ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/trunk/OOPSE/libmdtools/SimInfo.cpp
(Generate patch)

Comparing trunk/OOPSE/libmdtools/SimInfo.cpp (file contents):
Revision 574 by gezelter, Tue Jul 8 20:56:10 2003 UTC vs.
Revision 855 by mmeineke, Thu Nov 6 22:01:37 2003 UTC

# Line 1 | Line 1
1 < #include <cstdlib>
2 < #include <cstring>
3 < #include <cmath>
1 > #include <stdlib.h>
2 > #include <string.h>
3 > #include <math.h>
4  
5   #include <iostream>
6   using namespace std;
# Line 26 | Line 26 | SimInfo::SimInfo(){
26   SimInfo::SimInfo(){
27    excludes = NULL;
28    n_constraints = 0;
29 +  nZconstraints = 0;
30    n_oriented = 0;
31    n_dipoles = 0;
32    ndf = 0;
33    ndfRaw = 0;
34 +  nZconstraints = 0;
35    the_integrator = NULL;
36    setTemp = 0;
37    thermalTime = 0.0;
38 +  currentTime = 0.0;
39    rCut = 0.0;
40 +  origRcut = -1.0;
41 +  ecr = 0.0;
42 +  origEcr = -1.0;
43 +  est = 0.0;
44 +  oldEcr = 0.0;
45 +  oldRcut = 0.0;
46  
47 +  haveOrigRcut = 0;
48 +  haveOrigEcr = 0;
49 +  boxIsInit = 0;
50 +  
51 +  resetTime = 1e99;
52 +
53 +  orthoTolerance = 1E-6;
54 +  useInitXSstate = true;
55 +
56    usePBC = 0;
57    useLJ = 0;
58    useSticky = 0;
# Line 43 | Line 61 | SimInfo::SimInfo(){
61    useGB = 0;
62    useEAM = 0;
63  
64 +  myConfiguration = new SimState();
65 +
66    wrapMeSimInfo( this );
67   }
68  
49 void SimInfo::setBox(double newBox[3]) {
69  
70 <  double smallestBoxL, maxCutoff;
52 <  int status;
53 <  int i;
70 > SimInfo::~SimInfo(){
71  
72 <  for(i=0; i<9; i++) Hmat[i] = 0.0;;
72 >  delete myConfiguration;
73  
74 <  Hmat[0] = newBox[0];
75 <  Hmat[4] = newBox[1];
76 <  Hmat[8] = newBox[2];
74 >  map<string, GenericData*>::iterator i;
75 >  
76 >  for(i = properties.begin(); i != properties.end(); i++)
77 >    delete (*i).second;
78 >    
79 > }
80  
81 <  calcHmatI();
82 <  calcBoxL();
81 > void SimInfo::setBox(double newBox[3]) {
82 >  
83 >  int i, j;
84 >  double tempMat[3][3];
85  
86 <  setFortranBoxSize(Hmat, HmatI, &orthoRhombic);
86 >  for(i=0; i<3; i++)
87 >    for (j=0; j<3; j++) tempMat[i][j] = 0.0;;
88  
89 <  smallestBoxL = boxLx;
90 <  if (boxLy < smallestBoxL) smallestBoxL = boxLy;
91 <  if (boxLz < smallestBoxL) smallestBoxL = boxLz;
89 >  tempMat[0][0] = newBox[0];
90 >  tempMat[1][1] = newBox[1];
91 >  tempMat[2][2] = newBox[2];
92  
93 <  maxCutoff = smallestBoxL / 2.0;
93 >  setBoxM( tempMat );
94  
95 <  if (rList > maxCutoff) {
73 <    sprintf( painCave.errMsg,
74 <             "New Box size is forcing neighborlist radius down to %lf\n",
75 <             maxCutoff );
76 <    painCave.isFatal = 0;
77 <    simError();
95 > }
96  
97 <    rList = maxCutoff;
97 > void SimInfo::setBoxM( double theBox[3][3] ){
98 >  
99 >  int i, j;
100 >  double FortranHmat[9]; // to preserve compatibility with Fortran the
101 >                         // ordering in the array is as follows:
102 >                         // [ 0 3 6 ]
103 >                         // [ 1 4 7 ]
104 >                         // [ 2 5 8 ]
105 >  double FortranHmatInv[9]; // the inverted Hmat (for Fortran);
106  
107 <    sprintf( painCave.errMsg,
108 <             "New Box size is forcing cutoff radius down to %lf\n",
83 <             maxCutoff - 1.0 );
84 <    painCave.isFatal = 0;
85 <    simError();
107 >  
108 >  if( !boxIsInit ) boxIsInit = 1;
109  
110 <    rCut = rList - 1.0;
110 >  for(i=0; i < 3; i++)
111 >    for (j=0; j < 3; j++) Hmat[i][j] = theBox[i][j];
112 >  
113 >  calcBoxL();
114 >  calcHmatInv();
115  
116 <    // list radius changed so we have to refresh the simulation structure.
117 <    refreshSim();
116 >  for(i=0; i < 3; i++) {
117 >    for (j=0; j < 3; j++) {
118 >      FortranHmat[3*j + i] = Hmat[i][j];
119 >      FortranHmatInv[3*j + i] = HmatInv[i][j];
120 >    }
121    }
122  
123 <  if (rCut > maxCutoff) {
124 <    sprintf( painCave.errMsg,
125 <             "New Box size is forcing cutoff radius down to %lf\n",
126 <             maxCutoff );
97 <    painCave.isFatal = 0;
98 <    simError();
123 >  setFortranBoxSize(FortranHmat, FortranHmatInv, &orthoRhombic);
124 >
125 > }
126 >
127  
128 <    status = 0;
129 <    LJ_new_rcut(&rCut, &status);
130 <    if (status != 0) {
131 <      sprintf( painCave.errMsg,
132 <               "Error in recomputing LJ shifts based on new rcut\n");
105 <      painCave.isFatal = 1;
106 <      simError();
107 <    }
108 <  }
128 > void SimInfo::getBoxM (double theBox[3][3]) {
129 >
130 >  int i, j;
131 >  for(i=0; i<3; i++)
132 >    for (j=0; j<3; j++) theBox[i][j] = Hmat[i][j];
133   }
134  
111 void SimInfo::setBoxM( double theBox[9] ){
112  
113  int i, status;
114  double smallestBoxL, maxCutoff;
135  
136 <  for(i=0; i<9; i++) Hmat[i] = theBox[i];
137 <  calcHmatI();
138 <  calcBoxL();
136 > void SimInfo::scaleBox(double scale) {
137 >  double theBox[3][3];
138 >  int i, j;
139  
140 <  setFortranBoxSize(Hmat, HmatI, &orthoRhombic);
121 <
122 <  smallestBoxL = boxLx;
123 <  if (boxLy < smallestBoxL) smallestBoxL = boxLy;
124 <  if (boxLz < smallestBoxL) smallestBoxL = boxLz;
140 >  // cerr << "Scaling box by " << scale << "\n";
141  
142 <  maxCutoff = smallestBoxL / 2.0;
142 >  for(i=0; i<3; i++)
143 >    for (j=0; j<3; j++) theBox[i][j] = Hmat[i][j]*scale;
144  
145 <  if (rList > maxCutoff) {
129 <    sprintf( painCave.errMsg,
130 <             "New Box size is forcing neighborlist radius down to %lf\n",
131 <             maxCutoff );
132 <    painCave.isFatal = 0;
133 <    simError();
145 >  setBoxM(theBox);
146  
147 <    rList = maxCutoff;
147 > }
148  
149 <    sprintf( painCave.errMsg,
150 <             "New Box size is forcing cutoff radius down to %lf\n",
151 <             maxCutoff - 1.0 );
152 <    painCave.isFatal = 0;
153 <    simError();
149 > void SimInfo::calcHmatInv( void ) {
150 >  
151 >  int oldOrtho;
152 >  int i,j;
153 >  double smallDiag;
154 >  double tol;
155 >  double sanity[3][3];
156  
157 <    rCut = rList - 1.0;
157 >  invertMat3( Hmat, HmatInv );
158  
159 <    // list radius changed so we have to refresh the simulation structure.
160 <    refreshSim();
159 >  // check to see if Hmat is orthorhombic
160 >  
161 >  oldOrtho = orthoRhombic;
162 >
163 >  smallDiag = fabs(Hmat[0][0]);
164 >  if(smallDiag > fabs(Hmat[1][1])) smallDiag = fabs(Hmat[1][1]);
165 >  if(smallDiag > fabs(Hmat[2][2])) smallDiag = fabs(Hmat[2][2]);
166 >  tol = smallDiag * orthoTolerance;
167 >
168 >  orthoRhombic = 1;
169 >  
170 >  for (i = 0; i < 3; i++ ) {
171 >    for (j = 0 ; j < 3; j++) {
172 >      if (i != j) {
173 >        if (orthoRhombic) {
174 >          if ( fabs(Hmat[i][j]) >= tol) orthoRhombic = 0;
175 >        }        
176 >      }
177 >    }
178    }
179  
180 <  if (rCut > maxCutoff) {
181 <    sprintf( painCave.errMsg,
182 <             "New Box size is forcing cutoff radius down to %lf\n",
152 <             maxCutoff );
153 <    painCave.isFatal = 0;
154 <    simError();
155 <
156 <    status = 0;
157 <    LJ_new_rcut(&rCut, &status);
158 <    if (status != 0) {
180 >  if( oldOrtho != orthoRhombic ){
181 >    
182 >    if( orthoRhombic ){
183        sprintf( painCave.errMsg,
184 <               "Error in recomputing LJ shifts based on new rcut\n");
185 <      painCave.isFatal = 1;
184 >               "Hmat is switching from Non-Orthorhombic to OrthoRhombic\n"
185 >               "       If this is a bad thing, change the orthoBoxTolerance( currently %G ).\n",
186 >               orthoTolerance);
187        simError();
188      }
189 +    else {
190 +      sprintf( painCave.errMsg,
191 +               "Hmat is switching from Orthorhombic to Non-OrthoRhombic\n"
192 +               "       If this is a bad thing, change the orthoBoxTolerance( currently %G ).\n",
193 +               orthoTolerance);
194 +      simError();
195 +    }
196    }
197   }
166
198  
199 < void SimInfo::getBoxM (double theBox[9]) {
199 > double SimInfo::matDet3(double a[3][3]) {
200 >  int i, j, k;
201 >  double determinant;
202  
203 <  int i;
171 <  for(i=0; i<9; i++) theBox[i] = Hmat[i];
172 < }
203 >  determinant = 0.0;
204  
205 +  for(i = 0; i < 3; i++) {
206 +    j = (i+1)%3;
207 +    k = (i+2)%3;
208  
209 < void SimInfo::scaleBox(double scale) {
210 <  double theBox[9];
177 <  int i;
209 >    determinant += a[0][i] * (a[1][j]*a[2][k] - a[1][k]*a[2][j]);
210 >  }
211  
212 <  for(i=0; i<9; i++) theBox[i] = Hmat[i]*scale;
180 <
181 <  setBoxM(theBox);
182 <
212 >  return determinant;
213   }
214  
215 < void SimInfo::calcHmatI( void ) {
215 > void SimInfo::invertMat3(double a[3][3], double b[3][3]) {
216 >  
217 >  int  i, j, k, l, m, n;
218 >  double determinant;
219  
220 <  double C[3][3];
188 <  double detHmat;
189 <  int i, j, k;
190 <  double smallDiag;
191 <  double tol;
192 <  double sanity[3][3];
220 >  determinant = matDet3( a );
221  
222 <  // calculate the adjunct of Hmat;
222 >  if (determinant == 0.0) {
223 >    sprintf( painCave.errMsg,
224 >             "Can't invert a matrix with a zero determinant!\n");
225 >    painCave.isFatal = 1;
226 >    simError();
227 >  }
228  
229 <  C[0][0] =  ( Hmat[4]*Hmat[8]) - (Hmat[7]*Hmat[5]);
230 <  C[1][0] = -( Hmat[1]*Hmat[8]) + (Hmat[7]*Hmat[2]);
231 <  C[2][0] =  ( Hmat[1]*Hmat[5]) - (Hmat[4]*Hmat[2]);
229 >  for (i=0; i < 3; i++) {
230 >    j = (i+1)%3;
231 >    k = (i+2)%3;
232 >    for(l = 0; l < 3; l++) {
233 >      m = (l+1)%3;
234 >      n = (l+2)%3;
235 >      
236 >      b[l][i] = (a[j][m]*a[k][n] - a[j][n]*a[k][m]) / determinant;
237 >    }
238 >  }
239 > }
240  
241 <  C[0][1] = -( Hmat[3]*Hmat[8]) + (Hmat[6]*Hmat[5]);
242 <  C[1][1] =  ( Hmat[0]*Hmat[8]) - (Hmat[6]*Hmat[2]);
202 <  C[2][1] = -( Hmat[0]*Hmat[5]) + (Hmat[3]*Hmat[2]);
241 > void SimInfo::matMul3(double a[3][3], double b[3][3], double c[3][3]) {
242 >  double r00, r01, r02, r10, r11, r12, r20, r21, r22;
243  
244 <  C[0][2] =  ( Hmat[3]*Hmat[7]) - (Hmat[6]*Hmat[4]);
245 <  C[1][2] = -( Hmat[0]*Hmat[7]) + (Hmat[6]*Hmat[1]);
246 <  C[2][2] =  ( Hmat[0]*Hmat[4]) - (Hmat[3]*Hmat[1]);
207 <
208 <  // calcutlate the determinant of Hmat
244 >  r00 = a[0][0]*b[0][0] + a[0][1]*b[1][0] + a[0][2]*b[2][0];
245 >  r01 = a[0][0]*b[0][1] + a[0][1]*b[1][1] + a[0][2]*b[2][1];
246 >  r02 = a[0][0]*b[0][2] + a[0][1]*b[1][2] + a[0][2]*b[2][2];
247    
248 <  detHmat = 0.0;
249 <  for(i=0; i<3; i++) detHmat += Hmat[i] * C[i][0];
250 <
248 >  r10 = a[1][0]*b[0][0] + a[1][1]*b[1][0] + a[1][2]*b[2][0];
249 >  r11 = a[1][0]*b[0][1] + a[1][1]*b[1][1] + a[1][2]*b[2][1];
250 >  r12 = a[1][0]*b[0][2] + a[1][1]*b[1][2] + a[1][2]*b[2][2];
251    
252 <  // H^-1 = C^T / det(H)
252 >  r20 = a[2][0]*b[0][0] + a[2][1]*b[1][0] + a[2][2]*b[2][0];
253 >  r21 = a[2][0]*b[0][1] + a[2][1]*b[1][1] + a[2][2]*b[2][1];
254 >  r22 = a[2][0]*b[0][2] + a[2][1]*b[1][2] + a[2][2]*b[2][2];
255    
256 <  i=0;
257 <  for(j=0; j<3; j++){
258 <    for(k=0; k<3; k++){
256 >  c[0][0] = r00; c[0][1] = r01; c[0][2] = r02;
257 >  c[1][0] = r10; c[1][1] = r11; c[1][2] = r12;
258 >  c[2][0] = r20; c[2][1] = r21; c[2][2] = r22;
259 > }
260  
261 <      HmatI[i] = C[j][k] / detHmat;
262 <      i++;
222 <    }
223 <  }
261 > void SimInfo::matVecMul3(double m[3][3], double inVec[3], double outVec[3]) {
262 >  double a0, a1, a2;
263  
264 <  // sanity check
264 >  a0 = inVec[0];  a1 = inVec[1];  a2 = inVec[2];
265  
266 <  for(i=0; i<3; i++){
267 <    for(j=0; j<3; j++){
268 <      
269 <      sanity[i][j] = 0.0;
270 <      for(k=0; k<3; k++){
271 <        sanity[i][j] += Hmat[3*k+i] * HmatI[3*j+k];
272 <      }
266 >  outVec[0] = m[0][0]*a0 + m[0][1]*a1 + m[0][2]*a2;
267 >  outVec[1] = m[1][0]*a0 + m[1][1]*a1 + m[1][2]*a2;
268 >  outVec[2] = m[2][0]*a0 + m[2][1]*a1 + m[2][2]*a2;
269 > }
270 >
271 > void SimInfo::transposeMat3(double in[3][3], double out[3][3]) {
272 >  double temp[3][3];
273 >  int i, j;
274 >
275 >  for (i = 0; i < 3; i++) {
276 >    for (j = 0; j < 3; j++) {
277 >      temp[j][i] = in[i][j];
278      }
279    }
280 +  for (i = 0; i < 3; i++) {
281 +    for (j = 0; j < 3; j++) {
282 +      out[i][j] = temp[i][j];
283 +    }
284 +  }
285 + }
286 +  
287 + void SimInfo::printMat3(double A[3][3] ){
288  
289 <  cerr << "sanity => \n"
290 <       << sanity[0][0] << "\t" << sanity[0][1] << "\t" << sanity [0][2] << "\n"
291 <       << sanity[1][0] << "\t" << sanity[1][1] << "\t" << sanity [1][2] << "\n"
292 <       << sanity[2][0] << "\t" << sanity[2][1] << "\t" << sanity [2][2]
293 <       << "\n";
242 <    
289 >  std::cerr
290 >            << "[ " << A[0][0] << ", " << A[0][1] << ", " << A[0][2] << " ]\n"
291 >            << "[ " << A[1][0] << ", " << A[1][1] << ", " << A[1][2] << " ]\n"
292 >            << "[ " << A[2][0] << ", " << A[2][1] << ", " << A[2][2] << " ]\n";
293 > }
294  
295 <  // check to see if Hmat is orthorhombic
245 <  
246 <  smallDiag = Hmat[0];
247 <  if(smallDiag > Hmat[4]) smallDiag = Hmat[4];
248 <  if(smallDiag > Hmat[8]) smallDiag = Hmat[8];
249 <  tol = smallDiag * 1E-6;
295 > void SimInfo::printMat9(double A[9] ){
296  
297 <  orthoRhombic = 1;
298 <  for(i=0; (i<9) && orthoRhombic; i++){
299 <    
300 <    if( (i%4) ){ // ignore the diagonals (0, 4, and 8)
255 <      orthoRhombic = (Hmat[i] <= tol);
256 <    }
257 <  }
258 <    
297 >  std::cerr
298 >            << "[ " << A[0] << ", " << A[1] << ", " << A[2] << " ]\n"
299 >            << "[ " << A[3] << ", " << A[4] << ", " << A[5] << " ]\n"
300 >            << "[ " << A[6] << ", " << A[7] << ", " << A[8] << " ]\n";
301   }
302  
303 +
304 + void SimInfo::crossProduct3(double a[3],double b[3], double out[3]){
305 +
306 +      out[0] = a[1] * b[2] - a[2] * b[1];
307 +      out[1] = a[2] * b[0] - a[0] * b[2] ;
308 +      out[2] = a[0] * b[1] - a[1] * b[0];
309 +      
310 + }
311 +
312 + double SimInfo::dotProduct3(double a[3], double b[3]){
313 +  return a[0]*b[0] + a[1]*b[1]+ a[2]*b[2];
314 + }
315 +
316 + double SimInfo::length3(double a[3]){
317 +  return sqrt(a[0]*a[0] + a[1]*a[1] + a[2]*a[2]);
318 + }
319 +
320   void SimInfo::calcBoxL( void ){
321  
322    double dx, dy, dz, dsq;
264  int i;
323  
324 <  // boxVol = h1 (dot) h2 (cross) h3
324 >  // boxVol = Determinant of Hmat
325  
326 <  boxVol = Hmat[0] * ( (Hmat[4]*Hmat[8]) - (Hmat[7]*Hmat[5]) )
269 <         + Hmat[1] * ( (Hmat[5]*Hmat[6]) - (Hmat[8]*Hmat[3]) )
270 <         + Hmat[2] * ( (Hmat[3]*Hmat[7]) - (Hmat[6]*Hmat[4]) );
326 >  boxVol = matDet3( Hmat );
327  
272
328    // boxLx
329    
330 <  dx = Hmat[0]; dy = Hmat[1]; dz = Hmat[2];
330 >  dx = Hmat[0][0]; dy = Hmat[1][0]; dz = Hmat[2][0];
331    dsq = dx*dx + dy*dy + dz*dz;
332 <  boxLx = sqrt( dsq );
332 >  boxL[0] = sqrt( dsq );
333 >  //maxCutoff = 0.5 * boxL[0];
334  
335    // boxLy
336    
337 <  dx = Hmat[3]; dy = Hmat[4]; dz = Hmat[5];
337 >  dx = Hmat[0][1]; dy = Hmat[1][1]; dz = Hmat[2][1];
338    dsq = dx*dx + dy*dy + dz*dz;
339 <  boxLy = sqrt( dsq );
339 >  boxL[1] = sqrt( dsq );
340 >  //if( (0.5 * boxL[1]) < maxCutoff ) maxCutoff = 0.5 * boxL[1];
341  
342 +
343    // boxLz
344    
345 <  dx = Hmat[6]; dy = Hmat[7]; dz = Hmat[8];
345 >  dx = Hmat[0][2]; dy = Hmat[1][2]; dz = Hmat[2][2];
346    dsq = dx*dx + dy*dy + dz*dz;
347 <  boxLz = sqrt( dsq );
347 >  boxL[2] = sqrt( dsq );
348 >  //if( (0.5 * boxL[2]) < maxCutoff ) maxCutoff = 0.5 * boxL[2];
349 >
350 >  //calculate the max cutoff
351 >  maxCutoff =  calcMaxCutOff();
352    
353 +  checkCutOffs();
354 +
355   }
356  
357  
358 + double SimInfo::calcMaxCutOff(){
359 +
360 +  double ri[3], rj[3], rk[3];
361 +  double rij[3], rjk[3], rki[3];
362 +  double minDist;
363 +
364 +  ri[0] = Hmat[0][0];
365 +  ri[1] = Hmat[1][0];
366 +  ri[2] = Hmat[2][0];
367 +
368 +  rj[0] = Hmat[0][1];
369 +  rj[1] = Hmat[1][1];
370 +  rj[2] = Hmat[2][1];
371 +
372 +  rk[0] = Hmat[0][2];
373 +  rk[1] = Hmat[1][2];
374 +  rk[2] = Hmat[2][2];
375 +  
376 +  crossProduct3(ri,rj, rij);
377 +  distXY = dotProduct3(rk,rij) / length3(rij);
378 +
379 +  crossProduct3(rj,rk, rjk);
380 +  distYZ = dotProduct3(ri,rjk) / length3(rjk);
381 +
382 +  crossProduct3(rk,ri, rki);
383 +  distZX = dotProduct3(rj,rki) / length3(rki);
384 +
385 +  minDist = min(min(distXY, distYZ), distZX);
386 +  return minDist/2;
387 +  
388 + }
389 +
390   void SimInfo::wrapVector( double thePos[3] ){
391  
392 <  int i, j, k;
392 >  int i;
393    double scaled[3];
394  
395    if( !orthoRhombic ){
396      // calc the scaled coordinates.
397 +  
398 +
399 +    matVecMul3(HmatInv, thePos, scaled);
400      
401      for(i=0; i<3; i++)
303      scaled[i] =
304        thePos[0]*HmatI[i] + thePos[1]*HmatI[i+3] + thePos[3]*HmatI[i+6];
305    
306    // wrap the scaled coordinates
307    
308    for(i=0; i<3; i++)
402        scaled[i] -= roundMe(scaled[i]);
403      
404      // calc the wrapped real coordinates from the wrapped scaled coordinates
405      
406 <    for(i=0; i<3; i++)
407 <      thePos[i] =
315 <        scaled[0]*Hmat[i] + scaled[1]*Hmat[i+3] + scaled[2]*Hmat[i+6];
406 >    matVecMul3(Hmat, scaled, thePos);
407 >
408    }
409    else{
410      // calc the scaled coordinates.
411      
412      for(i=0; i<3; i++)
413 <      scaled[i] = thePos[i]*HmatI[i*4];
413 >      scaled[i] = thePos[i]*HmatInv[i][i];
414      
415      // wrap the scaled coordinates
416      
# Line 328 | Line 420 | void SimInfo::wrapVector( double thePos[3] ){
420      // calc the wrapped real coordinates from the wrapped scaled coordinates
421      
422      for(i=0; i<3; i++)
423 <      thePos[i] = scaled[i]*Hmat[i*4];
423 >      thePos[i] = scaled[i]*Hmat[i][i];
424    }
425      
334    
426   }
427  
428  
429   int SimInfo::getNDF(){
430 <  int ndf_local, ndf;
430 >  int ndf_local;
431    
432    ndf_local = 3 * n_atoms + 3 * n_oriented - n_constraints;
433  
# Line 346 | Line 437 | int SimInfo::getNDF(){
437    ndf = ndf_local;
438   #endif
439  
440 <  ndf = ndf - 3;
440 >  ndf = ndf - 3 - nZconstraints;
441  
442    return ndf;
443   }
444  
445   int SimInfo::getNDFraw() {
446 <  int ndfRaw_local, ndfRaw;
446 >  int ndfRaw_local;
447  
448    // Raw degrees of freedom that we have to set
449    ndfRaw_local = 3 * n_atoms + 3 * n_oriented;
# Line 365 | Line 456 | int SimInfo::getNDFraw() {
456  
457    return ndfRaw;
458   }
459 <
459 >
460 > int SimInfo::getNDFtranslational() {
461 >  int ndfTrans_local;
462 >
463 >  ndfTrans_local = 3 * n_atoms - n_constraints;
464 >
465 > #ifdef IS_MPI
466 >  MPI_Allreduce(&ndfTrans_local,&ndfTrans,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
467 > #else
468 >  ndfTrans = ndfTrans_local;
469 > #endif
470 >
471 >  ndfTrans = ndfTrans - 3 - nZconstraints;
472 >
473 >  return ndfTrans;
474 > }
475 >
476   void SimInfo::refreshSim(){
477  
478    simtype fInfo;
479    int isError;
480    int n_global;
481    int* excl;
482 <  
376 <  fInfo.rrf = 0.0;
377 <  fInfo.rt = 0.0;
482 >
483    fInfo.dielect = 0.0;
484  
380  fInfo.rlist = rList;
381  fInfo.rcut = rCut;
382
485    if( useDipole ){
384    fInfo.rrf = ecr;
385    fInfo.rt = ecr - est;
486      if( useReactionField )fInfo.dielect = dielectric;
487    }
488  
# Line 428 | Line 528 | void SimInfo::refreshSim(){
528  
529    this->ndf = this->getNDF();
530    this->ndfRaw = this->getNDFraw();
531 +  this->ndfTrans = this->getNDFtranslational();
532 + }
533 +
534 +
535 + void SimInfo::setRcut( double theRcut ){
536 +
537 +  rCut = theRcut;
538 +  checkCutOffs();
539 + }
540 +
541 + void SimInfo::setDefaultRcut( double theRcut ){
542 +
543 +  haveOrigRcut = 1;
544 +  origRcut = theRcut;
545 +  rCut = theRcut;
546 +
547 +  ( rCut > ecr )? rList = rCut + 1.0: rList = ecr + 1.0;
548 +
549 +  notifyFortranCutOffs( &rCut, &rList, &ecr, &est );
550 + }
551 +
552 + void SimInfo::setEcr( double theEcr ){
553  
554 +  ecr = theEcr;
555 +  checkCutOffs();
556   }
557  
558 + void SimInfo::setDefaultEcr( double theEcr ){
559 +
560 +  haveOrigEcr = 1;
561 +  origEcr = theEcr;
562 +  
563 +  ( rCut > ecr )? rList = rCut + 1.0: rList = ecr + 1.0;
564 +
565 +  ecr = theEcr;
566 +
567 +  notifyFortranCutOffs( &rCut, &rList, &ecr, &est );
568 + }
569 +
570 + void SimInfo::setEcr( double theEcr, double theEst ){
571 +
572 +  est = theEst;
573 +  setEcr( theEcr );
574 + }
575 +
576 + void SimInfo::setDefaultEcr( double theEcr, double theEst ){
577 +
578 +  est = theEst;
579 +  setDefaultEcr( theEcr );
580 + }
581 +
582 +
583 + void SimInfo::checkCutOffs( void ){
584 +
585 +  int cutChanged = 0;
586 +  
587 +  if( boxIsInit ){
588 +    
589 +    //we need to check cutOffs against the box
590 +
591 +    //detect the change of rCut
592 +    if(( maxCutoff > rCut )&&(usePBC)){
593 +      if( rCut < origRcut ){
594 +        rCut = origRcut;
595 +        
596 +        if (rCut > maxCutoff)
597 +          rCut = maxCutoff;
598 +  
599 +          sprintf( painCave.errMsg,
600 +                    "New Box size is setting the long range cutoff radius "
601 +                    "to %lf at time %lf\n",
602 +                    rCut, currentTime );
603 +          painCave.isFatal = 0;
604 +          simError();
605 +      }
606 +    }
607 +    else if ((rCut > maxCutoff)&&(usePBC)) {
608 +      sprintf( painCave.errMsg,
609 +               "New Box size is setting the long range cutoff radius "
610 +               "to %lf at time %lf\n",
611 +               maxCutoff, currentTime );
612 +      painCave.isFatal = 0;
613 +      simError();
614 +      rCut = maxCutoff;
615 +    }
616 +
617 +
618 +    //detect the change of ecr
619 +    if( maxCutoff > ecr ){
620 +      if( ecr < origEcr ){
621 +        ecr = origEcr;
622 +        if (ecr > maxCutoff) ecr = maxCutoff;
623 +  
624 +          sprintf( painCave.errMsg,
625 +                    "New Box size is setting the electrostaticCutoffRadius "
626 +                    "to %lf at time %lf\n",
627 +                    ecr, currentTime );
628 +            painCave.isFatal = 0;
629 +            simError();
630 +      }
631 +    }
632 +    else if( ecr > maxCutoff){
633 +      sprintf( painCave.errMsg,
634 +               "New Box size is setting the electrostaticCutoffRadius "
635 +               "to %lf at time %lf\n",
636 +               maxCutoff, currentTime  );
637 +      painCave.isFatal = 0;
638 +      simError();      
639 +      ecr = maxCutoff;
640 +    }
641 +
642 +    if( (oldEcr != ecr) || ( oldRcut != rCut ) ) cutChanged = 1;
643 +    
644 +    // rlist is the 1.0 plus max( rcut, ecr )
645 +    
646 +    ( rCut > ecr )? rList = rCut + 1.0: rList = ecr + 1.0;
647 +    
648 +    if( cutChanged ){
649 +      notifyFortranCutOffs( &rCut, &rList, &ecr, &est );
650 +    }
651 +    
652 +    oldEcr = ecr;
653 +    oldRcut = rCut;
654 +    
655 +  } else {
656 +    // initialize this stuff before using it, OK?
657 +    sprintf( painCave.errMsg,
658 +             "Trying to check cutoffs without a box. Be smarter.\n" );
659 +    painCave.isFatal = 1;
660 +    simError();      
661 +  }
662 +  
663 + }
664 +
665 + void SimInfo::addProperty(GenericData* prop){
666 +
667 +  map<string, GenericData*>::iterator result;
668 +  result = properties.find(prop->getID());
669 +  
670 +  //we can't simply use  properties[prop->getID()] = prop,
671 +  //it will cause memory leak if we already contain a propery which has the same name of prop
672 +  
673 +  if(result != properties.end()){
674 +    
675 +    delete (*result).second;
676 +    (*result).second = prop;
677 +      
678 +  }
679 +  else{
680 +
681 +    properties[prop->getID()] = prop;
682 +
683 +  }
684 +    
685 + }
686 +
687 + GenericData* SimInfo::getProperty(const string& propName){
688 +
689 +  map<string, GenericData*>::iterator result;
690 +  
691 +  //string lowerCaseName = ();
692 +  
693 +  result = properties.find(propName);
694 +  
695 +  if(result != properties.end())
696 +    return (*result).second;  
697 +  else  
698 +    return NULL;  
699 + }
700 +
701 + vector<GenericData*> SimInfo::getProperties(){
702 +
703 +  vector<GenericData*> result;
704 +  map<string, GenericData*>::iterator i;
705 +  
706 +  for(i = properties.begin(); i != properties.end(); i++)
707 +    result.push_back((*i).second);
708 +    
709 +  return result;
710 + }
711 +
712 + double SimInfo::matTrace3(double m[3][3]){
713 +  double trace;
714 +  trace = m[0][0] + m[1][1] + m[2][2];
715 +
716 +  return trace;
717 + }

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines