ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/trunk/OOPSE/libmdtools/SimInfo.cpp
(Generate patch)

Comparing trunk/OOPSE/libmdtools/SimInfo.cpp (file contents):
Revision 402 by mmeineke, Wed Mar 26 14:55:50 2003 UTC vs.
Revision 1154 by gezelter, Tue May 11 16:00:22 2004 UTC

# Line 1 | Line 1
1 < #include <cstdlib>
2 < #include <cstring>
1 > #include <stdlib.h>
2 > #include <string.h>
3 > #include <math.h>
4  
5 + #include <iostream>
6 + using namespace std;
7  
8   #include "SimInfo.hpp"
9   #define __C
# Line 9 | Line 12 | SimInfo* currentInfo;
12  
13   #include "fortranWrappers.hpp"
14  
15 + #include "MatVec3.h"
16 +
17 + #ifdef IS_MPI
18 + #include "mpiSimulation.hpp"
19 + #endif
20 +
21 + inline double roundMe( double x ){
22 +  return ( x >= 0 ) ? floor( x + 0.5 ) : ceil( x - 0.5 );
23 + }
24 +          
25 + inline double min( double a, double b ){
26 +  return (a < b ) ? a : b;
27 + }
28 +
29   SimInfo* currentInfo;
30  
31   SimInfo::SimInfo(){
32 <  excludes = NULL;
32 >
33    n_constraints = 0;
34 +  nZconstraints = 0;
35    n_oriented = 0;
36    n_dipoles = 0;
37 +  ndf = 0;
38 +  ndfRaw = 0;
39 +  nZconstraints = 0;
40    the_integrator = NULL;
41    setTemp = 0;
42    thermalTime = 0.0;
43 +  currentTime = 0.0;
44 +  rCut = 0.0;
45 +  rSw = 0.0;
46  
47 +  haveRcut = 0;
48 +  haveRsw = 0;
49 +  boxIsInit = 0;
50 +  
51 +  resetTime = 1e99;
52 +
53 +  orthoRhombic = 0;
54 +  orthoTolerance = 1E-6;
55 +  useInitXSstate = true;
56 +
57    usePBC = 0;
58    useLJ = 0;
59    useSticky = 0;
60 <  useDipole = 0;
60 >  useCharges = 0;
61 >  useDipoles = 0;
62    useReactionField = 0;
63    useGB = 0;
64    useEAM = 0;
65  
66 +  excludes = Exclude::Instance();
67  
68 +  myConfiguration = new SimState();
69  
70 +  has_minimizer = false;
71 +  the_minimizer =NULL;
72 +
73 +  ngroup = 0;
74 +
75    wrapMeSimInfo( this );
76 + }
77 +
78 +
79 + SimInfo::~SimInfo(){
80 +
81 +  delete myConfiguration;
82 +
83 +  map<string, GenericData*>::iterator i;
84 +  
85 +  for(i = properties.begin(); i != properties.end(); i++)
86 +    delete (*i).second;
87 +  
88 + }
89 +
90 + void SimInfo::setBox(double newBox[3]) {
91 +  
92 +  int i, j;
93 +  double tempMat[3][3];
94 +
95 +  for(i=0; i<3; i++)
96 +    for (j=0; j<3; j++) tempMat[i][j] = 0.0;;
97 +
98 +  tempMat[0][0] = newBox[0];
99 +  tempMat[1][1] = newBox[1];
100 +  tempMat[2][2] = newBox[2];
101 +
102 +  setBoxM( tempMat );
103 +
104 + }
105 +
106 + void SimInfo::setBoxM( double theBox[3][3] ){
107 +  
108 +  int i, j;
109 +  double FortranHmat[9]; // to preserve compatibility with Fortran the
110 +                         // ordering in the array is as follows:
111 +                         // [ 0 3 6 ]
112 +                         // [ 1 4 7 ]
113 +                         // [ 2 5 8 ]
114 +  double FortranHmatInv[9]; // the inverted Hmat (for Fortran);
115 +
116 +  if( !boxIsInit ) boxIsInit = 1;
117 +
118 +  for(i=0; i < 3; i++)
119 +    for (j=0; j < 3; j++) Hmat[i][j] = theBox[i][j];
120 +  
121 +  calcBoxL();
122 +  calcHmatInv();
123 +
124 +  for(i=0; i < 3; i++) {
125 +    for (j=0; j < 3; j++) {
126 +      FortranHmat[3*j + i] = Hmat[i][j];
127 +      FortranHmatInv[3*j + i] = HmatInv[i][j];
128 +    }
129 +  }
130 +
131 +  setFortranBoxSize(FortranHmat, FortranHmatInv, &orthoRhombic);
132 +
133 + }
134 +
135 +
136 + void SimInfo::getBoxM (double theBox[3][3]) {
137 +
138 +  int i, j;
139 +  for(i=0; i<3; i++)
140 +    for (j=0; j<3; j++) theBox[i][j] = Hmat[i][j];
141 + }
142 +
143 +
144 + void SimInfo::scaleBox(double scale) {
145 +  double theBox[3][3];
146 +  int i, j;
147 +
148 +  // cerr << "Scaling box by " << scale << "\n";
149 +
150 +  for(i=0; i<3; i++)
151 +    for (j=0; j<3; j++) theBox[i][j] = Hmat[i][j]*scale;
152 +
153 +  setBoxM(theBox);
154 +
155 + }
156 +
157 + void SimInfo::calcHmatInv( void ) {
158 +  
159 +  int oldOrtho;
160 +  int i,j;
161 +  double smallDiag;
162 +  double tol;
163 +  double sanity[3][3];
164 +
165 +  invertMat3( Hmat, HmatInv );
166 +
167 +  // check to see if Hmat is orthorhombic
168 +  
169 +  oldOrtho = orthoRhombic;
170 +
171 +  smallDiag = fabs(Hmat[0][0]);
172 +  if(smallDiag > fabs(Hmat[1][1])) smallDiag = fabs(Hmat[1][1]);
173 +  if(smallDiag > fabs(Hmat[2][2])) smallDiag = fabs(Hmat[2][2]);
174 +  tol = smallDiag * orthoTolerance;
175 +
176 +  orthoRhombic = 1;
177 +  
178 +  for (i = 0; i < 3; i++ ) {
179 +    for (j = 0 ; j < 3; j++) {
180 +      if (i != j) {
181 +        if (orthoRhombic) {
182 +          if ( fabs(Hmat[i][j]) >= tol) orthoRhombic = 0;
183 +        }        
184 +      }
185 +    }
186 +  }
187 +
188 +  if( oldOrtho != orthoRhombic ){
189 +    
190 +    if( orthoRhombic ){
191 +      sprintf( painCave.errMsg,
192 +               "OOPSE is switching from the default Non-Orthorhombic\n"
193 +               "\tto the faster Orthorhombic periodic boundary computations.\n"
194 +               "\tThis is usually a good thing, but if you wan't the\n"
195 +               "\tNon-Orthorhombic computations, make the orthoBoxTolerance\n"
196 +               "\tvariable ( currently set to %G ) smaller.\n",
197 +               orthoTolerance);
198 +      simError();
199 +    }
200 +    else {
201 +      sprintf( painCave.errMsg,
202 +               "OOPSE is switching from the faster Orthorhombic to the more\n"
203 +               "\tflexible Non-Orthorhombic periodic boundary computations.\n"
204 +               "\tThis is usually because the box has deformed under\n"
205 +               "\tNPTf integration. If you wan't to live on the edge with\n"
206 +               "\tthe Orthorhombic computations, make the orthoBoxTolerance\n"
207 +               "\tvariable ( currently set to %G ) larger.\n",
208 +               orthoTolerance);
209 +      simError();
210 +    }
211 +  }
212 + }
213 +
214 + void SimInfo::calcBoxL( void ){
215 +
216 +  double dx, dy, dz, dsq;
217 +
218 +  // boxVol = Determinant of Hmat
219 +
220 +  boxVol = matDet3( Hmat );
221 +
222 +  // boxLx
223 +  
224 +  dx = Hmat[0][0]; dy = Hmat[1][0]; dz = Hmat[2][0];
225 +  dsq = dx*dx + dy*dy + dz*dz;
226 +  boxL[0] = sqrt( dsq );
227 +  //maxCutoff = 0.5 * boxL[0];
228 +
229 +  // boxLy
230 +  
231 +  dx = Hmat[0][1]; dy = Hmat[1][1]; dz = Hmat[2][1];
232 +  dsq = dx*dx + dy*dy + dz*dz;
233 +  boxL[1] = sqrt( dsq );
234 +  //if( (0.5 * boxL[1]) < maxCutoff ) maxCutoff = 0.5 * boxL[1];
235 +
236 +
237 +  // boxLz
238 +  
239 +  dx = Hmat[0][2]; dy = Hmat[1][2]; dz = Hmat[2][2];
240 +  dsq = dx*dx + dy*dy + dz*dz;
241 +  boxL[2] = sqrt( dsq );
242 +  //if( (0.5 * boxL[2]) < maxCutoff ) maxCutoff = 0.5 * boxL[2];
243 +
244 +  //calculate the max cutoff
245 +  maxCutoff =  calcMaxCutOff();
246 +  
247 +  checkCutOffs();
248 +
249 + }
250 +
251 +
252 + double SimInfo::calcMaxCutOff(){
253 +
254 +  double ri[3], rj[3], rk[3];
255 +  double rij[3], rjk[3], rki[3];
256 +  double minDist;
257 +
258 +  ri[0] = Hmat[0][0];
259 +  ri[1] = Hmat[1][0];
260 +  ri[2] = Hmat[2][0];
261 +
262 +  rj[0] = Hmat[0][1];
263 +  rj[1] = Hmat[1][1];
264 +  rj[2] = Hmat[2][1];
265 +
266 +  rk[0] = Hmat[0][2];
267 +  rk[1] = Hmat[1][2];
268 +  rk[2] = Hmat[2][2];
269 +    
270 +  crossProduct3(ri, rj, rij);
271 +  distXY = dotProduct3(rk,rij) / norm3(rij);
272 +
273 +  crossProduct3(rj,rk, rjk);
274 +  distYZ = dotProduct3(ri,rjk) / norm3(rjk);
275 +
276 +  crossProduct3(rk,ri, rki);
277 +  distZX = dotProduct3(rj,rki) / norm3(rki);
278 +
279 +  minDist = min(min(distXY, distYZ), distZX);
280 +  return minDist/2;
281 +  
282 + }
283 +
284 + void SimInfo::wrapVector( double thePos[3] ){
285 +
286 +  int i;
287 +  double scaled[3];
288 +
289 +  if( !orthoRhombic ){
290 +    // calc the scaled coordinates.
291 +  
292 +
293 +    matVecMul3(HmatInv, thePos, scaled);
294 +    
295 +    for(i=0; i<3; i++)
296 +      scaled[i] -= roundMe(scaled[i]);
297 +    
298 +    // calc the wrapped real coordinates from the wrapped scaled coordinates
299 +    
300 +    matVecMul3(Hmat, scaled, thePos);
301 +
302 +  }
303 +  else{
304 +    // calc the scaled coordinates.
305 +    
306 +    for(i=0; i<3; i++)
307 +      scaled[i] = thePos[i]*HmatInv[i][i];
308 +    
309 +    // wrap the scaled coordinates
310 +    
311 +    for(i=0; i<3; i++)
312 +      scaled[i] -= roundMe(scaled[i]);
313 +    
314 +    // calc the wrapped real coordinates from the wrapped scaled coordinates
315 +    
316 +    for(i=0; i<3; i++)
317 +      thePos[i] = scaled[i]*Hmat[i][i];
318 +  }
319 +    
320 + }
321 +
322 +
323 + int SimInfo::getNDF(){
324 +  int ndf_local;
325 +
326 +  ndf_local = 0;
327 +  
328 +  for(int i = 0; i < integrableObjects.size(); i++){
329 +    ndf_local += 3;
330 +    if (integrableObjects[i]->isDirectional()) {
331 +      if (integrableObjects[i]->isLinear())
332 +        ndf_local += 2;
333 +      else
334 +        ndf_local += 3;
335 +    }
336 +  }
337 +
338 +  // n_constraints is local, so subtract them on each processor:
339 +
340 +  ndf_local -= n_constraints;
341 +
342 + #ifdef IS_MPI
343 +  MPI_Allreduce(&ndf_local,&ndf,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
344 + #else
345 +  ndf = ndf_local;
346 + #endif
347 +
348 +  // nZconstraints is global, as are the 3 COM translations for the
349 +  // entire system:
350 +
351 +  ndf = ndf - 3 - nZconstraints;
352 +
353 +  return ndf;
354   }
355  
356 + int SimInfo::getNDFraw() {
357 +  int ndfRaw_local;
358 +
359 +  // Raw degrees of freedom that we have to set
360 +  ndfRaw_local = 0;
361 +
362 +  for(int i = 0; i < integrableObjects.size(); i++){
363 +    ndfRaw_local += 3;
364 +    if (integrableObjects[i]->isDirectional()) {
365 +       if (integrableObjects[i]->isLinear())
366 +        ndfRaw_local += 2;
367 +      else
368 +        ndfRaw_local += 3;
369 +    }
370 +  }
371 +    
372 + #ifdef IS_MPI
373 +  MPI_Allreduce(&ndfRaw_local,&ndfRaw,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
374 + #else
375 +  ndfRaw = ndfRaw_local;
376 + #endif
377 +
378 +  return ndfRaw;
379 + }
380 +
381 + int SimInfo::getNDFtranslational() {
382 +  int ndfTrans_local;
383 +
384 +  ndfTrans_local = 3 * integrableObjects.size() - n_constraints;
385 +
386 +
387 + #ifdef IS_MPI
388 +  MPI_Allreduce(&ndfTrans_local,&ndfTrans,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
389 + #else
390 +  ndfTrans = ndfTrans_local;
391 + #endif
392 +
393 +  ndfTrans = ndfTrans - 3 - nZconstraints;
394 +
395 +  return ndfTrans;
396 + }
397 +
398 + int SimInfo::getTotIntegrableObjects() {
399 +  int nObjs_local;
400 +  int nObjs;
401 +
402 +  nObjs_local =  integrableObjects.size();
403 +
404 +
405 + #ifdef IS_MPI
406 +  MPI_Allreduce(&nObjs_local,&nObjs,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
407 + #else
408 +  nObjs = nObjs_local;
409 + #endif
410 +
411 +
412 +  return nObjs;
413 + }
414 +
415   void SimInfo::refreshSim(){
416  
417    simtype fInfo;
418    int isError;
419 +  int n_global;
420 +  int* excl;
421  
422 <  fInfo.box[0] = box_x;
42 <  fInfo.box[1] = box_y;
43 <  fInfo.box[2] = box_z;
422 >  fInfo.dielect = 0.0;
423  
424 <  fInfo.rlist = rList;
425 <  fInfo.rcut = rCut;
426 <  fInfo.rrf = ecr;
48 <  fInfo.rt = ecr - est;
49 <  fInfo.dielect = dielectric;
424 >  if( useDipoles ){
425 >    if( useReactionField )fInfo.dielect = dielectric;
426 >  }
427  
428    fInfo.SIM_uses_PBC = usePBC;
429 +  //fInfo.SIM_uses_LJ = 0;
430    fInfo.SIM_uses_LJ = useLJ;
431 <  //fInfo.SIM_uses_sticky = useSticky;
432 <  fInfo.SIM_uses_sticky = 0;
433 <  fInfo.SIM_uses_dipoles = useDipole;
431 >  fInfo.SIM_uses_sticky = useSticky;
432 >  //fInfo.SIM_uses_sticky = 0;
433 >  fInfo.SIM_uses_charges = useCharges;
434 >  fInfo.SIM_uses_dipoles = useDipoles;
435    //fInfo.SIM_uses_dipoles = 0;
436    fInfo.SIM_uses_RF = useReactionField;
437 +  //fInfo.SIM_uses_RF = 0;
438    fInfo.SIM_uses_GB = useGB;
439    fInfo.SIM_uses_EAM = useEAM;
440  
441 <
441 >  n_exclude = excludes->getSize();
442 >  excl = excludes->getFortranArray();
443 >  
444 > #ifdef IS_MPI
445 >  n_global = mpiSim->getTotAtoms();
446 > #else
447 >  n_global = n_atoms;
448 > #endif
449 >  
450    isError = 0;
451 <
452 <  fInfo;
453 <  n_atoms;
454 <  identArray;
455 <  n_exclude;
456 <  excludes;
457 <  nGlobalExcludes;
70 <  globalExcludes;
71 <  isError;
72 <
73 <  setFsimulation( &fInfo, &n_atoms, identArray, &n_exclude, excludes, &nGlobalExcludes, globalExcludes, &isError );
74 <
451 >  
452 >  getFortranGroupArray(this, mfact, ngroup, groupList, groupStart);
453 >  
454 >  setFsimulation( &fInfo, &n_global, &n_atoms, identArray, &n_exclude, excl,
455 >                  &nGlobalExcludes, globalExcludes, molMembershipArray,
456 >                  &mfact[0], &ngroup, &groupList[0], &groupStart[0], &isError);
457 >  
458    if( isError ){
459 <
459 >    
460      sprintf( painCave.errMsg,
461 <             "There was an error setting the simulation information in fortran.\n" );
461 >             "There was an error setting the simulation information in fortran.\n" );
462      painCave.isFatal = 1;
463      simError();
464    }
465 <
465 >  
466   #ifdef IS_MPI
467    sprintf( checkPointMsg,
468             "succesfully sent the simulation information to fortran.\n");
469    MPIcheckPoint();
470   #endif // is_mpi
471 +  
472 +  this->ndf = this->getNDF();
473 +  this->ndfRaw = this->getNDFraw();
474 +  this->ndfTrans = this->getNDFtranslational();
475   }
476  
477 + void SimInfo::setDefaultRcut( double theRcut ){
478 +  
479 +  haveRcut = 1;
480 +  rCut = theRcut;
481 +  rList = rCut + 1.0;
482 +  
483 +  notifyFortranCutOffs( &rCut, &rSw, &rList );
484 + }
485 +
486 + void SimInfo::setDefaultRcut( double theRcut, double theRsw ){
487 +
488 +  rSw = theRsw;
489 +  setDefaultRcut( theRcut );
490 + }
491 +
492 +
493 + void SimInfo::checkCutOffs( void ){
494 +  
495 +  if( boxIsInit ){
496 +    
497 +    //we need to check cutOffs against the box
498 +    
499 +    if( rCut > maxCutoff ){
500 +      sprintf( painCave.errMsg,
501 +               "cutoffRadius is too large for the current periodic box.\n"
502 +               "\tCurrent Value of cutoffRadius = %G at time %G\n "
503 +               "\tThis is larger than half of at least one of the\n"
504 +               "\tperiodic box vectors.  Right now, the Box matrix is:\n"
505 +               "\n"
506 +               "\t[ %G %G %G ]\n"
507 +               "\t[ %G %G %G ]\n"
508 +               "\t[ %G %G %G ]\n",
509 +               rCut, currentTime,
510 +               Hmat[0][0], Hmat[0][1], Hmat[0][2],
511 +               Hmat[1][0], Hmat[1][1], Hmat[1][2],
512 +               Hmat[2][0], Hmat[2][1], Hmat[2][2]);
513 +      painCave.isFatal = 1;
514 +      simError();
515 +    }    
516 +  } else {
517 +    // initialize this stuff before using it, OK?
518 +    sprintf( painCave.errMsg,
519 +             "Trying to check cutoffs without a box.\n"
520 +             "\tOOPSE should have better programmers than that.\n" );
521 +    painCave.isFatal = 1;
522 +    simError();      
523 +  }
524 +  
525 + }
526 +
527 + void SimInfo::addProperty(GenericData* prop){
528 +
529 +  map<string, GenericData*>::iterator result;
530 +  result = properties.find(prop->getID());
531 +  
532 +  //we can't simply use  properties[prop->getID()] = prop,
533 +  //it will cause memory leak if we already contain a propery which has the same name of prop
534 +  
535 +  if(result != properties.end()){
536 +    
537 +    delete (*result).second;
538 +    (*result).second = prop;
539 +      
540 +  }
541 +  else{
542 +
543 +    properties[prop->getID()] = prop;
544 +
545 +  }
546 +    
547 + }
548 +
549 + GenericData* SimInfo::getProperty(const string& propName){
550 +
551 +  map<string, GenericData*>::iterator result;
552 +  
553 +  //string lowerCaseName = ();
554 +  
555 +  result = properties.find(propName);
556 +  
557 +  if(result != properties.end())
558 +    return (*result).second;  
559 +  else  
560 +    return NULL;  
561 + }
562 +
563 +
564 + void getFortranGroupArray(SimInfo* info, vector<double>& mfact, int& ngroup,
565 +                          vector<int>& groupList, vector<int>& groupStart){
566 +  Molecule* mol;
567 +  Atom** myAtoms;
568 +  int numAtom;
569 +  int curIndex;
570 +  double mtot;
571 +
572 +  mfact.clear();
573 +  groupList.clear();
574 +  groupStart.clear();
575 +  
576 +  //Be careful, fortran array begin at 1
577 +  curIndex = 1;
578 +  
579 +  if(info->useMolecularCutoffs){
580 +    
581 + #ifdef IS_MPI
582 +    ngroup = mpiSim->getMyNMol();
583 + #else
584 +    ngroup = info->n_mol;
585 + #endif
586 +    
587 +    for(int i = 0; i < ngroup; i ++){
588 +      mol = &(info->molecules[i]);
589 +      numAtom = mol->getNAtoms();
590 +      myAtoms = mol->getMyAtoms();
591 +      mtot = 0.0;
592 +
593 +      for(int j=0; j < numAtom; j++)
594 +        mtot += myAtoms[j]->getMass();                
595 +      
596 +      for(int j=0; j < numAtom; j++){
597 +              
598 +        // We want the local Index:
599 +        groupList.push_back(myAtoms[j]->getIndex() + 1);
600 +        mfact.push_back(myAtoms[j]->getMass() / mtot);
601 +
602 +      }
603 +      
604 +      groupStart.push_back(curIndex);
605 +      curIndex += numAtom;
606 +      
607 +    } //end for(int i =0 ; i < ngroup; i++)    
608 +  }
609 +  else{
610 +    //using atomic cutoff, every single atom is just a group
611 +    
612 + #ifdef IS_MPI
613 +    ngroup = mpiSim->getMyNlocal();
614 + #else
615 +    ngroup = info->n_atoms;
616 + #endif
617 +    
618 +    for(int i =0 ; i < ngroup; i++){
619 +      groupStart.push_back(curIndex++);      
620 +      groupList.push_back((info->atoms[i])->getIndex() + 1);
621 +      mfact.push_back(1.0);
622 +      
623 +    }//end for(int i =0 ; i < ngroup; i++)
624 +    
625 +  }//end if (info->useMolecularCutoffs)
626 +  
627 + }

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines