ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/trunk/OOPSE/libmdtools/SimInfo.cpp
(Generate patch)

Comparing trunk/OOPSE/libmdtools/SimInfo.cpp (file contents):
Revision 588 by gezelter, Thu Jul 10 17:10:56 2003 UTC vs.
Revision 1113 by tim, Thu Apr 15 16:18:26 2004 UTC

# Line 1 | Line 1
1 < #include <cstdlib>
2 < #include <cstring>
3 < #include <cmath>
1 > #include <stdlib.h>
2 > #include <string.h>
3 > #include <math.h>
4  
5   #include <iostream>
6   using namespace std;
# Line 12 | Line 12 | using namespace std;
12  
13   #include "fortranWrappers.hpp"
14  
15 + #include "MatVec3.h"
16 +
17   #ifdef IS_MPI
18   #include "mpiSimulation.hpp"
19   #endif
# Line 20 | Line 22 | inline double roundMe( double x ){
22    return ( x >= 0 ) ? floor( x + 0.5 ) : ceil( x - 0.5 );
23   }
24            
25 + inline double min( double a, double b ){
26 +  return (a < b ) ? a : b;
27 + }
28  
29   SimInfo* currentInfo;
30  
31   SimInfo::SimInfo(){
32 <  excludes = NULL;
32 >
33    n_constraints = 0;
34 +  nZconstraints = 0;
35    n_oriented = 0;
36    n_dipoles = 0;
37    ndf = 0;
38    ndfRaw = 0;
39 +  nZconstraints = 0;
40    the_integrator = NULL;
41    setTemp = 0;
42    thermalTime = 0.0;
43 +  currentTime = 0.0;
44    rCut = 0.0;
45 +  ecr = 0.0;
46 +  est = 0.0;
47  
48 +  haveRcut = 0;
49 +  haveEcr = 0;
50 +  boxIsInit = 0;
51 +  
52 +  resetTime = 1e99;
53 +
54 +  orthoRhombic = 0;
55 +  orthoTolerance = 1E-6;
56 +  useInitXSstate = true;
57 +
58    usePBC = 0;
59    useLJ = 0;
60    useSticky = 0;
61 <  useDipole = 0;
61 >  useCharges = 0;
62 >  useDipoles = 0;
63    useReactionField = 0;
64    useGB = 0;
65    useEAM = 0;
66  
67 +  excludes = Exclude::Instance();
68 +
69 +  myConfiguration = new SimState();
70 +
71 +  has_minimizer = false;
72 +  the_minimizer =NULL;
73 +
74    wrapMeSimInfo( this );
75   }
76  
77 +
78 + SimInfo::~SimInfo(){
79 +
80 +  delete myConfiguration;
81 +
82 +  map<string, GenericData*>::iterator i;
83 +  
84 +  for(i = properties.begin(); i != properties.end(); i++)
85 +    delete (*i).second;
86 +    
87 + }
88 +
89   void SimInfo::setBox(double newBox[3]) {
90    
91    int i, j;
# Line 64 | Line 104 | void SimInfo::setBoxM( double theBox[3][3] ){
104  
105   void SimInfo::setBoxM( double theBox[3][3] ){
106    
107 <  int i, j, status;
68 <  double smallestBoxL, maxCutoff;
107 >  int i, j;
108    double FortranHmat[9]; // to preserve compatibility with Fortran the
109                           // ordering in the array is as follows:
110                           // [ 0 3 6 ]
# Line 73 | Line 112 | void SimInfo::setBoxM( double theBox[3][3] ){
112                           // [ 2 5 8 ]
113    double FortranHmatInv[9]; // the inverted Hmat (for Fortran);
114  
115 +  if( !boxIsInit ) boxIsInit = 1;
116  
117    for(i=0; i < 3; i++)
118      for (j=0; j < 3; j++) Hmat[i][j] = theBox[i][j];
119    
80  cerr
81    << "setting Hmat ->\n"
82    << "[ " << Hmat[0][0] << ", " << Hmat[0][1] << ", " << Hmat[0][2] << " ]\n"
83    << "[ " << Hmat[1][0] << ", " << Hmat[1][1] << ", " << Hmat[1][2] << " ]\n"
84    << "[ " << Hmat[2][0] << ", " << Hmat[2][1] << ", " << Hmat[2][2] << " ]\n";
85
120    calcBoxL();
121    calcHmatInv();
122  
# Line 93 | Line 127 | void SimInfo::setBoxM( double theBox[3][3] ){
127      }
128    }
129  
130 <  setFortranBoxSize(FortranHmat, FortranHmatI, &orthoRhombic);
130 >  setFortranBoxSize(FortranHmat, FortranHmatInv, &orthoRhombic);
131  
98  smallestBoxL = boxLx;
99  if (boxLy < smallestBoxL) smallestBoxL = boxLy;
100  if (boxLz < smallestBoxL) smallestBoxL = boxLz;
101
102  maxCutoff = smallestBoxL / 2.0;
103
104  if (rList > maxCutoff) {
105    sprintf( painCave.errMsg,
106             "New Box size is forcing neighborlist radius down to %lf\n",
107             maxCutoff );
108    painCave.isFatal = 0;
109    simError();
110
111    rList = maxCutoff;
112
113    sprintf( painCave.errMsg,
114             "New Box size is forcing cutoff radius down to %lf\n",
115             maxCutoff - 1.0 );
116    painCave.isFatal = 0;
117    simError();
118
119    rCut = rList - 1.0;
120
121    // list radius changed so we have to refresh the simulation structure.
122    refreshSim();
123  }
124
125  if (rCut > maxCutoff) {
126    sprintf( painCave.errMsg,
127             "New Box size is forcing cutoff radius down to %lf\n",
128             maxCutoff );
129    painCave.isFatal = 0;
130    simError();
131
132    status = 0;
133    LJ_new_rcut(&rCut, &status);
134    if (status != 0) {
135      sprintf( painCave.errMsg,
136               "Error in recomputing LJ shifts based on new rcut\n");
137      painCave.isFatal = 1;
138      simError();
139    }
140  }
132   }
133  
134  
# Line 153 | Line 144 | void SimInfo::scaleBox(double scale) {
144    double theBox[3][3];
145    int i, j;
146  
147 <  cerr << "Scaling box by " << scale << "\n";
147 >  // cerr << "Scaling box by " << scale << "\n";
148  
149    for(i=0; i<3; i++)
150      for (j=0; j<3; j++) theBox[i][j] = Hmat[i][j]*scale;
# Line 163 | Line 154 | void SimInfo::calcHmatInv( void ) {
154   }
155  
156   void SimInfo::calcHmatInv( void ) {
157 <
157 >  
158 >  int oldOrtho;
159 >  int i,j;
160    double smallDiag;
161    double tol;
162    double sanity[3][3];
163  
164    invertMat3( Hmat, HmatInv );
165  
173  // Check the inverse to make sure it is sane:
174
175  matMul3( Hmat, HmatInv, sanity );
176
177  cerr << "sanity => \n"
178       << sanity[0][0] << "\t" << sanity[0][1] << "\t" << sanity [0][2] << "\n"
179       << sanity[1][0] << "\t" << sanity[1][1] << "\t" << sanity [1][2] << "\n"
180       << sanity[2][0] << "\t" << sanity[2][1] << "\t" << sanity [2][2]
181       << "\n";
182    
166    // check to see if Hmat is orthorhombic
167    
168 <  smallDiag = Hmat[0][0];
186 <  if(smallDiag > Hmat[1][1]) smallDiag = Hmat[1][1];
187 <  if(smallDiag > Hmat[2][2]) smallDiag = Hmat[2][2];
188 <  tol = smallDiag * 1E-6;
168 >  oldOrtho = orthoRhombic;
169  
170 +  smallDiag = fabs(Hmat[0][0]);
171 +  if(smallDiag > fabs(Hmat[1][1])) smallDiag = fabs(Hmat[1][1]);
172 +  if(smallDiag > fabs(Hmat[2][2])) smallDiag = fabs(Hmat[2][2]);
173 +  tol = smallDiag * orthoTolerance;
174 +
175    orthoRhombic = 1;
176    
177    for (i = 0; i < 3; i++ ) {
178      for (j = 0 ; j < 3; j++) {
179        if (i != j) {
180          if (orthoRhombic) {
181 <          if (Hmat[i][j] >= tol) orthoRhombic = 0;
181 >          if ( fabs(Hmat[i][j]) >= tol) orthoRhombic = 0;
182          }        
183        }
184      }
185    }
201 }
186  
187 < double SimInfo::matDet3(double a[3][3]) {
188 <  int i, j, k;
189 <  double determinant;
190 <
191 <  determinant = 0.0;
192 <
193 <  for(i = 0; i < 3; i++) {
194 <    j = (i+1)%3;
195 <    k = (i+2)%3;
196 <
197 <    determinant += a[0][i] * (a[1][j]*a[2][k] - a[1][k]*a[2][j]);
214 <  }
215 <
216 <  return determinant;
217 < }
218 <
219 < void SimInfo::invertMat3(double a[3][3], double b[3][3]) {
220 <  
221 <  int  i, j, k, l, m, n;
222 <  double determinant;
223 <
224 <  determinant = matDet3( a );
225 <
226 <  if (determinant == 0.0) {
227 <    sprintf( painCave.errMsg,
228 <             "Can't invert a matrix with a zero determinant!\n");
229 <    painCave.isFatal = 1;
230 <    simError();
231 <  }
232 <
233 <  for (i=0; i < 3; i++) {
234 <    j = (i+1)%3;
235 <    k = (i+2)%3;
236 <    for(l = 0; l < 3; l++) {
237 <      m = (l+1)%3;
238 <      n = (l+2)%3;
239 <      
240 <      b[l][i] = (a[j][m]*a[k][n] - a[j][n]*a[k][m]) / determinant;
187 >  if( oldOrtho != orthoRhombic ){
188 >    
189 >    if( orthoRhombic ){
190 >      sprintf( painCave.errMsg,
191 >               "OOPSE is switching from the default Non-Orthorhombic\n"
192 >               "\tto the faster Orthorhombic periodic boundary computations.\n"
193 >               "\tThis is usually a good thing, but if you wan't the\n"
194 >               "\tNon-Orthorhombic computations, make the orthoBoxTolerance\n"
195 >               "\tvariable ( currently set to %G ) smaller.\n",
196 >               orthoTolerance);
197 >      simError();
198      }
199 +    else {
200 +      sprintf( painCave.errMsg,
201 +               "OOPSE is switching from the faster Orthorhombic to the more\n"
202 +               "\tflexible Non-Orthorhombic periodic boundary computations.\n"
203 +               "\tThis is usually because the box has deformed under\n"
204 +               "\tNPTf integration. If you wan't to live on the edge with\n"
205 +               "\tthe Orthorhombic computations, make the orthoBoxTolerance\n"
206 +               "\tvariable ( currently set to %G ) larger.\n",
207 +               orthoTolerance);
208 +      simError();
209 +    }
210    }
211   }
212  
245 void SimInfo::matMul3(double a[3][3], double b[3][3], double c[3][3]) {
246  double r00, r01, r02, r10, r11, r12, r20, r21, r22;
247
248  r00 = a[0][0]*b[0][0] + a[0][1]*b[1][0] + a[0][2]*b[2][0];
249  r01 = a[0][0]*b[0][1] + a[0][1]*b[1][1] + a[0][2]*b[2][1];
250  r02 = a[0][0]*b[0][2] + a[0][1]*b[1][2] + a[0][2]*b[2][2];
251  
252  r10 = a[1][0]*b[0][0] + a[1][1]*b[1][0] + a[1][2]*b[2][0];
253  r11 = a[1][0]*b[0][1] + a[1][1]*b[1][1] + a[1][2]*b[2][1];
254  r12 = a[1][0]*b[0][2] + a[1][1]*b[1][2] + a[1][2]*b[2][2];
255  
256  r20 = a[2][0]*b[0][0] + a[2][1]*b[1][0] + a[2][2]*b[2][0];
257  r21 = a[2][0]*b[0][1] + a[2][1]*b[1][1] + a[2][2]*b[2][1];
258  r22 = a[2][0]*b[0][2] + a[2][1]*b[1][2] + a[2][2]*b[2][2];
259  
260  c[0][0] = r00; c[0][1] = r01; c[0][2] = r02;
261  c[1][0] = r10; c[1][1] = r11; c[1][2] = r12;
262  c[2][0] = r20; c[2][1] = r21; c[2][2] = r22;
263 }
264
265 void SimInfo::matVecMul3(double m[3][3], double inVec[3], double outVec[3]) {
266  double a0, a1, a2;
267
268  a0 = inVec[0];  a1 = inVec[1];  a2 = inVec[2];
269
270  outVec[0] = m[0][0]*a0 + m[0][1]*a1 + m[0][2]*a2;
271  outVec[1] = m[1][0]*a0 + m[1][1]*a1 + m[1][2]*a2;
272  outVec[2] = m[2][0]*a0 + m[2][1]*a1 + m[2][2]*a2;
273 }
274  
213   void SimInfo::calcBoxL( void ){
214  
215    double dx, dy, dz, dsq;
278  int i;
216  
217    // boxVol = Determinant of Hmat
218  
# Line 285 | Line 222 | void SimInfo::calcBoxL( void ){
222    
223    dx = Hmat[0][0]; dy = Hmat[1][0]; dz = Hmat[2][0];
224    dsq = dx*dx + dy*dy + dz*dz;
225 <  boxLx = sqrt( dsq );
225 >  boxL[0] = sqrt( dsq );
226 >  //maxCutoff = 0.5 * boxL[0];
227  
228    // boxLy
229    
230    dx = Hmat[0][1]; dy = Hmat[1][1]; dz = Hmat[2][1];
231    dsq = dx*dx + dy*dy + dz*dz;
232 <  boxLy = sqrt( dsq );
232 >  boxL[1] = sqrt( dsq );
233 >  //if( (0.5 * boxL[1]) < maxCutoff ) maxCutoff = 0.5 * boxL[1];
234  
235 +
236    // boxLz
237    
238    dx = Hmat[0][2]; dy = Hmat[1][2]; dz = Hmat[2][2];
239    dsq = dx*dx + dy*dy + dz*dz;
240 <  boxLz = sqrt( dsq );
240 >  boxL[2] = sqrt( dsq );
241 >  //if( (0.5 * boxL[2]) < maxCutoff ) maxCutoff = 0.5 * boxL[2];
242 >
243 >  //calculate the max cutoff
244 >  maxCutoff =  calcMaxCutOff();
245    
246 +  checkCutOffs();
247 +
248   }
249 +
250 +
251 + double SimInfo::calcMaxCutOff(){
252 +
253 +  double ri[3], rj[3], rk[3];
254 +  double rij[3], rjk[3], rki[3];
255 +  double minDist;
256 +
257 +  ri[0] = Hmat[0][0];
258 +  ri[1] = Hmat[1][0];
259 +  ri[2] = Hmat[2][0];
260  
261 +  rj[0] = Hmat[0][1];
262 +  rj[1] = Hmat[1][1];
263 +  rj[2] = Hmat[2][1];
264  
265 +  rk[0] = Hmat[0][2];
266 +  rk[1] = Hmat[1][2];
267 +  rk[2] = Hmat[2][2];
268 +    
269 +  crossProduct3(ri, rj, rij);
270 +  distXY = dotProduct3(rk,rij) / norm3(rij);
271 +
272 +  crossProduct3(rj,rk, rjk);
273 +  distYZ = dotProduct3(ri,rjk) / norm3(rjk);
274 +
275 +  crossProduct3(rk,ri, rki);
276 +  distZX = dotProduct3(rj,rki) / norm3(rki);
277 +
278 +  minDist = min(min(distXY, distYZ), distZX);
279 +  return minDist/2;
280 +  
281 + }
282 +
283   void SimInfo::wrapVector( double thePos[3] ){
284  
285 <  int i, j, k;
285 >  int i;
286    double scaled[3];
287  
288    if( !orthoRhombic ){
# Line 342 | Line 320 | int SimInfo::getNDF(){
320  
321  
322   int SimInfo::getNDF(){
323 <  int ndf_local, ndf;
323 >  int ndf_local;
324 >
325 >  ndf_local = 0;
326    
327 <  ndf_local = 3 * n_atoms + 3 * n_oriented - n_constraints;
327 >  for(int i = 0; i < integrableObjects.size(); i++){
328 >    ndf_local += 3;
329 >    if (integrableObjects[i]->isDirectional())
330 >      ndf_local += 3;
331 >  }
332  
333 +  // n_constraints is local, so subtract them on each processor:
334 +
335 +  ndf_local -= n_constraints;
336 +
337   #ifdef IS_MPI
338    MPI_Allreduce(&ndf_local,&ndf,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
339   #else
340    ndf = ndf_local;
341   #endif
342  
343 <  ndf = ndf - 3;
343 >  // nZconstraints is global, as are the 3 COM translations for the
344 >  // entire system:
345  
346 +  ndf = ndf - 3 - nZconstraints;
347 +
348    return ndf;
349   }
350  
351   int SimInfo::getNDFraw() {
352 <  int ndfRaw_local, ndfRaw;
352 >  int ndfRaw_local;
353  
354    // Raw degrees of freedom that we have to set
355 <  ndfRaw_local = 3 * n_atoms + 3 * n_oriented;
356 <  
355 >  ndfRaw_local = 0;
356 >
357 >  for(int i = 0; i < integrableObjects.size(); i++){
358 >    ndfRaw_local += 3;
359 >    if (integrableObjects[i]->isDirectional())
360 >      ndfRaw_local += 3;
361 >  }
362 >    
363   #ifdef IS_MPI
364    MPI_Allreduce(&ndfRaw_local,&ndfRaw,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
365   #else
# Line 371 | Line 368 | int SimInfo::getNDFraw() {
368  
369    return ndfRaw;
370   }
371 <
371 >
372 > int SimInfo::getNDFtranslational() {
373 >  int ndfTrans_local;
374 >
375 >  ndfTrans_local = 3 * integrableObjects.size() - n_constraints;
376 >
377 >
378 > #ifdef IS_MPI
379 >  MPI_Allreduce(&ndfTrans_local,&ndfTrans,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
380 > #else
381 >  ndfTrans = ndfTrans_local;
382 > #endif
383 >
384 >  ndfTrans = ndfTrans - 3 - nZconstraints;
385 >
386 >  return ndfTrans;
387 > }
388 >
389 > int SimInfo::getTotIntegrableObjects() {
390 >  int nObjs_local;
391 >  int nObjs;
392 >
393 >  nObjs_local =  integrableObjects.size();
394 >
395 >
396 > #ifdef IS_MPI
397 >  MPI_Allreduce(&nObjs_local,&nObjs,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
398 > #else
399 >  nObjs = nObjs_local;
400 > #endif
401 >
402 >
403 >  return nObjs;
404 > }
405 >
406   void SimInfo::refreshSim(){
407  
408    simtype fInfo;
409    int isError;
410    int n_global;
411    int* excl;
412 <  
382 <  fInfo.rrf = 0.0;
383 <  fInfo.rt = 0.0;
412 >
413    fInfo.dielect = 0.0;
414  
415 <  fInfo.rlist = rList;
387 <  fInfo.rcut = rCut;
388 <
389 <  if( useDipole ){
390 <    fInfo.rrf = ecr;
391 <    fInfo.rt = ecr - est;
415 >  if( useDipoles ){
416      if( useReactionField )fInfo.dielect = dielectric;
417    }
418  
# Line 397 | Line 421 | void SimInfo::refreshSim(){
421    fInfo.SIM_uses_LJ = useLJ;
422    fInfo.SIM_uses_sticky = useSticky;
423    //fInfo.SIM_uses_sticky = 0;
424 <  fInfo.SIM_uses_dipoles = useDipole;
424 >  fInfo.SIM_uses_charges = useCharges;
425 >  fInfo.SIM_uses_dipoles = useDipoles;
426    //fInfo.SIM_uses_dipoles = 0;
427 <  //fInfo.SIM_uses_RF = useReactionField;
428 <  fInfo.SIM_uses_RF = 0;
427 >  fInfo.SIM_uses_RF = useReactionField;
428 >  //fInfo.SIM_uses_RF = 0;
429    fInfo.SIM_uses_GB = useGB;
430    fInfo.SIM_uses_EAM = useEAM;
431  
432 <  excl = Exclude::getArray();
432 >  n_exclude = excludes->getSize();
433 >  excl = excludes->getFortranArray();
434  
435   #ifdef IS_MPI
436    n_global = mpiSim->getTotAtoms();
# Line 434 | Line 460 | void SimInfo::refreshSim(){
460  
461    this->ndf = this->getNDF();
462    this->ndfRaw = this->getNDFraw();
463 +  this->ndfTrans = this->getNDFtranslational();
464 + }
465  
466 + void SimInfo::setDefaultRcut( double theRcut ){
467 +
468 +  haveRcut = 1;
469 +  rCut = theRcut;
470 +
471 +  ( rCut > ecr )? rList = rCut + 1.0: rList = ecr + 1.0;
472 +
473 +  notifyFortranCutOffs( &rCut, &rList, &ecr, &est );
474   }
475  
476 + void SimInfo::setDefaultEcr( double theEcr ){
477 +
478 +  haveEcr = 1;
479 +  ecr = theEcr;
480 +  
481 +  ( rCut > ecr )? rList = rCut + 1.0: rList = ecr + 1.0;
482 +
483 +  notifyFortranCutOffs( &rCut, &rList, &ecr, &est );
484 + }
485 +
486 + void SimInfo::setDefaultEcr( double theEcr, double theEst ){
487 +
488 +  est = theEst;
489 +  setDefaultEcr( theEcr );
490 + }
491 +
492 +
493 + void SimInfo::checkCutOffs( void ){
494 +  
495 +  if( boxIsInit ){
496 +    
497 +    //we need to check cutOffs against the box
498 +    
499 +    if( rCut > maxCutoff ){
500 +      sprintf( painCave.errMsg,
501 +               "LJrcut is too large for the current periodic box.\n"
502 +               "\tCurrent Value of LJrcut = %G at time %G\n "
503 +               "\tThis is larger than half of at least one of the\n"
504 +               "\tperiodic box vectors.  Right now, the Box matrix is:\n"
505 +               "\n, %G"
506 +               "\t[ %G %G %G ]\n"
507 +               "\t[ %G %G %G ]\n"
508 +               "\t[ %G %G %G ]\n",
509 +               rCut, currentTime, maxCutoff,
510 +               Hmat[0][0], Hmat[0][1], Hmat[0][2],
511 +               Hmat[1][0], Hmat[1][1], Hmat[1][2],
512 +               Hmat[2][0], Hmat[2][1], Hmat[2][2]);
513 +      painCave.isFatal = 1;
514 +      simError();
515 +    }
516 +    
517 +    if( haveEcr ){
518 +      if( ecr > maxCutoff ){
519 +        sprintf( painCave.errMsg,
520 +                 "electrostaticCutoffRadius is too large for the current\n"
521 +                 "\tperiodic box.\n\n"
522 +                 "\tCurrent Value of ECR = %G at time %G\n "
523 +                 "\tThis is larger than half of at least one of the\n"
524 +                 "\tperiodic box vectors.  Right now, the Box matrix is:\n"
525 +                 "\n"
526 +                 "\t[ %G %G %G ]\n"
527 +                 "\t[ %G %G %G ]\n"
528 +                 "\t[ %G %G %G ]\n",
529 +                 ecr, currentTime,
530 +                 Hmat[0][0], Hmat[0][1], Hmat[0][2],
531 +                 Hmat[1][0], Hmat[1][1], Hmat[1][2],
532 +                 Hmat[2][0], Hmat[2][1], Hmat[2][2]);
533 +        painCave.isFatal = 1;
534 +        simError();
535 +      }
536 +    }
537 +  } else {
538 +    // initialize this stuff before using it, OK?
539 +    sprintf( painCave.errMsg,
540 +             "Trying to check cutoffs without a box.\n"
541 +             "\tOOPSE should have better programmers than that.\n" );
542 +    painCave.isFatal = 1;
543 +    simError();      
544 +  }
545 +  
546 + }
547 +
548 + void SimInfo::addProperty(GenericData* prop){
549 +
550 +  map<string, GenericData*>::iterator result;
551 +  result = properties.find(prop->getID());
552 +  
553 +  //we can't simply use  properties[prop->getID()] = prop,
554 +  //it will cause memory leak if we already contain a propery which has the same name of prop
555 +  
556 +  if(result != properties.end()){
557 +    
558 +    delete (*result).second;
559 +    (*result).second = prop;
560 +      
561 +  }
562 +  else{
563 +
564 +    properties[prop->getID()] = prop;
565 +
566 +  }
567 +    
568 + }
569 +
570 + GenericData* SimInfo::getProperty(const string& propName){
571 +
572 +  map<string, GenericData*>::iterator result;
573 +  
574 +  //string lowerCaseName = ();
575 +  
576 +  result = properties.find(propName);
577 +  
578 +  if(result != properties.end())
579 +    return (*result).second;  
580 +  else  
581 +    return NULL;  
582 + }
583 +
584 + vector<GenericData*> SimInfo::getProperties(){
585 +
586 +  vector<GenericData*> result;
587 +  map<string, GenericData*>::iterator i;
588 +  
589 +  for(i = properties.begin(); i != properties.end(); i++)
590 +    result.push_back((*i).second);
591 +    
592 +  return result;
593 + }

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines