ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/trunk/OOPSE/libmdtools/SimInfo.cpp
(Generate patch)

Comparing trunk/OOPSE/libmdtools/SimInfo.cpp (file contents):
Revision 393 by mmeineke, Mon Mar 24 18:33:51 2003 UTC vs.
Revision 999 by chrisfen, Fri Jan 30 15:01:09 2004 UTC

# Line 1 | Line 1
1 < #include <cstdlib>
2 < #include <cstring>
1 > #include <stdlib.h>
2 > #include <string.h>
3 > #include <math.h>
4  
5 + #include <iostream>
6 + using namespace std;
7  
8   #include "SimInfo.hpp"
9   #define __C
# Line 9 | Line 12 | SimInfo* currentInfo;
12  
13   #include "fortranWrappers.hpp"
14  
15 + #ifdef IS_MPI
16 + #include "mpiSimulation.hpp"
17 + #endif
18 +
19 + inline double roundMe( double x ){
20 +  return ( x >= 0 ) ? floor( x + 0.5 ) : ceil( x - 0.5 );
21 + }
22 +          
23 + inline double min( double a, double b ){
24 +  return (a < b ) ? a : b;
25 + }
26 +
27   SimInfo* currentInfo;
28  
29   SimInfo::SimInfo(){
30    excludes = NULL;
31    n_constraints = 0;
32 +  nZconstraints = 0;
33    n_oriented = 0;
34    n_dipoles = 0;
35 +  ndf = 0;
36 +  ndfRaw = 0;
37 +  nZconstraints = 0;
38    the_integrator = NULL;
39    setTemp = 0;
40    thermalTime = 0.0;
41 +  currentTime = 0.0;
42 +  rCut = 0.0;
43 +  ecr = 0.0;
44 +  est = 0.0;
45  
46 +  haveRcut = 0;
47 +  haveEcr = 0;
48 +  boxIsInit = 0;
49 +  
50 +  resetTime = 1e99;
51 +
52 +  orthoTolerance = 1E-6;
53 +  useInitXSstate = true;
54 +
55    usePBC = 0;
56    useLJ = 0;
57    useSticky = 0;
58 <  useDipole = 0;
58 >  useCharges = 0;
59 >  useDipoles = 0;
60    useReactionField = 0;
61    useGB = 0;
62    useEAM = 0;
63  
64 +  myConfiguration = new SimState();
65  
32
66    wrapMeSimInfo( this );
67   }
68  
69 +
70 + SimInfo::~SimInfo(){
71 +
72 +  delete myConfiguration;
73 +
74 +  map<string, GenericData*>::iterator i;
75 +  
76 +  for(i = properties.begin(); i != properties.end(); i++)
77 +    delete (*i).second;
78 +    
79 + }
80 +
81 + void SimInfo::setBox(double newBox[3]) {
82 +  
83 +  int i, j;
84 +  double tempMat[3][3];
85 +
86 +  for(i=0; i<3; i++)
87 +    for (j=0; j<3; j++) tempMat[i][j] = 0.0;;
88 +
89 +  tempMat[0][0] = newBox[0];
90 +  tempMat[1][1] = newBox[1];
91 +  tempMat[2][2] = newBox[2];
92 +
93 +  setBoxM( tempMat );
94 +
95 + }
96 +
97 + void SimInfo::setBoxM( double theBox[3][3] ){
98 +  
99 +  int i, j;
100 +  double FortranHmat[9]; // to preserve compatibility with Fortran the
101 +                         // ordering in the array is as follows:
102 +                         // [ 0 3 6 ]
103 +                         // [ 1 4 7 ]
104 +                         // [ 2 5 8 ]
105 +  double FortranHmatInv[9]; // the inverted Hmat (for Fortran);
106 +
107 +  if( !boxIsInit ) boxIsInit = 1;
108 +
109 +  for(i=0; i < 3; i++)
110 +    for (j=0; j < 3; j++) Hmat[i][j] = theBox[i][j];
111 +  
112 +  calcBoxL();
113 +  calcHmatInv();
114 +
115 +  for(i=0; i < 3; i++) {
116 +    for (j=0; j < 3; j++) {
117 +      FortranHmat[3*j + i] = Hmat[i][j];
118 +      FortranHmatInv[3*j + i] = HmatInv[i][j];
119 +    }
120 +  }
121 +
122 +  setFortranBoxSize(FortranHmat, FortranHmatInv, &orthoRhombic);
123 +
124 + }
125 +
126 +
127 + void SimInfo::getBoxM (double theBox[3][3]) {
128 +
129 +  int i, j;
130 +  for(i=0; i<3; i++)
131 +    for (j=0; j<3; j++) theBox[i][j] = Hmat[i][j];
132 + }
133 +
134 +
135 + void SimInfo::scaleBox(double scale) {
136 +  double theBox[3][3];
137 +  int i, j;
138 +
139 +  // cerr << "Scaling box by " << scale << "\n";
140 +
141 +  for(i=0; i<3; i++)
142 +    for (j=0; j<3; j++) theBox[i][j] = Hmat[i][j]*scale;
143 +
144 +  setBoxM(theBox);
145 +
146 + }
147 +
148 + void SimInfo::calcHmatInv( void ) {
149 +  
150 +  int oldOrtho;
151 +  int i,j;
152 +  double smallDiag;
153 +  double tol;
154 +  double sanity[3][3];
155 +
156 +  invertMat3( Hmat, HmatInv );
157 +
158 +  // check to see if Hmat is orthorhombic
159 +  
160 +  oldOrtho = orthoRhombic;
161 +
162 +  smallDiag = fabs(Hmat[0][0]);
163 +  if(smallDiag > fabs(Hmat[1][1])) smallDiag = fabs(Hmat[1][1]);
164 +  if(smallDiag > fabs(Hmat[2][2])) smallDiag = fabs(Hmat[2][2]);
165 +  tol = smallDiag * orthoTolerance;
166 +
167 +  orthoRhombic = 1;
168 +  
169 +  for (i = 0; i < 3; i++ ) {
170 +    for (j = 0 ; j < 3; j++) {
171 +      if (i != j) {
172 +        if (orthoRhombic) {
173 +          if ( fabs(Hmat[i][j]) >= tol) orthoRhombic = 0;
174 +        }        
175 +      }
176 +    }
177 +  }
178 +
179 +  if( oldOrtho != orthoRhombic ){
180 +    
181 +    if( orthoRhombic ){
182 +      sprintf( painCave.errMsg,
183 +               "Hmat is switching from Non-Orthorhombic to Orthorhombic Box.\n"
184 +               "\tIf this is a bad thing, change the orthoBoxTolerance\n"
185 +               "\tvariable ( currently set to %G ).\n",
186 +               orthoTolerance);
187 +      simError();
188 +    }
189 +    else {
190 +      sprintf( painCave.errMsg,
191 +               "Hmat is switching from Orthorhombic to Non-Orthorhombic Box.\n"
192 +               "\tIf this is a bad thing, change the orthoBoxTolerance\n"
193 +               "\tvariable ( currently set to %G ).\n",
194 +               orthoTolerance);
195 +      simError();
196 +    }
197 +  }
198 + }
199 +
200 + double SimInfo::matDet3(double a[3][3]) {
201 +  int i, j, k;
202 +  double determinant;
203 +
204 +  determinant = 0.0;
205 +
206 +  for(i = 0; i < 3; i++) {
207 +    j = (i+1)%3;
208 +    k = (i+2)%3;
209 +
210 +    determinant += a[0][i] * (a[1][j]*a[2][k] - a[1][k]*a[2][j]);
211 +  }
212 +
213 +  return determinant;
214 + }
215 +
216 + void SimInfo::invertMat3(double a[3][3], double b[3][3]) {
217 +  
218 +  int  i, j, k, l, m, n;
219 +  double determinant;
220 +
221 +  determinant = matDet3( a );
222 +
223 +  if (determinant == 0.0) {
224 +    sprintf( painCave.errMsg,
225 +             "Can't invert a matrix with a zero determinant!\n");
226 +    painCave.isFatal = 1;
227 +    simError();
228 +  }
229 +
230 +  for (i=0; i < 3; i++) {
231 +    j = (i+1)%3;
232 +    k = (i+2)%3;
233 +    for(l = 0; l < 3; l++) {
234 +      m = (l+1)%3;
235 +      n = (l+2)%3;
236 +      
237 +      b[l][i] = (a[j][m]*a[k][n] - a[j][n]*a[k][m]) / determinant;
238 +    }
239 +  }
240 + }
241 +
242 + void SimInfo::matMul3(double a[3][3], double b[3][3], double c[3][3]) {
243 +  double r00, r01, r02, r10, r11, r12, r20, r21, r22;
244 +
245 +  r00 = a[0][0]*b[0][0] + a[0][1]*b[1][0] + a[0][2]*b[2][0];
246 +  r01 = a[0][0]*b[0][1] + a[0][1]*b[1][1] + a[0][2]*b[2][1];
247 +  r02 = a[0][0]*b[0][2] + a[0][1]*b[1][2] + a[0][2]*b[2][2];
248 +  
249 +  r10 = a[1][0]*b[0][0] + a[1][1]*b[1][0] + a[1][2]*b[2][0];
250 +  r11 = a[1][0]*b[0][1] + a[1][1]*b[1][1] + a[1][2]*b[2][1];
251 +  r12 = a[1][0]*b[0][2] + a[1][1]*b[1][2] + a[1][2]*b[2][2];
252 +  
253 +  r20 = a[2][0]*b[0][0] + a[2][1]*b[1][0] + a[2][2]*b[2][0];
254 +  r21 = a[2][0]*b[0][1] + a[2][1]*b[1][1] + a[2][2]*b[2][1];
255 +  r22 = a[2][0]*b[0][2] + a[2][1]*b[1][2] + a[2][2]*b[2][2];
256 +  
257 +  c[0][0] = r00; c[0][1] = r01; c[0][2] = r02;
258 +  c[1][0] = r10; c[1][1] = r11; c[1][2] = r12;
259 +  c[2][0] = r20; c[2][1] = r21; c[2][2] = r22;
260 + }
261 +
262 + void SimInfo::matVecMul3(double m[3][3], double inVec[3], double outVec[3]) {
263 +  double a0, a1, a2;
264 +
265 +  a0 = inVec[0];  a1 = inVec[1];  a2 = inVec[2];
266 +
267 +  outVec[0] = m[0][0]*a0 + m[0][1]*a1 + m[0][2]*a2;
268 +  outVec[1] = m[1][0]*a0 + m[1][1]*a1 + m[1][2]*a2;
269 +  outVec[2] = m[2][0]*a0 + m[2][1]*a1 + m[2][2]*a2;
270 + }
271 +
272 + void SimInfo::transposeMat3(double in[3][3], double out[3][3]) {
273 +  double temp[3][3];
274 +  int i, j;
275 +
276 +  for (i = 0; i < 3; i++) {
277 +    for (j = 0; j < 3; j++) {
278 +      temp[j][i] = in[i][j];
279 +    }
280 +  }
281 +  for (i = 0; i < 3; i++) {
282 +    for (j = 0; j < 3; j++) {
283 +      out[i][j] = temp[i][j];
284 +    }
285 +  }
286 + }
287 +  
288 + void SimInfo::printMat3(double A[3][3] ){
289 +
290 +  std::cerr
291 +            << "[ " << A[0][0] << ", " << A[0][1] << ", " << A[0][2] << " ]\n"
292 +            << "[ " << A[1][0] << ", " << A[1][1] << ", " << A[1][2] << " ]\n"
293 +            << "[ " << A[2][0] << ", " << A[2][1] << ", " << A[2][2] << " ]\n";
294 + }
295 +
296 + void SimInfo::printMat9(double A[9] ){
297 +
298 +  std::cerr
299 +            << "[ " << A[0] << ", " << A[1] << ", " << A[2] << " ]\n"
300 +            << "[ " << A[3] << ", " << A[4] << ", " << A[5] << " ]\n"
301 +            << "[ " << A[6] << ", " << A[7] << ", " << A[8] << " ]\n";
302 + }
303 +
304 +
305 + void SimInfo::crossProduct3(double a[3],double b[3], double out[3]){
306 +
307 +      out[0] = a[1] * b[2] - a[2] * b[1];
308 +      out[1] = a[2] * b[0] - a[0] * b[2] ;
309 +      out[2] = a[0] * b[1] - a[1] * b[0];
310 +      
311 + }
312 +
313 + double SimInfo::dotProduct3(double a[3], double b[3]){
314 +  return a[0]*b[0] + a[1]*b[1]+ a[2]*b[2];
315 + }
316 +
317 + double SimInfo::length3(double a[3]){
318 +  return sqrt(a[0]*a[0] + a[1]*a[1] + a[2]*a[2]);
319 + }
320 +
321 + void SimInfo::calcBoxL( void ){
322 +
323 +  double dx, dy, dz, dsq;
324 +
325 +  // boxVol = Determinant of Hmat
326 +
327 +  boxVol = matDet3( Hmat );
328 +
329 +  // boxLx
330 +  
331 +  dx = Hmat[0][0]; dy = Hmat[1][0]; dz = Hmat[2][0];
332 +  dsq = dx*dx + dy*dy + dz*dz;
333 +  boxL[0] = sqrt( dsq );
334 +  //maxCutoff = 0.5 * boxL[0];
335 +
336 +  // boxLy
337 +  
338 +  dx = Hmat[0][1]; dy = Hmat[1][1]; dz = Hmat[2][1];
339 +  dsq = dx*dx + dy*dy + dz*dz;
340 +  boxL[1] = sqrt( dsq );
341 +  //if( (0.5 * boxL[1]) < maxCutoff ) maxCutoff = 0.5 * boxL[1];
342 +
343 +
344 +  // boxLz
345 +  
346 +  dx = Hmat[0][2]; dy = Hmat[1][2]; dz = Hmat[2][2];
347 +  dsq = dx*dx + dy*dy + dz*dz;
348 +  boxL[2] = sqrt( dsq );
349 +  //if( (0.5 * boxL[2]) < maxCutoff ) maxCutoff = 0.5 * boxL[2];
350 +
351 +  //calculate the max cutoff
352 +  maxCutoff =  calcMaxCutOff();
353 +  
354 +  checkCutOffs();
355 +
356 + }
357 +
358 +
359 + double SimInfo::calcMaxCutOff(){
360 +
361 +  double ri[3], rj[3], rk[3];
362 +  double rij[3], rjk[3], rki[3];
363 +  double minDist;
364 +
365 +  ri[0] = Hmat[0][0];
366 +  ri[1] = Hmat[1][0];
367 +  ri[2] = Hmat[2][0];
368 +
369 +  rj[0] = Hmat[0][1];
370 +  rj[1] = Hmat[1][1];
371 +  rj[2] = Hmat[2][1];
372 +
373 +  rk[0] = Hmat[0][2];
374 +  rk[1] = Hmat[1][2];
375 +  rk[2] = Hmat[2][2];
376 +  
377 +  crossProduct3(ri,rj, rij);
378 +  distXY = dotProduct3(rk,rij) / length3(rij);
379 +
380 +  crossProduct3(rj,rk, rjk);
381 +  distYZ = dotProduct3(ri,rjk) / length3(rjk);
382 +
383 +  crossProduct3(rk,ri, rki);
384 +  distZX = dotProduct3(rj,rki) / length3(rki);
385 +
386 +  minDist = min(min(distXY, distYZ), distZX);
387 +  return minDist/2;
388 +  
389 + }
390 +
391 + void SimInfo::wrapVector( double thePos[3] ){
392 +
393 +  int i;
394 +  double scaled[3];
395 +
396 +  if( !orthoRhombic ){
397 +    // calc the scaled coordinates.
398 +  
399 +
400 +    matVecMul3(HmatInv, thePos, scaled);
401 +    
402 +    for(i=0; i<3; i++)
403 +      scaled[i] -= roundMe(scaled[i]);
404 +    
405 +    // calc the wrapped real coordinates from the wrapped scaled coordinates
406 +    
407 +    matVecMul3(Hmat, scaled, thePos);
408 +
409 +  }
410 +  else{
411 +    // calc the scaled coordinates.
412 +    
413 +    for(i=0; i<3; i++)
414 +      scaled[i] = thePos[i]*HmatInv[i][i];
415 +    
416 +    // wrap the scaled coordinates
417 +    
418 +    for(i=0; i<3; i++)
419 +      scaled[i] -= roundMe(scaled[i]);
420 +    
421 +    // calc the wrapped real coordinates from the wrapped scaled coordinates
422 +    
423 +    for(i=0; i<3; i++)
424 +      thePos[i] = scaled[i]*Hmat[i][i];
425 +  }
426 +    
427 + }
428 +
429 +
430 + int SimInfo::getNDF(){
431 +  int ndf_local;
432 +  
433 +  ndf_local = 3 * n_atoms + 3 * n_oriented - n_constraints;
434 +
435 + #ifdef IS_MPI
436 +  MPI_Allreduce(&ndf_local,&ndf,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
437 + #else
438 +  ndf = ndf_local;
439 + #endif
440 +
441 +  ndf = ndf - 3 - nZconstraints;
442 +
443 +  return ndf;
444 + }
445 +
446 + int SimInfo::getNDFraw() {
447 +  int ndfRaw_local;
448 +
449 +  // Raw degrees of freedom that we have to set
450 +  ndfRaw_local = 3 * n_atoms + 3 * n_oriented;
451 +  
452 + #ifdef IS_MPI
453 +  MPI_Allreduce(&ndfRaw_local,&ndfRaw,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
454 + #else
455 +  ndfRaw = ndfRaw_local;
456 + #endif
457 +
458 +  return ndfRaw;
459 + }
460 +
461 + int SimInfo::getNDFtranslational() {
462 +  int ndfTrans_local;
463 +
464 +  ndfTrans_local = 3 * n_atoms - n_constraints;
465 +
466 + #ifdef IS_MPI
467 +  MPI_Allreduce(&ndfTrans_local,&ndfTrans,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
468 + #else
469 +  ndfTrans = ndfTrans_local;
470 + #endif
471 +
472 +  ndfTrans = ndfTrans - 3 - nZconstraints;
473 +
474 +  return ndfTrans;
475 + }
476 +
477   void SimInfo::refreshSim(){
478  
479    simtype fInfo;
480    int isError;
481 +  int n_global;
482 +  int* excl;
483  
484 <  fInfo.box[0] = box_x;
42 <  fInfo.box[1] = box_y;
43 <  fInfo.box[2] = box_z;
484 >  fInfo.dielect = 0.0;
485  
486 <  fInfo.rlist = rList;
487 <  fInfo.rcut = rCut;
488 <  fInfo.rrf = rRF;
48 <  fInfo.rt = 0.95 * rRF;
49 <  fInfo.dielect = dielectric;
50 <
486 >  if( useDipoles ){
487 >    if( useReactionField )fInfo.dielect = dielectric;
488 >  }
489  
490    fInfo.SIM_uses_PBC = usePBC;
491 +  //fInfo.SIM_uses_LJ = 0;
492    fInfo.SIM_uses_LJ = useLJ;
493    fInfo.SIM_uses_sticky = useSticky;
494 <  fInfo.SIM_uses_dipoles = 0;
495 <  //  fInfo.SIM_uses_dipoles = useDipole;
496 <  fInfo.SIM_uses_RF = 0;
497 <  //  fInfo.SIM_uses_RF = useReactionField;
494 >  //fInfo.SIM_uses_sticky = 0;
495 >  fInfo.SIM_uses_charges = useCharges;
496 >  fInfo.SIM_uses_dipoles = useDipoles;
497 >  //fInfo.SIM_uses_dipoles = 0;
498 >  fInfo.SIM_uses_RF = useReactionField;
499 >  //fInfo.SIM_uses_RF = 0;
500    fInfo.SIM_uses_GB = useGB;
501    fInfo.SIM_uses_EAM = useEAM;
502  
503 +  excl = Exclude::getArray();
504  
505 + #ifdef IS_MPI
506 +  n_global = mpiSim->getTotAtoms();
507 + #else
508 +  n_global = n_atoms;
509 + #endif
510 +
511    isError = 0;
512  
513 <  fInfo;
514 <  n_atoms;
515 <  identArray;
68 <  n_exclude;
69 <  excludes;
70 <  nGlobalExcludes;
71 <  globalExcludes;
72 <  isError;
513 >  setFsimulation( &fInfo, &n_global, &n_atoms, identArray, &n_exclude, excl,
514 >                  &nGlobalExcludes, globalExcludes, molMembershipArray,
515 >                  &isError );
516  
74  setFsimulation( &fInfo, &n_atoms, identArray, &n_exclude, excludes, &nGlobalExcludes, globalExcludes, &isError );
75
517    if( isError ){
518  
519      sprintf( painCave.errMsg,
# Line 86 | Line 527 | void SimInfo::refreshSim(){
527             "succesfully sent the simulation information to fortran.\n");
528    MPIcheckPoint();
529   #endif // is_mpi
530 +
531 +  this->ndf = this->getNDF();
532 +  this->ndfRaw = this->getNDFraw();
533 +  this->ndfTrans = this->getNDFtranslational();
534   }
535  
536 + void SimInfo::setDefaultRcut( double theRcut ){
537 +
538 +  haveRcut = 1;
539 +  rCut = theRcut;
540 +
541 +  ( rCut > ecr )? rList = rCut + 1.0: rList = ecr + 1.0;
542 +
543 +  notifyFortranCutOffs( &rCut, &rList, &ecr, &est );
544 + }
545 +
546 + void SimInfo::setDefaultEcr( double theEcr ){
547 +
548 +  haveEcr = 1;
549 +  ecr = theEcr;
550 +  
551 +  ( rCut > ecr )? rList = rCut + 1.0: rList = ecr + 1.0;
552 +
553 +  notifyFortranCutOffs( &rCut, &rList, &ecr, &est );
554 + }
555 +
556 + void SimInfo::setDefaultEcr( double theEcr, double theEst ){
557 +
558 +  est = theEst;
559 +  setDefaultEcr( theEcr );
560 + }
561 +
562 +
563 + void SimInfo::checkCutOffs( void ){
564 +  
565 +  if( boxIsInit ){
566 +    
567 +    //we need to check cutOffs against the box
568 +    
569 +    if( rCut > maxCutoff ){
570 +      sprintf( painCave.errMsg,
571 +               "Box size is too small for the long range cutoff radius, "
572 +               "%G, at time %G\n"
573 +               "\t[ %G %G %G ]\n"
574 +               "\t[ %G %G %G ]\n"
575 +               "\t[ %G %G %G ]\n",
576 +               rCut, currentTime,
577 +               Hmat[0][0], Hmat[0][1], Hmat[0][2],
578 +               Hmat[1][0], Hmat[1][1], Hmat[1][2],
579 +               Hmat[2][0], Hmat[2][1], Hmat[2][2]);
580 +      painCave.isFatal = 1;
581 +      simError();
582 +    }
583 +    
584 +    if( haveEcr ){
585 +      if( ecr > maxCutoff ){
586 +        sprintf( painCave.errMsg,
587 +                 "Box size is too small for the electrostatic cutoff radius, "
588 +                 "%G, at time %G\n"
589 +                 "\t[ %G %G %G ]\n"
590 +                 "\t[ %G %G %G ]\n"
591 +                 "\t[ %G %G %G ]\n",
592 +                 ecr, currentTime,
593 +                 Hmat[0][0], Hmat[0][1], Hmat[0][2],
594 +                 Hmat[1][0], Hmat[1][1], Hmat[1][2],
595 +                 Hmat[2][0], Hmat[2][1], Hmat[2][2]);
596 +        painCave.isFatal = 1;
597 +        simError();
598 +      }
599 +    }
600 +  } else {
601 +    // initialize this stuff before using it, OK?
602 +    sprintf( painCave.errMsg,
603 +             "Trying to check cutoffs without a box.\n"
604 +             "\tOOPSE should have better programmers than that.\n" );
605 +    painCave.isFatal = 1;
606 +    simError();      
607 +  }
608 +  
609 + }
610 +
611 + void SimInfo::addProperty(GenericData* prop){
612 +
613 +  map<string, GenericData*>::iterator result;
614 +  result = properties.find(prop->getID());
615 +  
616 +  //we can't simply use  properties[prop->getID()] = prop,
617 +  //it will cause memory leak if we already contain a propery which has the same name of prop
618 +  
619 +  if(result != properties.end()){
620 +    
621 +    delete (*result).second;
622 +    (*result).second = prop;
623 +      
624 +  }
625 +  else{
626 +
627 +    properties[prop->getID()] = prop;
628 +
629 +  }
630 +    
631 + }
632 +
633 + GenericData* SimInfo::getProperty(const string& propName){
634 +
635 +  map<string, GenericData*>::iterator result;
636 +  
637 +  //string lowerCaseName = ();
638 +  
639 +  result = properties.find(propName);
640 +  
641 +  if(result != properties.end())
642 +    return (*result).second;  
643 +  else  
644 +    return NULL;  
645 + }
646 +
647 + vector<GenericData*> SimInfo::getProperties(){
648 +
649 +  vector<GenericData*> result;
650 +  map<string, GenericData*>::iterator i;
651 +  
652 +  for(i = properties.begin(); i != properties.end(); i++)
653 +    result.push_back((*i).second);
654 +    
655 +  return result;
656 + }
657 +
658 + double SimInfo::matTrace3(double m[3][3]){
659 +  double trace;
660 +  trace = m[0][0] + m[1][1] + m[2][2];
661 +
662 +  return trace;
663 + }

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines