42 +  rCut = 0.0;
43 +  ecr = 0.0;
44 +  est = 0.0;
45  
46 +  haveRcut = 0;
47 +  haveEcr = 0;
48 +  boxIsInit = 0;
49 +  
50 +  resetTime = 1e99;
51 +
52 +  orthoTolerance = 1E-6;
53 +  useInitXSstate = true;
54 +
55    usePBC = 0;
56    useLJ = 0;
57    useSticky = 0;
# Line 28 | Line 60 | SimInfo::SimInfo(){
60    useGB = 0;
61    useEAM = 0;
62  
63 +  myConfiguration = new SimState();
64  
32
65    wrapMeSimInfo( this );
66 + }
67 +
68 +
69 + SimInfo::~SimInfo(){
70 +
71 +  delete myConfiguration;
72 +
73 +  map<string, GenericData*>::iterator i;
74 +  
75 +  for(i = properties.begin(); i != properties.end(); i++)
76 +    delete (*i).second;
77 +    
78 + }
79 +
80 + void SimInfo::setBox(double newBox[3]) {
81 +  
82 +  int i, j;
83 +  double tempMat[3][3];
84 +
85 +  for(i=0; i<3; i++)
86 +    for (j=0; j<3; j++) tempMat[i][j] = 0.0;;
87 +
88 +  tempMat[0][0] = newBox[0];
89 +  tempMat[1][1] = newBox[1];
90 +  tempMat[2][2] = newBox[2];
91 +
92 +  setBoxM( tempMat );
93 +
94 + }
95 +
96 + void SimInfo::setBoxM( double theBox[3][3] ){
97 +  
98 +  int i, j;
99 +  double FortranHmat[9]; // to preserve compatibility with Fortran the
100 +                         // ordering in the array is as follows:
101 +                         // [ 0 3 6 ]
102 +                         // [ 1 4 7 ]
103 +                         // [ 2 5 8 ]
104 +  double FortranHmatInv[9]; // the inverted Hmat (for Fortran);
105 +
106 +  if( !boxIsInit ) boxIsInit = 1;
107 +
108 +  for(i=0; i < 3; i++)
109 +    for (j=0; j < 3; j++) Hmat[i][j] = theBox[i][j];
110 +  
111 +  calcBoxL();
112 +  calcHmatInv();
113 +
114 +  for(i=0; i < 3; i++) {
115 +    for (j=0; j < 3; j++) {
116 +      FortranHmat[3*j + i] = Hmat[i][j];
117 +      FortranHmatInv[3*j + i] = HmatInv[i][j];
118 +    }
119 +  }
120 +
121 +  setFortranBoxSize(FortranHmat, FortranHmatInv, &orthoRhombic);
122 +
123 + }
124 +
125 +
126 + void SimInfo::getBoxM (double theBox[3][3]) {
127 +
128 +  int i, j;
129 +  for(i=0; i<3; i++)
130 +    for (j=0; j<3; j++) theBox[i][j] = Hmat[i][j];
131 + }
132 +
133 +
134 + void SimInfo::scaleBox(double scale) {
135 +  double theBox[3][3];
136 +  int i, j;
137 +
138 +  // cerr << "Scaling box by " << scale << "\n";
139 +
140 +  for(i=0; i<3; i++)
141 +    for (j=0; j<3; j++) theBox[i][j] = Hmat[i][j]*scale;
142 +
143 +  setBoxM(theBox);
144 +
145 + }
146 +
147 + void SimInfo::calcHmatInv( void ) {
148 +  
149 +  int oldOrtho;
150 +  int i,j;
151 +  double smallDiag;
152 +  double tol;
153 +  double sanity[3][3];
154 +
155 +  invertMat3( Hmat, HmatInv );
156 +
157 +  // check to see if Hmat is orthorhombic
158 +  
159 +  oldOrtho = orthoRhombic;
160 +
161 +  smallDiag = fabs(Hmat[0][0]);
162 +  if(smallDiag > fabs(Hmat[1][1])) smallDiag = fabs(Hmat[1][1]);
163 +  if(smallDiag > fabs(Hmat[2][2])) smallDiag = fabs(Hmat[2][2]);
164 +  tol = smallDiag * orthoTolerance;
165 +
166 +  orthoRhombic = 1;
167 +  
168 +  for (i = 0; i < 3; i++ ) {
169 +    for (j = 0 ; j < 3; j++) {
170 +      if (i != j) {
171 +        if (orthoRhombic) {
172 +          if ( fabs(Hmat[i][j]) >= tol) orthoRhombic = 0;
173 +        }        
174 +      }
175 +    }
176 +  }
177 +
178 +  if( oldOrtho != orthoRhombic ){
179 +    
180 +    if( orthoRhombic ){
181 +      sprintf( painCave.errMsg,
182 +               "Hmat is switching from Non-Orthorhombic to OrthoRhombic\n"
183 +               "       If this is a bad thing, change the orthoBoxTolerance( currently %G ).\n",
184 +               orthoTolerance);
185 +      simError();
186 +    }
187 +    else {
188 +      sprintf( painCave.errMsg,
189 +               "Hmat is switching from Orthorhombic to Non-OrthoRhombic\n"
190 +               "       If this is a bad thing, change the orthoBoxTolerance( currently %G ).\n",
191 +               orthoTolerance);
192 +      simError();
193 +    }
194 +  }
195 + }
196 +
197 + double SimInfo::matDet3(double a[3][3]) {
198 +  int i, j, k;
199 +  double determinant;
200 +
201 +  determinant = 0.0;
202 +
203 +  for(i = 0; i < 3; i++) {
204 +    j = (i+1)%3;
205 +    k = (i+2)%3;
206 +
207 +    determinant += a[0][i] * (a[1][j]*a[2][k] - a[1][k]*a[2][j]);
208 +  }
209 +
210 +  return determinant;
211 + }
212 +
213 + void SimInfo::invertMat3(double a[3][3], double b[3][3]) {
214 +  
215 +  int  i, j, k, l, m, n;
216 +  double determinant;
217 +
218 +  determinant = matDet3( a );
219 +
220 +  if (determinant == 0.0) {
221 +    sprintf( painCave.errMsg,
222 +             "Can't invert a matrix with a zero determinant!\n");
223 +    painCave.isFatal = 1;
224 +    simError();
225 +  }
226 +
227 +  for (i=0; i < 3; i++) {
228 +    j = (i+1)%3;
229 +    k = (i+2)%3;
230 +    for(l = 0; l < 3; l++) {
231 +      m = (l+1)%3;
232 +      n = (l+2)%3;
233 +      
234 +      b[l][i] = (a[j][m]*a[k][n] - a[j][n]*a[k][m]) / determinant;
235 +    }
236 +  }
237 + }
238 +
239 + void SimInfo::matMul3(double a[3][3], double b[3][3], double c[3][3]) {
240 +  double r00, r01, r02, r10, r11, r12, r20, r21, r22;
241 +
242 +  r00 = a[0][0]*b[0][0] + a[0][1]*b[1][0] + a[0][2]*b[2][0];
243 +  r01 = a[0][0]*b[0][1] + a[0][1]*b[1][1] + a[0][2]*b[2][1];
244 +  r02 = a[0][0]*b[0][2] + a[0][1]*b[1][2] + a[0][2]*b[2][2];
245 +  
246 +  r10 = a[1][0]*b[0][0] + a[1][1]*b[1][0] + a[1][2]*b[2][0];
247 +  r11 = a[1][0]*b[0][1] + a[1][1]*b[1][1] + a[1][2]*b[2][1];
248 +  r12 = a[1][0]*b[0][2] + a[1][1]*b[1][2] + a[1][2]*b[2][2];
249 +  
250 +  r20 = a[2][0]*b[0][0] + a[2][1]*b[1][0] + a[2][2]*b[2][0];
251 +  r21 = a[2][0]*b[0][1] + a[2][1]*b[1][1] + a[2][2]*b[2][1];
252 +  r22 = a[2][0]*b[0][2] + a[2][1]*b[1][2] + a[2][2]*b[2][2];
253 +  
254 +  c[0][0] = r00; c[0][1] = r01; c[0][2] = r02;
255 +  c[1][0] = r10; c[1][1] = r11; c[1][2] = r12;
256 +  c[2][0] = r20; c[2][1] = r21; c[2][2] = r22;
257 + }
258 +
259 + void SimInfo::matVecMul3(double m[3][3], double inVec[3], double outVec[3]) {
260 +  double a0, a1, a2;
261 +
262 +  a0 = inVec[0];  a1 = inVec[1];  a2 = inVec[2];
263 +
264 +  outVec[0] = m[0][0]*a0 + m[0][1]*a1 + m[0][2]*a2;
265 +  outVec[1] = m[1][0]*a0 + m[1][1]*a1 + m[1][2]*a2;
266 +  outVec[2] = m[2][0]*a0 + m[2][1]*a1 + m[2][2]*a2;
267 + }
268 +
269 + void SimInfo::transposeMat3(double in[3][3], double out[3][3]) {
270 +  double temp[3][3];
271 +  int i, j;
272 +
273 +  for (i = 0; i < 3; i++) {
274 +    for (j = 0; j < 3; j++) {
275 +      temp[j][i] = in[i][j];
276 +    }
277 +  }
278 +  for (i = 0; i < 3; i++) {
279 +    for (j = 0; j < 3; j++) {
280 +      out[i][j] = temp[i][j];
281 +    }
282 +  }
283 + }
284 +  
285 + void SimInfo::printMat3(double A[3][3] ){
286 +
287 +  std::cerr
288 +            << "[ " << A[0][0] << ", " << A[0][1] << ", " << A[0][2] << " ]\n"
289 +            << "[ " << A[1][0] << ", " << A[1][1] << ", " << A[1][2] << " ]\n"
290 +            << "[ " << A[2][0] << ", " << A[2][1] << ", " << A[2][2] << " ]\n";
291 + }
292 +
293 + void SimInfo::printMat9(double A[9] ){
294 +
295 +  std::cerr
296 +            << "[ " << A[0] << ", " << A[1] << ", " << A[2] << " ]\n"
297 +            << "[ " << A[3] << ", " << A[4] << ", " << A[5] << " ]\n"
298 +            << "[ " << A[6] << ", " << A[7] << ", " << A[8] << " ]\n";
299 + }
300 +
301 +
302 + void SimInfo::crossProduct3(double a[3],double b[3], double out[3]){
303 +
304 +      out[0] = a[1] * b[2] - a[2] * b[1];
305 +      out[1] = a[2] * b[0] - a[0] * b[2] ;
306 +      out[2] = a[0] * b[1] - a[1] * b[0];
307 +      
308 + }
309 +
310 + double SimInfo::dotProduct3(double a[3], double b[3]){
311 +  return a[0]*b[0] + a[1]*b[1]+ a[2]*b[2];
312 + }
313 +
314 + double SimInfo::length3(double a[3]){
315 +  return sqrt(a[0]*a[0] + a[1]*a[1] + a[2]*a[2]);
316 + }
317 +
318 + void SimInfo::calcBoxL( void ){
319 +
320 +  double dx, dy, dz, dsq;
321 +
322 +  // boxVol = Determinant of Hmat
323 +
324 +  boxVol = matDet3( Hmat );
325 +
326 +  // boxLx
327 +  
328 +  dx = Hmat[0][0]; dy = Hmat[1][0]; dz = Hmat[2][0];
329 +  dsq = dx*dx + dy*dy + dz*dz;
330 +  boxL[0] = sqrt( dsq );
331 +  //maxCutoff = 0.5 * boxL[0];
332 +
333 +  // boxLy
334 +  
335 +  dx = Hmat[0][1]; dy = Hmat[1][1]; dz = Hmat[2][1];
336 +  dsq = dx*dx + dy*dy + dz*dz;
337 +  boxL[1] = sqrt( dsq );
338 +  //if( (0.5 * boxL[1]) < maxCutoff ) maxCutoff = 0.5 * boxL[1];
339 +
340 +
341 +  // boxLz
342 +  
343 +  dx = Hmat[0][2]; dy = Hmat[1][2]; dz = Hmat[2][2];
344 +  dsq = dx*dx + dy*dy + dz*dz;
345 +  boxL[2] = sqrt( dsq );
346 +  //if( (0.5 * boxL[2]) < maxCutoff ) maxCutoff = 0.5 * boxL[2];
347 +
348 +  //calculate the max cutoff
349 +  maxCutoff =  calcMaxCutOff();
350 +  
351 +  checkCutOffs();
352 +
353   }
354  
355 +
356 + double SimInfo::calcMaxCutOff(){
357 +
358 +  double ri[3], rj[3], rk[3];
359 +  double rij[3], rjk[3], rki[3];
360 +  double minDist;
361 +
362 +  ri[0] = Hmat[0][0];
363 +  ri[1] = Hmat[1][0];
364 +  ri[2] = Hmat[2][0];
365 +
366 +  rj[0] = Hmat[0][1];
367 +  rj[1] = Hmat[1][1];
368 +  rj[2] = Hmat[2][1];
369 +
370 +  rk[0] = Hmat[0][2];
371 +  rk[1] = Hmat[1][2];
372 +  rk[2] = Hmat[2][2];
373 +  
374 +  crossProduct3(ri,rj, rij);
375 +  distXY = dotProduct3(rk,rij) / length3(rij);
376 +
377 +  crossProduct3(rj,rk, rjk);
378 +  distYZ = dotProduct3(ri,rjk) / length3(rjk);
379 +
380 +  crossProduct3(rk,ri, rki);
381 +  distZX = dotProduct3(rj,rki) / length3(rki);
382 +
383 +  minDist = min(min(distXY, distYZ), distZX);
384 +  return minDist/2;
385 +  
386 + }
387 +
388 + void SimInfo::wrapVector( double thePos[3] ){
389 +
390 +  int i;
391 +  double scaled[3];
392 +
393 +  if( !orthoRhombic ){
394 +    // calc the scaled coordinates.
395 +  
396 +
397 +    matVecMul3(HmatInv, thePos, scaled);
398 +    
399 +    for(i=0; i<3; i++)
400 +      scaled[i] -= roundMe(scaled[i]);
401 +    
402 +    // calc the wrapped real coordinates from the wrapped scaled coordinates
403 +    
404 +    matVecMul3(Hmat, scaled, thePos);
405 +
406 +  }
407 +  else{
408 +    // calc the scaled coordinates.
409 +    
410 +    for(i=0; i<3; i++)
411 +      scaled[i] = thePos[i]*HmatInv[i][i];
412 +    
413 +    // wrap the scaled coordinates
414 +    
415 +    for(i=0; i<3; i++)
416 +      scaled[i] -= roundMe(scaled[i]);
417 +    
418 +    // calc the wrapped real coordinates from the wrapped scaled coordinates
419 +    
420 +    for(i=0; i<3; i++)
421 +      thePos[i] = scaled[i]*Hmat[i][i];
422 +  }
423 +    
424 + }
425 +
426 +
427 + int SimInfo::getNDF(){
428 +  int ndf_local;
429 +  
430 +  ndf_local = 3 * n_atoms + 3 * n_oriented - n_constraints;
431 +
432 + #ifdef IS_MPI
433 +  MPI_Allreduce(&ndf_local,&ndf,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
434 + #else
435 +  ndf = ndf_local;
436 + #endif
437 +
438 +  ndf = ndf - 3 - nZconstraints;
439 +
440 +  return ndf;
441 + }
442 +
443 + int SimInfo::getNDFraw() {
444 +  int ndfRaw_local;
445 +
446 +  // Raw degrees of freedom that we have to set
447 +  ndfRaw_local = 3 * n_atoms + 3 * n_oriented;
448 +  
449 + #ifdef IS_MPI
450 +  MPI_Allreduce(&ndfRaw_local,&ndfRaw,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
451 + #else
452 +  ndfRaw = ndfRaw_local;
453 + #endif
454 +
455 +  return ndfRaw;
456 + }
457 +
458 + int SimInfo::getNDFtranslational() {
459 +  int ndfTrans_local;
460 +
461 +  ndfTrans_local = 3 * n_atoms - n_constraints;
462 +
463 + #ifdef IS_MPI
464 +  MPI_Allreduce(&ndfTrans_local,&ndfTrans,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
465 + #else
466 +  ndfTrans = ndfTrans_local;
467 + #endif
468 +
469 +  ndfTrans = ndfTrans - 3 - nZconstraints;
470 +
471 +  return ndfTrans;
472 + }
473 +
474   void SimInfo::refreshSim(){
475  
476    simtype fInfo;
477    int isError;
478 +  int n_global;
479 +  int* excl;
480  
481 <  fInfo.box[0] = box_x;
42 <  fInfo.box[1] = box_y;
43 <  fInfo.box[2] = box_z;
481 >  fInfo.dielect = 0.0;
482  
483 <  fInfo.rlist = rList;
484 <  fInfo.rcut = rCut;
485 <  fInfo.rrf = rRF;
48 <  fInfo.rt = 0.95 * rRF;
49 <  fInfo.dielect = dielectric;
50 <
483 >  if( useDipole ){
484 >    if( useReactionField )fInfo.dielect = dielectric;
485 >  }
486  
487    fInfo.SIM_uses_PBC = usePBC;
488 +  //fInfo.SIM_uses_LJ = 0;
489    fInfo.SIM_uses_LJ = useLJ;
490    fInfo.SIM_uses_sticky = useSticky;
491 <  fInfo.SIM_uses_dipoles = 0;
492 <  //  fInfo.SIM_uses_dipoles = useDipole;
491 >  //fInfo.SIM_uses_sticky = 0;
492 >  fInfo.SIM_uses_dipoles = useDipole;
493 >  //fInfo.SIM_uses_dipoles = 0;
494 >  //fInfo.SIM_uses_RF = useReactionField;
495    fInfo.SIM_uses_RF = 0;
58  //  fInfo.SIM_uses_RF = useReactionField;
496    fInfo.SIM_uses_GB = useGB;
497    fInfo.SIM_uses_EAM = useEAM;
498  
499 +  excl = Exclude::getArray();
500  
501 + #ifdef IS_MPI
502 +  n_global = mpiSim->getTotAtoms();
503 + #else
504 +  n_global = n_atoms;
505 + #endif
506 +
507    isError = 0;
508  
509 <  fInfo;
510 <  n_atoms;
511 <  identArray;
68 <  n_exclude;
69 <  excludes;
70 <  nGlobalExcludes;
71 <  globalExcludes;
72 <  isError;
509 >  setFsimulation( &fInfo, &n_global, &n_atoms, identArray, &n_exclude, excl,
510 >                  &nGlobalExcludes, globalExcludes, molMembershipArray,
511 >                  &isError );
512  
74  setFsimulation( &fInfo, &n_atoms, identArray, &n_exclude, excludes, &nGlobalExcludes, globalExcludes, &isError );
75
513    if( isError ){
514  
515      sprintf( painCave.errMsg,
# Line 86 | Line 523 | void SimInfo::refreshSim(){
523             "succesfully sent the simulation information to fortran.\n");
524    MPIcheckPoint();
525   #endif // is_mpi
526 +
527 +  this->ndf = this->getNDF();
528 +  this->ndfRaw = this->getNDFraw();
529 +  this->ndfTrans = this->getNDFtranslational();
530   }
531  
532 + void SimInfo::setDefaultRcut( double theRcut ){
533 +
534 +  haveRcut = 1;
535 +  rCut = theRcut;
536 +
537 +  ( rCut > ecr )? rList = rCut + 1.0: rList = ecr + 1.0;
538 +
539 +  notifyFortranCutOffs( &rCut, &rList, &ecr, &est );
540 + }
541 +
542 + void SimInfo::setDefaultEcr( double theEcr ){
543 +
544 +  haveEcr = 1;
545 +  ecr = theEcr;
546 +  
547 +  ( rCut > ecr )? rList = rCut + 1.0: rList = ecr + 1.0;
548 +
549 +  notifyFortranCutOffs( &rCut, &rList, &ecr, &est );
550 + }
551 +
552 + void SimInfo::setDefaultEcr( double theEcr, double theEst ){
553 +
554 +  est = theEst;
555 +  setDefaultEcr( theEcr );
556 + }
557 +
558 +
559 + void SimInfo::checkCutOffs( void ){
560 +  
561 +  if( boxIsInit ){
562 +    
563 +    //we need to check cutOffs against the box
564 +    
565 +    if( rCut > maxCutoff ){
566 +      sprintf( painCave.errMsg,
567 +               "Box size is too small for the long range cutoff radius, "
568 +               "%G, at time %G\n"
569 +               "  [ %G %G %G ]\n"
570 +               "  [ %G %G %G ]\n"
571 +               "  [ %G %G %G ]\n",
572 +               rCut, currentTime,
573 +               Hmat[0][0], Hmat[0][1], Hmat[0][2],
574 +               Hmat[1][0], Hmat[1][1], Hmat[1][2],
575 +               Hmat[2][0], Hmat[2][1], Hmat[2][2]);
576 +      painCave.isFatal = 1;
577 +      simError();
578 +    }
579 +    
580 +    if( haveEcr ){
581 +      if( ecr > maxCutoff ){
582 +        sprintf( painCave.errMsg,
583 +                 "Box size is too small for the electrostatic cutoff radius, "
584 +                 "%G, at time %G\n"
585 +                 "  [ %G %G %G ]\n"
586 +                 "  [ %G %G %G ]\n"
587 +                 "  [ %G %G %G ]\n",
588 +                 ecr, currentTime,
589 +                 Hmat[0][0], Hmat[0][1], Hmat[0][2],
590 +                 Hmat[1][0], Hmat[1][1], Hmat[1][2],
591 +                 Hmat[2][0], Hmat[2][1], Hmat[2][2]);
592 +        painCave.isFatal = 1;
593 +        simError();
594 +      }
595 +    }
596 +  } else {
597 +    // initialize this stuff before using it, OK?
598 +    sprintf( painCave.errMsg,
599 +             "Trying to check cutoffs without a box. Be smarter.\n" );
600 +    painCave.isFatal = 1;
601 +    simError();      
602 +  }
603 +  
604 + }
605 +
606 + void SimInfo::addProperty(GenericData* prop){
607 +
608 +  map<string, GenericData*>::iterator result;
609 +  result = properties.find(prop->getID());
610 +  
611 +  //we can't simply use  properties[prop->getID()] = prop,
612 +  //it will cause memory leak if we already contain a propery which has the same name of prop
613 +  
614 +  if(result != properties.end()){
615 +    
616 +    delete (*result).second;
617 +    (*result).second = prop;
618 +      
619 +  }
620 +  else{
621 +
622 +    properties[prop->getID()] = prop;
623 +
624 +  }
625 +    
626 + }
627 +
628 + GenericData* SimInfo::getProperty(const string& propName){
629 +
630 +  map<string, GenericData*>::iterator result;
631 +  
632 +  //string lowerCaseName = ();
633 +  
634 +  result = properties.find(propName);
635 +  
636 +  if(result != properties.end())
637 +    return (*result).second;  
638 +  else  
639 +    return NULL;  
640 + }
641 +
642 + vector<GenericData*> SimInfo::getProperties(){
643 +
644 +  vector<GenericData*> result;
645 +  map<string, GenericData*>::iterator i;
646 +  
647 +  for(i = properties.begin(); i != properties.end(); i++)
648 +    result.push_back((*i).second);
649 +    
650 +  return result;
651 + }
652 +
653 + double SimInfo::matTrace3(double m[3][3]){
654 +  double trace;
655 +  trace = m[0][0] + m[1][1] + m[2][2];
656 +
657 +  return trace;
658 + }

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines