# | Line 1 | Line 1 | |
---|---|---|
1 | < | #include <cstdlib> |
2 | < | #include <cstring> |
3 | < | #include <cmath> |
1 | > | #include <stdlib.h> |
2 | > | #include <string.h> |
3 | > | #include <math.h> |
4 | ||
5 | + | #include <iostream> |
6 | + | using namespace std; |
7 | ||
8 | #include "SimInfo.hpp" | |
9 | #define __C | |
# | Line 10 | Line 12 | |
12 | ||
13 | #include "fortranWrappers.hpp" | |
14 | ||
15 | + | #include "MatVec3.h" |
16 | + | |
17 | #ifdef IS_MPI | |
18 | #include "mpiSimulation.hpp" | |
19 | #endif | |
20 | ||
21 | + | inline double roundMe( double x ){ |
22 | + | return ( x >= 0 ) ? floor( x + 0.5 ) : ceil( x - 0.5 ); |
23 | + | } |
24 | + | |
25 | + | inline double min( double a, double b ){ |
26 | + | return (a < b ) ? a : b; |
27 | + | } |
28 | + | |
29 | SimInfo* currentInfo; | |
30 | ||
31 | SimInfo::SimInfo(){ | |
32 | < | excludes = NULL; |
32 | > | |
33 | n_constraints = 0; | |
34 | + | nZconstraints = 0; |
35 | n_oriented = 0; | |
36 | n_dipoles = 0; | |
37 | ndf = 0; | |
38 | ndfRaw = 0; | |
39 | + | nZconstraints = 0; |
40 | the_integrator = NULL; | |
41 | setTemp = 0; | |
42 | thermalTime = 0.0; | |
43 | + | currentTime = 0.0; |
44 | rCut = 0.0; | |
45 | + | ecr = 0.0; |
46 | + | est = 0.0; |
47 | ||
48 | + | haveRcut = 0; |
49 | + | haveEcr = 0; |
50 | + | boxIsInit = 0; |
51 | + | |
52 | + | resetTime = 1e99; |
53 | + | |
54 | + | orthoRhombic = 0; |
55 | + | orthoTolerance = 1E-6; |
56 | + | useInitXSstate = true; |
57 | + | |
58 | usePBC = 0; | |
59 | useLJ = 0; | |
60 | useSticky = 0; | |
61 | < | useDipole = 0; |
61 | > | useCharges = 0; |
62 | > | useDipoles = 0; |
63 | useReactionField = 0; | |
64 | useGB = 0; | |
65 | useEAM = 0; | |
66 | ||
67 | < | wrapMeSimInfo( this ); |
40 | < | } |
67 | > | excludes = Exclude::Instance(); |
68 | ||
69 | < | void SimInfo::setBox(double newBox[3]) { |
69 | > | myConfiguration = new SimState(); |
70 | ||
71 | < | double smallestBoxL, maxCutoff; |
72 | < | int status; |
46 | < | int i; |
71 | > | has_minimizer = false; |
72 | > | the_minimizer =NULL; |
73 | ||
74 | < | for(i=0; i<9; i++) Hmat[i] = 0.0;; |
74 | > | wrapMeSimInfo( this ); |
75 | > | } |
76 | ||
50 | – | Hmat[0] = newBox[0]; |
51 | – | Hmat[4] = newBox[1]; |
52 | – | Hmat[8] = newBox[2]; |
77 | ||
78 | < | calcHmatI(); |
55 | < | calcBoxL(); |
78 | > | SimInfo::~SimInfo(){ |
79 | ||
80 | < | setFortranBoxSize(Hmat); |
80 | > | delete myConfiguration; |
81 | ||
82 | < | smallestBoxL = boxLx; |
83 | < | if (boxLy < smallestBoxL) smallestBoxL = boxLy; |
84 | < | if (boxLz < smallestBoxL) smallestBoxL = boxLz; |
82 | > | map<string, GenericData*>::iterator i; |
83 | > | |
84 | > | for(i = properties.begin(); i != properties.end(); i++) |
85 | > | delete (*i).second; |
86 | > | |
87 | > | } |
88 | ||
89 | < | maxCutoff = smallestBoxL / 2.0; |
89 | > | void SimInfo::setBox(double newBox[3]) { |
90 | > | |
91 | > | int i, j; |
92 | > | double tempMat[3][3]; |
93 | ||
94 | < | if (rList > maxCutoff) { |
95 | < | sprintf( painCave.errMsg, |
67 | < | "New Box size is forcing neighborlist radius down to %lf\n", |
68 | < | maxCutoff ); |
69 | < | painCave.isFatal = 0; |
70 | < | simError(); |
94 | > | for(i=0; i<3; i++) |
95 | > | for (j=0; j<3; j++) tempMat[i][j] = 0.0;; |
96 | ||
97 | < | rList = maxCutoff; |
97 | > | tempMat[0][0] = newBox[0]; |
98 | > | tempMat[1][1] = newBox[1]; |
99 | > | tempMat[2][2] = newBox[2]; |
100 | ||
101 | < | sprintf( painCave.errMsg, |
75 | < | "New Box size is forcing cutoff radius down to %lf\n", |
76 | < | maxCutoff - 1.0 ); |
77 | < | painCave.isFatal = 0; |
78 | < | simError(); |
101 | > | setBoxM( tempMat ); |
102 | ||
80 | – | rCut = rList - 1.0; |
81 | – | |
82 | – | // list radius changed so we have to refresh the simulation structure. |
83 | – | refreshSim(); |
84 | – | } |
85 | – | |
86 | – | if (rCut > maxCutoff) { |
87 | – | sprintf( painCave.errMsg, |
88 | – | "New Box size is forcing cutoff radius down to %lf\n", |
89 | – | maxCutoff ); |
90 | – | painCave.isFatal = 0; |
91 | – | simError(); |
92 | – | |
93 | – | status = 0; |
94 | – | LJ_new_rcut(&rCut, &status); |
95 | – | if (status != 0) { |
96 | – | sprintf( painCave.errMsg, |
97 | – | "Error in recomputing LJ shifts based on new rcut\n"); |
98 | – | painCave.isFatal = 1; |
99 | – | simError(); |
100 | – | } |
101 | – | } |
103 | } | |
104 | ||
105 | < | void SimInfo::setBoxM( double theBox[9] ){ |
105 | > | void SimInfo::setBoxM( double theBox[3][3] ){ |
106 | ||
107 | < | int i, status; |
108 | < | double smallestBoxL, maxCutoff; |
107 | > | int i, j; |
108 | > | double FortranHmat[9]; // to preserve compatibility with Fortran the |
109 | > | // ordering in the array is as follows: |
110 | > | // [ 0 3 6 ] |
111 | > | // [ 1 4 7 ] |
112 | > | // [ 2 5 8 ] |
113 | > | double FortranHmatInv[9]; // the inverted Hmat (for Fortran); |
114 | ||
115 | < | for(i=0; i<9; i++) Hmat[i] = theBox[i]; |
116 | < | calcHmatI(); |
115 | > | if( !boxIsInit ) boxIsInit = 1; |
116 | > | |
117 | > | for(i=0; i < 3; i++) |
118 | > | for (j=0; j < 3; j++) Hmat[i][j] = theBox[i][j]; |
119 | > | |
120 | calcBoxL(); | |
121 | + | calcHmatInv(); |
122 | ||
123 | < | setFortranBoxSize(Hmat); |
124 | < | |
125 | < | smallestBoxL = boxLx; |
126 | < | if (boxLy < smallestBoxL) smallestBoxL = boxLy; |
117 | < | if (boxLz < smallestBoxL) smallestBoxL = boxLz; |
118 | < | |
119 | < | maxCutoff = smallestBoxL / 2.0; |
120 | < | |
121 | < | if (rList > maxCutoff) { |
122 | < | sprintf( painCave.errMsg, |
123 | < | "New Box size is forcing neighborlist radius down to %lf\n", |
124 | < | maxCutoff ); |
125 | < | painCave.isFatal = 0; |
126 | < | simError(); |
127 | < | |
128 | < | rList = maxCutoff; |
129 | < | |
130 | < | sprintf( painCave.errMsg, |
131 | < | "New Box size is forcing cutoff radius down to %lf\n", |
132 | < | maxCutoff - 1.0 ); |
133 | < | painCave.isFatal = 0; |
134 | < | simError(); |
135 | < | |
136 | < | rCut = rList - 1.0; |
137 | < | |
138 | < | // list radius changed so we have to refresh the simulation structure. |
139 | < | refreshSim(); |
140 | < | } |
141 | < | |
142 | < | if (rCut > maxCutoff) { |
143 | < | sprintf( painCave.errMsg, |
144 | < | "New Box size is forcing cutoff radius down to %lf\n", |
145 | < | maxCutoff ); |
146 | < | painCave.isFatal = 0; |
147 | < | simError(); |
148 | < | |
149 | < | status = 0; |
150 | < | LJ_new_rcut(&rCut, &status); |
151 | < | if (status != 0) { |
152 | < | sprintf( painCave.errMsg, |
153 | < | "Error in recomputing LJ shifts based on new rcut\n"); |
154 | < | painCave.isFatal = 1; |
155 | < | simError(); |
123 | > | for(i=0; i < 3; i++) { |
124 | > | for (j=0; j < 3; j++) { |
125 | > | FortranHmat[3*j + i] = Hmat[i][j]; |
126 | > | FortranHmatInv[3*j + i] = HmatInv[i][j]; |
127 | } | |
128 | } | |
129 | + | |
130 | + | setFortranBoxSize(FortranHmat, FortranHmatInv, &orthoRhombic); |
131 | + | |
132 | } | |
133 | ||
134 | ||
135 | < | void SimInfo::getBox(double theBox[9]) { |
135 | > | void SimInfo::getBoxM (double theBox[3][3]) { |
136 | ||
137 | < | int i; |
138 | < | for(i=0; i<9; i++) theBox[i] = Hmat[i]; |
137 | > | int i, j; |
138 | > | for(i=0; i<3; i++) |
139 | > | for (j=0; j<3; j++) theBox[i][j] = Hmat[i][j]; |
140 | } | |
166 | – | |
141 | ||
168 | – | void SimInfo::calcHmatI( void ) { |
142 | ||
143 | < | double C[3][3]; |
144 | < | double detHmat; |
145 | < | int i, j, k; |
143 | > | void SimInfo::scaleBox(double scale) { |
144 | > | double theBox[3][3]; |
145 | > | int i, j; |
146 | ||
147 | < | // calculate the adjunct of Hmat; |
147 | > | // cerr << "Scaling box by " << scale << "\n"; |
148 | ||
149 | < | C[0][0] = ( Hmat[4]*Hmat[8]) - (Hmat[7]*Hmat[5]); |
150 | < | C[1][0] = -( Hmat[1]*Hmat[8]) + (Hmat[7]*Hmat[2]); |
178 | < | C[2][0] = ( Hmat[1]*Hmat[5]) - (Hmat[4]*Hmat[2]); |
149 | > | for(i=0; i<3; i++) |
150 | > | for (j=0; j<3; j++) theBox[i][j] = Hmat[i][j]*scale; |
151 | ||
152 | < | C[0][1] = -( Hmat[3]*Hmat[8]) + (Hmat[6]*Hmat[5]); |
181 | < | C[1][1] = ( Hmat[0]*Hmat[8]) - (Hmat[6]*Hmat[2]); |
182 | < | C[2][1] = -( Hmat[0]*Hmat[5]) + (Hmat[3]*Hmat[2]); |
152 | > | setBoxM(theBox); |
153 | ||
154 | < | C[0][2] = ( Hmat[3]*Hmat[7]) - (Hmat[6]*Hmat[4]); |
185 | < | C[1][2] = -( Hmat[0]*Hmat[7]) + (Hmat[6]*Hmat[1]); |
186 | < | C[2][2] = ( Hmat[0]*Hmat[4]) - (Hmat[3]*Hmat[1]); |
154 | > | } |
155 | ||
156 | < | // calcutlate the determinant of Hmat |
156 | > | void SimInfo::calcHmatInv( void ) { |
157 | ||
158 | < | detHmat = 0.0; |
159 | < | for(i=0; i<3; i++) detHmat += Hmat[i] * C[i][0]; |
158 | > | int oldOrtho; |
159 | > | int i,j; |
160 | > | double smallDiag; |
161 | > | double tol; |
162 | > | double sanity[3][3]; |
163 | ||
164 | + | invertMat3( Hmat, HmatInv ); |
165 | + | |
166 | + | // check to see if Hmat is orthorhombic |
167 | ||
168 | < | // H^-1 = C^T / det(H) |
168 | > | oldOrtho = orthoRhombic; |
169 | > | |
170 | > | smallDiag = fabs(Hmat[0][0]); |
171 | > | if(smallDiag > fabs(Hmat[1][1])) smallDiag = fabs(Hmat[1][1]); |
172 | > | if(smallDiag > fabs(Hmat[2][2])) smallDiag = fabs(Hmat[2][2]); |
173 | > | tol = smallDiag * orthoTolerance; |
174 | > | |
175 | > | orthoRhombic = 1; |
176 | ||
177 | < | i=0; |
178 | < | for(j=0; j<3; j++){ |
179 | < | for(k=0; k<3; k++){ |
177 | > | for (i = 0; i < 3; i++ ) { |
178 | > | for (j = 0 ; j < 3; j++) { |
179 | > | if (i != j) { |
180 | > | if (orthoRhombic) { |
181 | > | if ( fabs(Hmat[i][j]) >= tol) orthoRhombic = 0; |
182 | > | } |
183 | > | } |
184 | > | } |
185 | > | } |
186 | ||
187 | < | HmatI[i] = C[j][k] / detHmat; |
188 | < | i++; |
187 | > | if( oldOrtho != orthoRhombic ){ |
188 | > | |
189 | > | if( orthoRhombic ){ |
190 | > | sprintf( painCave.errMsg, |
191 | > | "OOPSE is switching from the default Non-Orthorhombic\n" |
192 | > | "\tto the faster Orthorhombic periodic boundary computations.\n" |
193 | > | "\tThis is usually a good thing, but if you wan't the\n" |
194 | > | "\tNon-Orthorhombic computations, make the orthoBoxTolerance\n" |
195 | > | "\tvariable ( currently set to %G ) smaller.\n", |
196 | > | orthoTolerance); |
197 | > | simError(); |
198 | } | |
199 | + | else { |
200 | + | sprintf( painCave.errMsg, |
201 | + | "OOPSE is switching from the faster Orthorhombic to the more\n" |
202 | + | "\tflexible Non-Orthorhombic periodic boundary computations.\n" |
203 | + | "\tThis is usually because the box has deformed under\n" |
204 | + | "\tNPTf integration. If you wan't to live on the edge with\n" |
205 | + | "\tthe Orthorhombic computations, make the orthoBoxTolerance\n" |
206 | + | "\tvariable ( currently set to %G ) larger.\n", |
207 | + | orthoTolerance); |
208 | + | simError(); |
209 | + | } |
210 | } | |
211 | } | |
212 | ||
213 | void SimInfo::calcBoxL( void ){ | |
214 | ||
215 | double dx, dy, dz, dsq; | |
209 | – | int i; |
216 | ||
217 | < | // boxVol = h1 (dot) h2 (cross) h3 |
217 | > | // boxVol = Determinant of Hmat |
218 | ||
219 | < | boxVol = Hmat[0] * ( (Hmat[4]*Hmat[8]) - (Hmat[7]*Hmat[5]) ) |
214 | < | + Hmat[1] * ( (Hmat[5]*Hmat[6]) - (Hmat[8]*Hmat[3]) ) |
215 | < | + Hmat[2] * ( (Hmat[3]*Hmat[7]) - (Hmat[6]*Hmat[4]) ); |
219 | > | boxVol = matDet3( Hmat ); |
220 | ||
217 | – | |
221 | // boxLx | |
222 | ||
223 | < | dx = Hmat[0]; dy = Hmat[1]; dz = Hmat[2]; |
223 | > | dx = Hmat[0][0]; dy = Hmat[1][0]; dz = Hmat[2][0]; |
224 | dsq = dx*dx + dy*dy + dz*dz; | |
225 | < | boxLx = sqrt( dsq ); |
225 | > | boxL[0] = sqrt( dsq ); |
226 | > | //maxCutoff = 0.5 * boxL[0]; |
227 | ||
228 | // boxLy | |
229 | ||
230 | < | dx = Hmat[3]; dy = Hmat[4]; dz = Hmat[5]; |
230 | > | dx = Hmat[0][1]; dy = Hmat[1][1]; dz = Hmat[2][1]; |
231 | dsq = dx*dx + dy*dy + dz*dz; | |
232 | < | boxLy = sqrt( dsq ); |
232 | > | boxL[1] = sqrt( dsq ); |
233 | > | //if( (0.5 * boxL[1]) < maxCutoff ) maxCutoff = 0.5 * boxL[1]; |
234 | ||
235 | + | |
236 | // boxLz | |
237 | ||
238 | < | dx = Hmat[6]; dy = Hmat[7]; dz = Hmat[8]; |
238 | > | dx = Hmat[0][2]; dy = Hmat[1][2]; dz = Hmat[2][2]; |
239 | dsq = dx*dx + dy*dy + dz*dz; | |
240 | < | boxLz = sqrt( dsq ); |
240 | > | boxL[2] = sqrt( dsq ); |
241 | > | //if( (0.5 * boxL[2]) < maxCutoff ) maxCutoff = 0.5 * boxL[2]; |
242 | > | |
243 | > | //calculate the max cutoff |
244 | > | maxCutoff = calcMaxCutOff(); |
245 | ||
246 | + | checkCutOffs(); |
247 | + | |
248 | } | |
249 | ||
250 | ||
251 | < | void SimInfo::wrapVector( double thePos[3] ){ |
251 | > | double SimInfo::calcMaxCutOff(){ |
252 | ||
253 | < | int i, j, k; |
254 | < | double scaled[3]; |
253 | > | double ri[3], rj[3], rk[3]; |
254 | > | double rij[3], rjk[3], rki[3]; |
255 | > | double minDist; |
256 | ||
257 | < | // calc the scaled coordinates. |
257 | > | ri[0] = Hmat[0][0]; |
258 | > | ri[1] = Hmat[1][0]; |
259 | > | ri[2] = Hmat[2][0]; |
260 | > | |
261 | > | rj[0] = Hmat[0][1]; |
262 | > | rj[1] = Hmat[1][1]; |
263 | > | rj[2] = Hmat[2][1]; |
264 | > | |
265 | > | rk[0] = Hmat[0][2]; |
266 | > | rk[1] = Hmat[1][2]; |
267 | > | rk[2] = Hmat[2][2]; |
268 | > | |
269 | > | crossProduct3(ri, rj, rij); |
270 | > | distXY = dotProduct3(rk,rij) / norm3(rij); |
271 | > | |
272 | > | crossProduct3(rj,rk, rjk); |
273 | > | distYZ = dotProduct3(ri,rjk) / norm3(rjk); |
274 | > | |
275 | > | crossProduct3(rk,ri, rki); |
276 | > | distZX = dotProduct3(rj,rki) / norm3(rki); |
277 | > | |
278 | > | minDist = min(min(distXY, distYZ), distZX); |
279 | > | return minDist/2; |
280 | ||
281 | < | for(i=0; i<3; i++) |
247 | < | scaled[i] = thePos[0]*Hmat[i] + thePos[1]*Hat[i+3] + thePos[3]*Hmat[i+6]; |
281 | > | } |
282 | ||
283 | < | // wrap the scaled coordinates |
283 | > | void SimInfo::wrapVector( double thePos[3] ){ |
284 | ||
285 | < | for(i=0; i<3; i++) |
286 | < | scaled[i] -= (copysign(1,scaled[i]) * (int)(fabs(scaled[i]) + 0.5)); |
285 | > | int i; |
286 | > | double scaled[3]; |
287 | > | |
288 | > | if( !orthoRhombic ){ |
289 | > | // calc the scaled coordinates. |
290 | ||
291 | ||
292 | + | matVecMul3(HmatInv, thePos, scaled); |
293 | + | |
294 | + | for(i=0; i<3; i++) |
295 | + | scaled[i] -= roundMe(scaled[i]); |
296 | + | |
297 | + | // calc the wrapped real coordinates from the wrapped scaled coordinates |
298 | + | |
299 | + | matVecMul3(Hmat, scaled, thePos); |
300 | + | |
301 | + | } |
302 | + | else{ |
303 | + | // calc the scaled coordinates. |
304 | + | |
305 | + | for(i=0; i<3; i++) |
306 | + | scaled[i] = thePos[i]*HmatInv[i][i]; |
307 | + | |
308 | + | // wrap the scaled coordinates |
309 | + | |
310 | + | for(i=0; i<3; i++) |
311 | + | scaled[i] -= roundMe(scaled[i]); |
312 | + | |
313 | + | // calc the wrapped real coordinates from the wrapped scaled coordinates |
314 | + | |
315 | + | for(i=0; i<3; i++) |
316 | + | thePos[i] = scaled[i]*Hmat[i][i]; |
317 | + | } |
318 | + | |
319 | } | |
320 | ||
321 | ||
322 | int SimInfo::getNDF(){ | |
323 | < | int ndf_local, ndf; |
260 | < | |
261 | < | ndf_local = 3 * n_atoms + 3 * n_oriented - n_constraints; |
323 | > | int ndf_local; |
324 | ||
325 | + | for(int i = 0; i < integrableObjects.size(); i++){ |
326 | + | ndf_local += 3; |
327 | + | if (integrableObjects[i]->isDirectional()) |
328 | + | ndf_local += 3; |
329 | + | } |
330 | + | |
331 | + | // n_constraints is local, so subtract them on each processor: |
332 | + | |
333 | + | ndf_local -= n_constraints; |
334 | + | |
335 | #ifdef IS_MPI | |
336 | MPI_Allreduce(&ndf_local,&ndf,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD); | |
337 | #else | |
338 | ndf = ndf_local; | |
339 | #endif | |
340 | ||
341 | < | ndf = ndf - 3; |
341 | > | // nZconstraints is global, as are the 3 COM translations for the |
342 | > | // entire system: |
343 | ||
344 | + | ndf = ndf - 3 - nZconstraints; |
345 | + | |
346 | return ndf; | |
347 | } | |
348 | ||
349 | int SimInfo::getNDFraw() { | |
350 | < | int ndfRaw_local, ndfRaw; |
350 | > | int ndfRaw_local; |
351 | ||
352 | // Raw degrees of freedom that we have to set | |
353 | < | ndfRaw_local = 3 * n_atoms + 3 * n_oriented; |
354 | < | |
353 | > | |
354 | > | for(int i = 0; i < integrableObjects.size(); i++){ |
355 | > | ndfRaw_local += 3; |
356 | > | if (integrableObjects[i]->isDirectional()) |
357 | > | ndfRaw_local += 3; |
358 | > | } |
359 | > | |
360 | #ifdef IS_MPI | |
361 | MPI_Allreduce(&ndfRaw_local,&ndfRaw,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD); | |
362 | #else | |
# | Line 285 | Line 365 | int SimInfo::getNDFraw() { | |
365 | ||
366 | return ndfRaw; | |
367 | } | |
368 | < | |
368 | > | |
369 | > | int SimInfo::getNDFtranslational() { |
370 | > | int ndfTrans_local; |
371 | > | |
372 | > | ndfTrans_local = 3 * integrableObjects.size() - n_constraints; |
373 | > | |
374 | > | |
375 | > | #ifdef IS_MPI |
376 | > | MPI_Allreduce(&ndfTrans_local,&ndfTrans,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD); |
377 | > | #else |
378 | > | ndfTrans = ndfTrans_local; |
379 | > | #endif |
380 | > | |
381 | > | ndfTrans = ndfTrans - 3 - nZconstraints; |
382 | > | |
383 | > | return ndfTrans; |
384 | > | } |
385 | > | |
386 | void SimInfo::refreshSim(){ | |
387 | ||
388 | simtype fInfo; | |
389 | int isError; | |
390 | int n_global; | |
391 | int* excl; | |
392 | < | |
296 | < | fInfo.rrf = 0.0; |
297 | < | fInfo.rt = 0.0; |
392 | > | |
393 | fInfo.dielect = 0.0; | |
394 | ||
395 | < | fInfo.box[0] = box_x; |
301 | < | fInfo.box[1] = box_y; |
302 | < | fInfo.box[2] = box_z; |
303 | < | |
304 | < | fInfo.rlist = rList; |
305 | < | fInfo.rcut = rCut; |
306 | < | |
307 | < | if( useDipole ){ |
308 | < | fInfo.rrf = ecr; |
309 | < | fInfo.rt = ecr - est; |
395 | > | if( useDipoles ){ |
396 | if( useReactionField )fInfo.dielect = dielectric; | |
397 | } | |
398 | ||
# | Line 315 | Line 401 | void SimInfo::refreshSim(){ | |
401 | fInfo.SIM_uses_LJ = useLJ; | |
402 | fInfo.SIM_uses_sticky = useSticky; | |
403 | //fInfo.SIM_uses_sticky = 0; | |
404 | < | fInfo.SIM_uses_dipoles = useDipole; |
404 | > | fInfo.SIM_uses_charges = useCharges; |
405 | > | fInfo.SIM_uses_dipoles = useDipoles; |
406 | //fInfo.SIM_uses_dipoles = 0; | |
407 | < | //fInfo.SIM_uses_RF = useReactionField; |
408 | < | fInfo.SIM_uses_RF = 0; |
407 | > | fInfo.SIM_uses_RF = useReactionField; |
408 | > | //fInfo.SIM_uses_RF = 0; |
409 | fInfo.SIM_uses_GB = useGB; | |
410 | fInfo.SIM_uses_EAM = useEAM; | |
411 | ||
412 | < | excl = Exclude::getArray(); |
412 | > | n_exclude = excludes->getSize(); |
413 | > | excl = excludes->getFortranArray(); |
414 | ||
415 | #ifdef IS_MPI | |
416 | n_global = mpiSim->getTotAtoms(); | |
# | Line 352 | Line 440 | void SimInfo::refreshSim(){ | |
440 | ||
441 | this->ndf = this->getNDF(); | |
442 | this->ndfRaw = this->getNDFraw(); | |
443 | + | this->ndfTrans = this->getNDFtranslational(); |
444 | + | } |
445 | ||
446 | + | void SimInfo::setDefaultRcut( double theRcut ){ |
447 | + | |
448 | + | haveRcut = 1; |
449 | + | rCut = theRcut; |
450 | + | |
451 | + | ( rCut > ecr )? rList = rCut + 1.0: rList = ecr + 1.0; |
452 | + | |
453 | + | notifyFortranCutOffs( &rCut, &rList, &ecr, &est ); |
454 | } | |
455 | ||
456 | + | void SimInfo::setDefaultEcr( double theEcr ){ |
457 | + | |
458 | + | haveEcr = 1; |
459 | + | ecr = theEcr; |
460 | + | |
461 | + | ( rCut > ecr )? rList = rCut + 1.0: rList = ecr + 1.0; |
462 | + | |
463 | + | notifyFortranCutOffs( &rCut, &rList, &ecr, &est ); |
464 | + | } |
465 | + | |
466 | + | void SimInfo::setDefaultEcr( double theEcr, double theEst ){ |
467 | + | |
468 | + | est = theEst; |
469 | + | setDefaultEcr( theEcr ); |
470 | + | } |
471 | + | |
472 | + | |
473 | + | void SimInfo::checkCutOffs( void ){ |
474 | + | |
475 | + | if( boxIsInit ){ |
476 | + | |
477 | + | //we need to check cutOffs against the box |
478 | + | |
479 | + | if( rCut > maxCutoff ){ |
480 | + | sprintf( painCave.errMsg, |
481 | + | "LJrcut is too large for the current periodic box.\n" |
482 | + | "\tCurrent Value of LJrcut = %G at time %G\n " |
483 | + | "\tThis is larger than half of at least one of the\n" |
484 | + | "\tperiodic box vectors. Right now, the Box matrix is:\n" |
485 | + | "\n, %G" |
486 | + | "\t[ %G %G %G ]\n" |
487 | + | "\t[ %G %G %G ]\n" |
488 | + | "\t[ %G %G %G ]\n", |
489 | + | rCut, currentTime, maxCutoff, |
490 | + | Hmat[0][0], Hmat[0][1], Hmat[0][2], |
491 | + | Hmat[1][0], Hmat[1][1], Hmat[1][2], |
492 | + | Hmat[2][0], Hmat[2][1], Hmat[2][2]); |
493 | + | painCave.isFatal = 1; |
494 | + | simError(); |
495 | + | } |
496 | + | |
497 | + | if( haveEcr ){ |
498 | + | if( ecr > maxCutoff ){ |
499 | + | sprintf( painCave.errMsg, |
500 | + | "electrostaticCutoffRadius is too large for the current\n" |
501 | + | "\tperiodic box.\n\n" |
502 | + | "\tCurrent Value of ECR = %G at time %G\n " |
503 | + | "\tThis is larger than half of at least one of the\n" |
504 | + | "\tperiodic box vectors. Right now, the Box matrix is:\n" |
505 | + | "\n" |
506 | + | "\t[ %G %G %G ]\n" |
507 | + | "\t[ %G %G %G ]\n" |
508 | + | "\t[ %G %G %G ]\n", |
509 | + | ecr, currentTime, |
510 | + | Hmat[0][0], Hmat[0][1], Hmat[0][2], |
511 | + | Hmat[1][0], Hmat[1][1], Hmat[1][2], |
512 | + | Hmat[2][0], Hmat[2][1], Hmat[2][2]); |
513 | + | painCave.isFatal = 1; |
514 | + | simError(); |
515 | + | } |
516 | + | } |
517 | + | } else { |
518 | + | // initialize this stuff before using it, OK? |
519 | + | sprintf( painCave.errMsg, |
520 | + | "Trying to check cutoffs without a box.\n" |
521 | + | "\tOOPSE should have better programmers than that.\n" ); |
522 | + | painCave.isFatal = 1; |
523 | + | simError(); |
524 | + | } |
525 | + | |
526 | + | } |
527 | + | |
528 | + | void SimInfo::addProperty(GenericData* prop){ |
529 | + | |
530 | + | map<string, GenericData*>::iterator result; |
531 | + | result = properties.find(prop->getID()); |
532 | + | |
533 | + | //we can't simply use properties[prop->getID()] = prop, |
534 | + | //it will cause memory leak if we already contain a propery which has the same name of prop |
535 | + | |
536 | + | if(result != properties.end()){ |
537 | + | |
538 | + | delete (*result).second; |
539 | + | (*result).second = prop; |
540 | + | |
541 | + | } |
542 | + | else{ |
543 | + | |
544 | + | properties[prop->getID()] = prop; |
545 | + | |
546 | + | } |
547 | + | |
548 | + | } |
549 | + | |
550 | + | GenericData* SimInfo::getProperty(const string& propName){ |
551 | + | |
552 | + | map<string, GenericData*>::iterator result; |
553 | + | |
554 | + | //string lowerCaseName = (); |
555 | + | |
556 | + | result = properties.find(propName); |
557 | + | |
558 | + | if(result != properties.end()) |
559 | + | return (*result).second; |
560 | + | else |
561 | + | return NULL; |
562 | + | } |
563 | + | |
564 | + | vector<GenericData*> SimInfo::getProperties(){ |
565 | + | |
566 | + | vector<GenericData*> result; |
567 | + | map<string, GenericData*>::iterator i; |
568 | + | |
569 | + | for(i = properties.begin(); i != properties.end(); i++) |
570 | + | result.push_back((*i).second); |
571 | + | |
572 | + | return result; |
573 | + | } |
– | Removed lines |
+ | Added lines |
< | Changed lines |
> | Changed lines |