ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/trunk/OOPSE/libmdtools/SimInfo.cpp
(Generate patch)

Comparing trunk/OOPSE/libmdtools/SimInfo.cpp (file contents):
Revision 619 by mmeineke, Tue Jul 15 22:22:41 2003 UTC vs.
Revision 1125 by gezelter, Mon Apr 19 22:13:01 2004 UTC

# Line 1 | Line 1
1 < #include <cstdlib>
2 < #include <cstring>
3 < #include <cmath>
1 > #include <stdlib.h>
2 > #include <string.h>
3 > #include <math.h>
4  
5   #include <iostream>
6   using namespace std;
# Line 12 | Line 12 | using namespace std;
12  
13   #include "fortranWrappers.hpp"
14  
15 + #include "MatVec3.h"
16 +
17   #ifdef IS_MPI
18   #include "mpiSimulation.hpp"
19   #endif
# Line 20 | Line 22 | inline double roundMe( double x ){
22    return ( x >= 0 ) ? floor( x + 0.5 ) : ceil( x - 0.5 );
23   }
24            
25 + inline double min( double a, double b ){
26 +  return (a < b ) ? a : b;
27 + }
28  
29   SimInfo* currentInfo;
30  
31   SimInfo::SimInfo(){
32 <  excludes = NULL;
32 >
33    n_constraints = 0;
34 +  nZconstraints = 0;
35    n_oriented = 0;
36    n_dipoles = 0;
37    ndf = 0;
38    ndfRaw = 0;
39 +  nZconstraints = 0;
40    the_integrator = NULL;
41    setTemp = 0;
42    thermalTime = 0.0;
43 +  currentTime = 0.0;
44    rCut = 0.0;
45    ecr = 0.0;
46    est = 0.0;
47  
48 +  haveRcut = 0;
49 +  haveEcr = 0;
50 +  boxIsInit = 0;
51 +  
52 +  resetTime = 1e99;
53 +
54 +  orthoRhombic = 0;
55 +  orthoTolerance = 1E-6;
56 +  useInitXSstate = true;
57 +
58    usePBC = 0;
59    useLJ = 0;
60    useSticky = 0;
61 <  useDipole = 0;
61 >  useCharges = 0;
62 >  useDipoles = 0;
63    useReactionField = 0;
64    useGB = 0;
65    useEAM = 0;
66  
67 +  excludes = Exclude::Instance();
68 +
69 +  myConfiguration = new SimState();
70 +
71 +  has_minimizer = false;
72 +  the_minimizer =NULL;
73 +
74    wrapMeSimInfo( this );
75   }
76  
77 +
78 + SimInfo::~SimInfo(){
79 +
80 +  delete myConfiguration;
81 +
82 +  map<string, GenericData*>::iterator i;
83 +  
84 +  for(i = properties.begin(); i != properties.end(); i++)
85 +    delete (*i).second;
86 +    
87 + }
88 +
89   void SimInfo::setBox(double newBox[3]) {
90    
91    int i, j;
# Line 66 | Line 104 | void SimInfo::setBoxM( double theBox[3][3] ){
104  
105   void SimInfo::setBoxM( double theBox[3][3] ){
106    
107 <  int i, j, status;
70 <  double smallestBoxL, maxCutoff;
107 >  int i, j;
108    double FortranHmat[9]; // to preserve compatibility with Fortran the
109                           // ordering in the array is as follows:
110                           // [ 0 3 6 ]
# Line 75 | Line 112 | void SimInfo::setBoxM( double theBox[3][3] ){
112                           // [ 2 5 8 ]
113    double FortranHmatInv[9]; // the inverted Hmat (for Fortran);
114  
115 +  if( !boxIsInit ) boxIsInit = 1;
116  
117    for(i=0; i < 3; i++)
118      for (j=0; j < 3; j++) Hmat[i][j] = theBox[i][j];
119    
82  //  cerr
83  // << "setting Hmat ->\n"
84  // << "[ " << Hmat[0][0] << ", " << Hmat[0][1] << ", " << Hmat[0][2] << " ]\n"
85  // << "[ " << Hmat[1][0] << ", " << Hmat[1][1] << ", " << Hmat[1][2] << " ]\n"
86  // << "[ " << Hmat[2][0] << ", " << Hmat[2][1] << ", " << Hmat[2][2] << " ]\n";
87
120    calcBoxL();
121    calcHmatInv();
122  
# Line 97 | Line 129 | void SimInfo::setBoxM( double theBox[3][3] ){
129  
130    setFortranBoxSize(FortranHmat, FortranHmatInv, &orthoRhombic);
131  
100  smallestBoxL = boxLx;
101  if (boxLy < smallestBoxL) smallestBoxL = boxLy;
102  if (boxLz < smallestBoxL) smallestBoxL = boxLz;
103
104  maxCutoff = smallestBoxL / 2.0;
105
106  if (rList > maxCutoff) {
107    sprintf( painCave.errMsg,
108             "New Box size is forcing neighborlist radius down to %lf\n",
109             maxCutoff );
110    painCave.isFatal = 0;
111    simError();
112
113    rList = maxCutoff;
114
115    sprintf( painCave.errMsg,
116             "New Box size is forcing cutoff radius down to %lf\n",
117             maxCutoff - 1.0 );
118    painCave.isFatal = 0;
119    simError();
120
121    rCut = rList - 1.0;
122
123    // list radius changed so we have to refresh the simulation structure.
124    refreshSim();
125  }
126
127  if( ecr > maxCutoff ){
128
129    sprintf( painCave.errMsg,
130             "New Box size is forcing electrostatic cutoff radius "
131             "down to %lf\n",
132             maxCutoff );
133    painCave.isFatal = 0;
134    simError();
135
136    ecr = maxCutoff;
137    est = 0.05 * ecr;
138
139    refreshSim();
140  }
141    
132   }
133  
134  
# Line 165 | Line 155 | void SimInfo::calcHmatInv( void ) {
155  
156   void SimInfo::calcHmatInv( void ) {
157    
158 +  int oldOrtho;
159    int i,j;
160    double smallDiag;
161    double tol;
# Line 172 | Line 163 | void SimInfo::calcHmatInv( void ) {
163  
164    invertMat3( Hmat, HmatInv );
165  
175  // Check the inverse to make sure it is sane:
176
177  matMul3( Hmat, HmatInv, sanity );
178    
166    // check to see if Hmat is orthorhombic
167    
168 <  smallDiag = Hmat[0][0];
182 <  if(smallDiag > Hmat[1][1]) smallDiag = Hmat[1][1];
183 <  if(smallDiag > Hmat[2][2]) smallDiag = Hmat[2][2];
184 <  tol = smallDiag * 1E-6;
168 >  oldOrtho = orthoRhombic;
169  
170 +  smallDiag = fabs(Hmat[0][0]);
171 +  if(smallDiag > fabs(Hmat[1][1])) smallDiag = fabs(Hmat[1][1]);
172 +  if(smallDiag > fabs(Hmat[2][2])) smallDiag = fabs(Hmat[2][2]);
173 +  tol = smallDiag * orthoTolerance;
174 +
175    orthoRhombic = 1;
176    
177    for (i = 0; i < 3; i++ ) {
178      for (j = 0 ; j < 3; j++) {
179        if (i != j) {
180          if (orthoRhombic) {
181 <          if (Hmat[i][j] >= tol) orthoRhombic = 0;
181 >          if ( fabs(Hmat[i][j]) >= tol) orthoRhombic = 0;
182          }        
183        }
184      }
196  }
197 }
198
199 double SimInfo::matDet3(double a[3][3]) {
200  int i, j, k;
201  double determinant;
202
203  determinant = 0.0;
204
205  for(i = 0; i < 3; i++) {
206    j = (i+1)%3;
207    k = (i+2)%3;
208
209    determinant += a[0][i] * (a[1][j]*a[2][k] - a[1][k]*a[2][j]);
185    }
186  
187 <  return determinant;
188 < }
189 <
190 < void SimInfo::invertMat3(double a[3][3], double b[3][3]) {
191 <  
192 <  int  i, j, k, l, m, n;
193 <  double determinant;
194 <
195 <  determinant = matDet3( a );
196 <
197 <  if (determinant == 0.0) {
223 <    sprintf( painCave.errMsg,
224 <             "Can't invert a matrix with a zero determinant!\n");
225 <    painCave.isFatal = 1;
226 <    simError();
227 <  }
228 <
229 <  for (i=0; i < 3; i++) {
230 <    j = (i+1)%3;
231 <    k = (i+2)%3;
232 <    for(l = 0; l < 3; l++) {
233 <      m = (l+1)%3;
234 <      n = (l+2)%3;
235 <      
236 <      b[l][i] = (a[j][m]*a[k][n] - a[j][n]*a[k][m]) / determinant;
187 >  if( oldOrtho != orthoRhombic ){
188 >    
189 >    if( orthoRhombic ){
190 >      sprintf( painCave.errMsg,
191 >               "OOPSE is switching from the default Non-Orthorhombic\n"
192 >               "\tto the faster Orthorhombic periodic boundary computations.\n"
193 >               "\tThis is usually a good thing, but if you wan't the\n"
194 >               "\tNon-Orthorhombic computations, make the orthoBoxTolerance\n"
195 >               "\tvariable ( currently set to %G ) smaller.\n",
196 >               orthoTolerance);
197 >      simError();
198      }
199 <  }
200 < }
201 <
202 < void SimInfo::matMul3(double a[3][3], double b[3][3], double c[3][3]) {
203 <  double r00, r01, r02, r10, r11, r12, r20, r21, r22;
204 <
205 <  r00 = a[0][0]*b[0][0] + a[0][1]*b[1][0] + a[0][2]*b[2][0];
206 <  r01 = a[0][0]*b[0][1] + a[0][1]*b[1][1] + a[0][2]*b[2][1];
207 <  r02 = a[0][0]*b[0][2] + a[0][1]*b[1][2] + a[0][2]*b[2][2];
208 <  
248 <  r10 = a[1][0]*b[0][0] + a[1][1]*b[1][0] + a[1][2]*b[2][0];
249 <  r11 = a[1][0]*b[0][1] + a[1][1]*b[1][1] + a[1][2]*b[2][1];
250 <  r12 = a[1][0]*b[0][2] + a[1][1]*b[1][2] + a[1][2]*b[2][2];
251 <  
252 <  r20 = a[2][0]*b[0][0] + a[2][1]*b[1][0] + a[2][2]*b[2][0];
253 <  r21 = a[2][0]*b[0][1] + a[2][1]*b[1][1] + a[2][2]*b[2][1];
254 <  r22 = a[2][0]*b[0][2] + a[2][1]*b[1][2] + a[2][2]*b[2][2];
255 <  
256 <  c[0][0] = r00; c[0][1] = r01; c[0][2] = r02;
257 <  c[1][0] = r10; c[1][1] = r11; c[1][2] = r12;
258 <  c[2][0] = r20; c[2][1] = r21; c[2][2] = r22;
259 < }
260 <
261 < void SimInfo::matVecMul3(double m[3][3], double inVec[3], double outVec[3]) {
262 <  double a0, a1, a2;
263 <
264 <  a0 = inVec[0];  a1 = inVec[1];  a2 = inVec[2];
265 <
266 <  outVec[0] = m[0][0]*a0 + m[0][1]*a1 + m[0][2]*a2;
267 <  outVec[1] = m[1][0]*a0 + m[1][1]*a1 + m[1][2]*a2;
268 <  outVec[2] = m[2][0]*a0 + m[2][1]*a1 + m[2][2]*a2;
269 < }
270 <
271 < void SimInfo::transposeMat3(double in[3][3], double out[3][3]) {
272 <  double temp[3][3];
273 <  int i, j;
274 <
275 <  for (i = 0; i < 3; i++) {
276 <    for (j = 0; j < 3; j++) {
277 <      temp[j][i] = in[i][j];
199 >    else {
200 >      sprintf( painCave.errMsg,
201 >               "OOPSE is switching from the faster Orthorhombic to the more\n"
202 >               "\tflexible Non-Orthorhombic periodic boundary computations.\n"
203 >               "\tThis is usually because the box has deformed under\n"
204 >               "\tNPTf integration. If you wan't to live on the edge with\n"
205 >               "\tthe Orthorhombic computations, make the orthoBoxTolerance\n"
206 >               "\tvariable ( currently set to %G ) larger.\n",
207 >               orthoTolerance);
208 >      simError();
209      }
210    }
280  for (i = 0; i < 3; i++) {
281    for (j = 0; j < 3; j++) {
282      out[i][j] = temp[i][j];
283    }
284  }
211   }
286  
287 void SimInfo::printMat3(double A[3][3] ){
212  
289  std::cerr
290            << "[ " << A[0][0] << ", " << A[0][1] << ", " << A[0][2] << " ]\n"
291            << "[ " << A[1][0] << ", " << A[1][1] << ", " << A[1][2] << " ]\n"
292            << "[ " << A[2][0] << ", " << A[2][1] << ", " << A[2][2] << " ]\n";
293 }
294
295 void SimInfo::printMat9(double A[9] ){
296
297  std::cerr
298            << "[ " << A[0] << ", " << A[1] << ", " << A[2] << " ]\n"
299            << "[ " << A[3] << ", " << A[4] << ", " << A[5] << " ]\n"
300            << "[ " << A[6] << ", " << A[7] << ", " << A[8] << " ]\n";
301 }
302
213   void SimInfo::calcBoxL( void ){
214  
215    double dx, dy, dz, dsq;
306  int i;
216  
217    // boxVol = Determinant of Hmat
218  
# Line 313 | Line 222 | void SimInfo::calcBoxL( void ){
222    
223    dx = Hmat[0][0]; dy = Hmat[1][0]; dz = Hmat[2][0];
224    dsq = dx*dx + dy*dy + dz*dz;
225 <  boxLx = sqrt( dsq );
225 >  boxL[0] = sqrt( dsq );
226 >  //maxCutoff = 0.5 * boxL[0];
227  
228    // boxLy
229    
230    dx = Hmat[0][1]; dy = Hmat[1][1]; dz = Hmat[2][1];
231    dsq = dx*dx + dy*dy + dz*dz;
232 <  boxLy = sqrt( dsq );
232 >  boxL[1] = sqrt( dsq );
233 >  //if( (0.5 * boxL[1]) < maxCutoff ) maxCutoff = 0.5 * boxL[1];
234  
235 +
236    // boxLz
237    
238    dx = Hmat[0][2]; dy = Hmat[1][2]; dz = Hmat[2][2];
239    dsq = dx*dx + dy*dy + dz*dz;
240 <  boxLz = sqrt( dsq );
240 >  boxL[2] = sqrt( dsq );
241 >  //if( (0.5 * boxL[2]) < maxCutoff ) maxCutoff = 0.5 * boxL[2];
242 >
243 >  //calculate the max cutoff
244 >  maxCutoff =  calcMaxCutOff();
245    
246 +  checkCutOffs();
247 +
248   }
249 +
250 +
251 + double SimInfo::calcMaxCutOff(){
252  
253 +  double ri[3], rj[3], rk[3];
254 +  double rij[3], rjk[3], rki[3];
255 +  double minDist;
256  
257 +  ri[0] = Hmat[0][0];
258 +  ri[1] = Hmat[1][0];
259 +  ri[2] = Hmat[2][0];
260 +
261 +  rj[0] = Hmat[0][1];
262 +  rj[1] = Hmat[1][1];
263 +  rj[2] = Hmat[2][1];
264 +
265 +  rk[0] = Hmat[0][2];
266 +  rk[1] = Hmat[1][2];
267 +  rk[2] = Hmat[2][2];
268 +    
269 +  crossProduct3(ri, rj, rij);
270 +  distXY = dotProduct3(rk,rij) / norm3(rij);
271 +
272 +  crossProduct3(rj,rk, rjk);
273 +  distYZ = dotProduct3(ri,rjk) / norm3(rjk);
274 +
275 +  crossProduct3(rk,ri, rki);
276 +  distZX = dotProduct3(rj,rki) / norm3(rki);
277 +
278 +  minDist = min(min(distXY, distYZ), distZX);
279 +  return minDist/2;
280 +  
281 + }
282 +
283   void SimInfo::wrapVector( double thePos[3] ){
284  
285 <  int i, j, k;
285 >  int i;
286    double scaled[3];
287  
288    if( !orthoRhombic ){
# Line 370 | Line 320 | int SimInfo::getNDF(){
320  
321  
322   int SimInfo::getNDF(){
323 <  int ndf_local, ndf;
323 >  int ndf_local;
324 >
325 >  ndf_local = 0;
326    
327 <  ndf_local = 3 * n_atoms + 3 * n_oriented - n_constraints;
327 >  for(int i = 0; i < integrableObjects.size(); i++){
328 >    ndf_local += 3;
329 >    if (integrableObjects[i]->isDirectional()) {
330 >      if (integrableObjects[i]->isLinear())
331 >        ndf_local += 2;
332 >      else
333 >        ndf_local += 3;
334 >    }
335 >  }
336  
337 +  // n_constraints is local, so subtract them on each processor:
338 +
339 +  ndf_local -= n_constraints;
340 +
341   #ifdef IS_MPI
342    MPI_Allreduce(&ndf_local,&ndf,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
343   #else
344    ndf = ndf_local;
345   #endif
346  
347 <  ndf = ndf - 3;
347 >  // nZconstraints is global, as are the 3 COM translations for the
348 >  // entire system:
349  
350 +  ndf = ndf - 3 - nZconstraints;
351 +
352 +  std::cerr << "ndf = " << ndf;
353 +
354    return ndf;
355   }
356  
357   int SimInfo::getNDFraw() {
358 <  int ndfRaw_local, ndfRaw;
358 >  int ndfRaw_local;
359  
360    // Raw degrees of freedom that we have to set
361 <  ndfRaw_local = 3 * n_atoms + 3 * n_oriented;
362 <  
361 >  ndfRaw_local = 0;
362 >
363 >  for(int i = 0; i < integrableObjects.size(); i++){
364 >    ndfRaw_local += 3;
365 >    if (integrableObjects[i]->isDirectional()) {
366 >       if (integrableObjects[i]->isLinear())
367 >        ndfRaw_local += 2;
368 >      else
369 >        ndfRaw_local += 3;
370 >    }
371 >  }
372 >    
373   #ifdef IS_MPI
374    MPI_Allreduce(&ndfRaw_local,&ndfRaw,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
375   #else
# Line 399 | Line 378 | int SimInfo::getNDFraw() {
378  
379    return ndfRaw;
380   }
381 <
381 >
382 > int SimInfo::getNDFtranslational() {
383 >  int ndfTrans_local;
384 >
385 >  ndfTrans_local = 3 * integrableObjects.size() - n_constraints;
386 >
387 >
388 > #ifdef IS_MPI
389 >  MPI_Allreduce(&ndfTrans_local,&ndfTrans,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
390 > #else
391 >  ndfTrans = ndfTrans_local;
392 > #endif
393 >
394 >  ndfTrans = ndfTrans - 3 - nZconstraints;
395 >
396 >  return ndfTrans;
397 > }
398 >
399 > int SimInfo::getTotIntegrableObjects() {
400 >  int nObjs_local;
401 >  int nObjs;
402 >
403 >  nObjs_local =  integrableObjects.size();
404 >
405 >
406 > #ifdef IS_MPI
407 >  MPI_Allreduce(&nObjs_local,&nObjs,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
408 > #else
409 >  nObjs = nObjs_local;
410 > #endif
411 >
412 >
413 >  return nObjs;
414 > }
415 >
416   void SimInfo::refreshSim(){
417  
418    simtype fInfo;
419    int isError;
420    int n_global;
421    int* excl;
422 <  
410 <  fInfo.rrf = 0.0;
411 <  fInfo.rt = 0.0;
422 >
423    fInfo.dielect = 0.0;
424  
425 <  fInfo.rlist = rList;
415 <  fInfo.rcut = rCut;
416 <
417 <  if( useDipole ){
418 <    fInfo.rrf = ecr;
419 <    fInfo.rt = ecr - est;
425 >  if( useDipoles ){
426      if( useReactionField )fInfo.dielect = dielectric;
427    }
428  
# Line 425 | Line 431 | void SimInfo::refreshSim(){
431    fInfo.SIM_uses_LJ = useLJ;
432    fInfo.SIM_uses_sticky = useSticky;
433    //fInfo.SIM_uses_sticky = 0;
434 <  fInfo.SIM_uses_dipoles = useDipole;
434 >  fInfo.SIM_uses_charges = useCharges;
435 >  fInfo.SIM_uses_dipoles = useDipoles;
436    //fInfo.SIM_uses_dipoles = 0;
437 <  //fInfo.SIM_uses_RF = useReactionField;
438 <  fInfo.SIM_uses_RF = 0;
437 >  fInfo.SIM_uses_RF = useReactionField;
438 >  //fInfo.SIM_uses_RF = 0;
439    fInfo.SIM_uses_GB = useGB;
440    fInfo.SIM_uses_EAM = useEAM;
441  
442 <  excl = Exclude::getArray();
442 >  n_exclude = excludes->getSize();
443 >  excl = excludes->getFortranArray();
444  
445   #ifdef IS_MPI
446    n_global = mpiSim->getTotAtoms();
# Line 462 | Line 470 | void SimInfo::refreshSim(){
470  
471    this->ndf = this->getNDF();
472    this->ndfRaw = this->getNDFraw();
473 +  this->ndfTrans = this->getNDFtranslational();
474 + }
475  
476 + void SimInfo::setDefaultRcut( double theRcut ){
477 +
478 +  haveRcut = 1;
479 +  rCut = theRcut;
480 +
481 +  ( rCut > ecr )? rList = rCut + 1.0: rList = ecr + 1.0;
482 +
483 +  notifyFortranCutOffs( &rCut, &rList, &ecr, &est );
484   }
485  
486 + void SimInfo::setDefaultEcr( double theEcr ){
487 +
488 +  haveEcr = 1;
489 +  ecr = theEcr;
490 +  
491 +  ( rCut > ecr )? rList = rCut + 1.0: rList = ecr + 1.0;
492 +
493 +  notifyFortranCutOffs( &rCut, &rList, &ecr, &est );
494 + }
495 +
496 + void SimInfo::setDefaultEcr( double theEcr, double theEst ){
497 +
498 +  est = theEst;
499 +  setDefaultEcr( theEcr );
500 + }
501 +
502 +
503 + void SimInfo::checkCutOffs( void ){
504 +  
505 +  if( boxIsInit ){
506 +    
507 +    //we need to check cutOffs against the box
508 +    
509 +    if( rCut > maxCutoff ){
510 +      sprintf( painCave.errMsg,
511 +               "LJrcut is too large for the current periodic box.\n"
512 +               "\tCurrent Value of LJrcut = %G at time %G\n "
513 +               "\tThis is larger than half of at least one of the\n"
514 +               "\tperiodic box vectors.  Right now, the Box matrix is:\n"
515 +               "\n, %G"
516 +               "\t[ %G %G %G ]\n"
517 +               "\t[ %G %G %G ]\n"
518 +               "\t[ %G %G %G ]\n",
519 +               rCut, currentTime, maxCutoff,
520 +               Hmat[0][0], Hmat[0][1], Hmat[0][2],
521 +               Hmat[1][0], Hmat[1][1], Hmat[1][2],
522 +               Hmat[2][0], Hmat[2][1], Hmat[2][2]);
523 +      painCave.isFatal = 1;
524 +      simError();
525 +    }
526 +    
527 +    if( haveEcr ){
528 +      if( ecr > maxCutoff ){
529 +        sprintf( painCave.errMsg,
530 +                 "electrostaticCutoffRadius is too large for the current\n"
531 +                 "\tperiodic box.\n\n"
532 +                 "\tCurrent Value of ECR = %G at time %G\n "
533 +                 "\tThis is larger than half of at least one of the\n"
534 +                 "\tperiodic box vectors.  Right now, the Box matrix is:\n"
535 +                 "\n"
536 +                 "\t[ %G %G %G ]\n"
537 +                 "\t[ %G %G %G ]\n"
538 +                 "\t[ %G %G %G ]\n",
539 +                 ecr, currentTime,
540 +                 Hmat[0][0], Hmat[0][1], Hmat[0][2],
541 +                 Hmat[1][0], Hmat[1][1], Hmat[1][2],
542 +                 Hmat[2][0], Hmat[2][1], Hmat[2][2]);
543 +        painCave.isFatal = 1;
544 +        simError();
545 +      }
546 +    }
547 +  } else {
548 +    // initialize this stuff before using it, OK?
549 +    sprintf( painCave.errMsg,
550 +             "Trying to check cutoffs without a box.\n"
551 +             "\tOOPSE should have better programmers than that.\n" );
552 +    painCave.isFatal = 1;
553 +    simError();      
554 +  }
555 +  
556 + }
557 +
558 + void SimInfo::addProperty(GenericData* prop){
559 +
560 +  map<string, GenericData*>::iterator result;
561 +  result = properties.find(prop->getID());
562 +  
563 +  //we can't simply use  properties[prop->getID()] = prop,
564 +  //it will cause memory leak if we already contain a propery which has the same name of prop
565 +  
566 +  if(result != properties.end()){
567 +    
568 +    delete (*result).second;
569 +    (*result).second = prop;
570 +      
571 +  }
572 +  else{
573 +
574 +    properties[prop->getID()] = prop;
575 +
576 +  }
577 +    
578 + }
579 +
580 + GenericData* SimInfo::getProperty(const string& propName){
581 +
582 +  map<string, GenericData*>::iterator result;
583 +  
584 +  //string lowerCaseName = ();
585 +  
586 +  result = properties.find(propName);
587 +  
588 +  if(result != properties.end())
589 +    return (*result).second;  
590 +  else  
591 +    return NULL;  
592 + }
593 +

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines