# | Line 1 | Line 1 | |
---|---|---|
1 | < | #include <cstdlib> |
2 | < | #include <cstring> |
1 | > | #include <stdlib.h> |
2 | > | #include <string.h> |
3 | > | #include <math.h> |
4 | ||
5 | + | #include <iostream> |
6 | + | using namespace std; |
7 | ||
8 | #include "SimInfo.hpp" | |
9 | #define __C | |
# | Line 9 | Line 12 | |
12 | ||
13 | #include "fortranWrappers.hpp" | |
14 | ||
15 | + | #include "MatVec3.h" |
16 | + | |
17 | + | #ifdef IS_MPI |
18 | + | #include "mpiSimulation.hpp" |
19 | + | #endif |
20 | + | |
21 | + | inline double roundMe( double x ){ |
22 | + | return ( x >= 0 ) ? floor( x + 0.5 ) : ceil( x - 0.5 ); |
23 | + | } |
24 | + | |
25 | + | inline double min( double a, double b ){ |
26 | + | return (a < b ) ? a : b; |
27 | + | } |
28 | + | |
29 | SimInfo* currentInfo; | |
30 | ||
31 | SimInfo::SimInfo(){ | |
32 | < | excludes = NULL; |
32 | > | |
33 | n_constraints = 0; | |
34 | + | nZconstraints = 0; |
35 | n_oriented = 0; | |
36 | n_dipoles = 0; | |
37 | + | ndf = 0; |
38 | + | ndfRaw = 0; |
39 | + | nZconstraints = 0; |
40 | the_integrator = NULL; | |
41 | setTemp = 0; | |
42 | thermalTime = 0.0; | |
43 | + | currentTime = 0.0; |
44 | rCut = 0.0; | |
45 | + | rSw = 0.0; |
46 | ||
47 | + | haveRcut = 0; |
48 | + | haveRsw = 0; |
49 | + | boxIsInit = 0; |
50 | + | |
51 | + | resetTime = 1e99; |
52 | + | |
53 | + | orthoRhombic = 0; |
54 | + | orthoTolerance = 1E-6; |
55 | + | useInitXSstate = true; |
56 | + | |
57 | usePBC = 0; | |
58 | useLJ = 0; | |
59 | useSticky = 0; | |
60 | < | useDipole = 0; |
60 | > | useCharges = 0; |
61 | > | useDipoles = 0; |
62 | useReactionField = 0; | |
63 | useGB = 0; | |
64 | useEAM = 0; | |
65 | + | |
66 | + | haveCutoffGroups = false; |
67 | ||
68 | + | excludes = Exclude::Instance(); |
69 | + | |
70 | + | myConfiguration = new SimState(); |
71 | + | |
72 | + | has_minimizer = false; |
73 | + | the_minimizer =NULL; |
74 | + | |
75 | + | ngroup = 0; |
76 | + | |
77 | wrapMeSimInfo( this ); | |
78 | } | |
79 | ||
80 | + | |
81 | + | SimInfo::~SimInfo(){ |
82 | + | |
83 | + | delete myConfiguration; |
84 | + | |
85 | + | map<string, GenericData*>::iterator i; |
86 | + | |
87 | + | for(i = properties.begin(); i != properties.end(); i++) |
88 | + | delete (*i).second; |
89 | + | |
90 | + | } |
91 | + | |
92 | void SimInfo::setBox(double newBox[3]) { | |
93 | < | box_x = newBox[0]; |
94 | < | box_y = newBox[1]; |
95 | < | box_z = newBox[2]; |
96 | < | setFortranBoxSize(newBox); |
93 | > | |
94 | > | int i, j; |
95 | > | double tempMat[3][3]; |
96 | > | |
97 | > | for(i=0; i<3; i++) |
98 | > | for (j=0; j<3; j++) tempMat[i][j] = 0.0;; |
99 | > | |
100 | > | tempMat[0][0] = newBox[0]; |
101 | > | tempMat[1][1] = newBox[1]; |
102 | > | tempMat[2][2] = newBox[2]; |
103 | > | |
104 | > | setBoxM( tempMat ); |
105 | > | |
106 | } | |
107 | ||
108 | < | void SimInfo::getBox(double theBox[3]) { |
109 | < | theBox[0] = box_x; |
110 | < | theBox[1] = box_y; |
111 | < | theBox[2] = box_z; |
108 | > | void SimInfo::setBoxM( double theBox[3][3] ){ |
109 | > | |
110 | > | int i, j; |
111 | > | double FortranHmat[9]; // to preserve compatibility with Fortran the |
112 | > | // ordering in the array is as follows: |
113 | > | // [ 0 3 6 ] |
114 | > | // [ 1 4 7 ] |
115 | > | // [ 2 5 8 ] |
116 | > | double FortranHmatInv[9]; // the inverted Hmat (for Fortran); |
117 | > | |
118 | > | if( !boxIsInit ) boxIsInit = 1; |
119 | > | |
120 | > | for(i=0; i < 3; i++) |
121 | > | for (j=0; j < 3; j++) Hmat[i][j] = theBox[i][j]; |
122 | > | |
123 | > | calcBoxL(); |
124 | > | calcHmatInv(); |
125 | > | |
126 | > | for(i=0; i < 3; i++) { |
127 | > | for (j=0; j < 3; j++) { |
128 | > | FortranHmat[3*j + i] = Hmat[i][j]; |
129 | > | FortranHmatInv[3*j + i] = HmatInv[i][j]; |
130 | > | } |
131 | > | } |
132 | > | |
133 | > | setFortranBoxSize(FortranHmat, FortranHmatInv, &orthoRhombic); |
134 | > | |
135 | } | |
136 | + | |
137 | + | |
138 | + | void SimInfo::getBoxM (double theBox[3][3]) { |
139 | + | |
140 | + | int i, j; |
141 | + | for(i=0; i<3; i++) |
142 | + | for (j=0; j<3; j++) theBox[i][j] = Hmat[i][j]; |
143 | + | } |
144 | + | |
145 | + | |
146 | + | void SimInfo::scaleBox(double scale) { |
147 | + | double theBox[3][3]; |
148 | + | int i, j; |
149 | + | |
150 | + | // cerr << "Scaling box by " << scale << "\n"; |
151 | + | |
152 | + | for(i=0; i<3; i++) |
153 | + | for (j=0; j<3; j++) theBox[i][j] = Hmat[i][j]*scale; |
154 | + | |
155 | + | setBoxM(theBox); |
156 | + | |
157 | + | } |
158 | + | |
159 | + | void SimInfo::calcHmatInv( void ) { |
160 | ||
161 | + | int oldOrtho; |
162 | + | int i,j; |
163 | + | double smallDiag; |
164 | + | double tol; |
165 | + | double sanity[3][3]; |
166 | + | |
167 | + | invertMat3( Hmat, HmatInv ); |
168 | + | |
169 | + | // check to see if Hmat is orthorhombic |
170 | + | |
171 | + | oldOrtho = orthoRhombic; |
172 | + | |
173 | + | smallDiag = fabs(Hmat[0][0]); |
174 | + | if(smallDiag > fabs(Hmat[1][1])) smallDiag = fabs(Hmat[1][1]); |
175 | + | if(smallDiag > fabs(Hmat[2][2])) smallDiag = fabs(Hmat[2][2]); |
176 | + | tol = smallDiag * orthoTolerance; |
177 | + | |
178 | + | orthoRhombic = 1; |
179 | + | |
180 | + | for (i = 0; i < 3; i++ ) { |
181 | + | for (j = 0 ; j < 3; j++) { |
182 | + | if (i != j) { |
183 | + | if (orthoRhombic) { |
184 | + | if ( fabs(Hmat[i][j]) >= tol) orthoRhombic = 0; |
185 | + | } |
186 | + | } |
187 | + | } |
188 | + | } |
189 | + | |
190 | + | if( oldOrtho != orthoRhombic ){ |
191 | + | |
192 | + | if( orthoRhombic ){ |
193 | + | sprintf( painCave.errMsg, |
194 | + | "OOPSE is switching from the default Non-Orthorhombic\n" |
195 | + | "\tto the faster Orthorhombic periodic boundary computations.\n" |
196 | + | "\tThis is usually a good thing, but if you wan't the\n" |
197 | + | "\tNon-Orthorhombic computations, make the orthoBoxTolerance\n" |
198 | + | "\tvariable ( currently set to %G ) smaller.\n", |
199 | + | orthoTolerance); |
200 | + | simError(); |
201 | + | } |
202 | + | else { |
203 | + | sprintf( painCave.errMsg, |
204 | + | "OOPSE is switching from the faster Orthorhombic to the more\n" |
205 | + | "\tflexible Non-Orthorhombic periodic boundary computations.\n" |
206 | + | "\tThis is usually because the box has deformed under\n" |
207 | + | "\tNPTf integration. If you wan't to live on the edge with\n" |
208 | + | "\tthe Orthorhombic computations, make the orthoBoxTolerance\n" |
209 | + | "\tvariable ( currently set to %G ) larger.\n", |
210 | + | orthoTolerance); |
211 | + | simError(); |
212 | + | } |
213 | + | } |
214 | + | } |
215 | + | |
216 | + | void SimInfo::calcBoxL( void ){ |
217 | + | |
218 | + | double dx, dy, dz, dsq; |
219 | + | |
220 | + | // boxVol = Determinant of Hmat |
221 | + | |
222 | + | boxVol = matDet3( Hmat ); |
223 | + | |
224 | + | // boxLx |
225 | + | |
226 | + | dx = Hmat[0][0]; dy = Hmat[1][0]; dz = Hmat[2][0]; |
227 | + | dsq = dx*dx + dy*dy + dz*dz; |
228 | + | boxL[0] = sqrt( dsq ); |
229 | + | //maxCutoff = 0.5 * boxL[0]; |
230 | + | |
231 | + | // boxLy |
232 | + | |
233 | + | dx = Hmat[0][1]; dy = Hmat[1][1]; dz = Hmat[2][1]; |
234 | + | dsq = dx*dx + dy*dy + dz*dz; |
235 | + | boxL[1] = sqrt( dsq ); |
236 | + | //if( (0.5 * boxL[1]) < maxCutoff ) maxCutoff = 0.5 * boxL[1]; |
237 | + | |
238 | + | |
239 | + | // boxLz |
240 | + | |
241 | + | dx = Hmat[0][2]; dy = Hmat[1][2]; dz = Hmat[2][2]; |
242 | + | dsq = dx*dx + dy*dy + dz*dz; |
243 | + | boxL[2] = sqrt( dsq ); |
244 | + | //if( (0.5 * boxL[2]) < maxCutoff ) maxCutoff = 0.5 * boxL[2]; |
245 | + | |
246 | + | //calculate the max cutoff |
247 | + | maxCutoff = calcMaxCutOff(); |
248 | + | |
249 | + | checkCutOffs(); |
250 | + | |
251 | + | } |
252 | + | |
253 | + | |
254 | + | double SimInfo::calcMaxCutOff(){ |
255 | + | |
256 | + | double ri[3], rj[3], rk[3]; |
257 | + | double rij[3], rjk[3], rki[3]; |
258 | + | double minDist; |
259 | + | |
260 | + | ri[0] = Hmat[0][0]; |
261 | + | ri[1] = Hmat[1][0]; |
262 | + | ri[2] = Hmat[2][0]; |
263 | + | |
264 | + | rj[0] = Hmat[0][1]; |
265 | + | rj[1] = Hmat[1][1]; |
266 | + | rj[2] = Hmat[2][1]; |
267 | + | |
268 | + | rk[0] = Hmat[0][2]; |
269 | + | rk[1] = Hmat[1][2]; |
270 | + | rk[2] = Hmat[2][2]; |
271 | + | |
272 | + | crossProduct3(ri, rj, rij); |
273 | + | distXY = dotProduct3(rk,rij) / norm3(rij); |
274 | + | |
275 | + | crossProduct3(rj,rk, rjk); |
276 | + | distYZ = dotProduct3(ri,rjk) / norm3(rjk); |
277 | + | |
278 | + | crossProduct3(rk,ri, rki); |
279 | + | distZX = dotProduct3(rj,rki) / norm3(rki); |
280 | + | |
281 | + | minDist = min(min(distXY, distYZ), distZX); |
282 | + | return minDist/2; |
283 | + | |
284 | + | } |
285 | + | |
286 | + | void SimInfo::wrapVector( double thePos[3] ){ |
287 | + | |
288 | + | int i; |
289 | + | double scaled[3]; |
290 | + | |
291 | + | if( !orthoRhombic ){ |
292 | + | // calc the scaled coordinates. |
293 | + | |
294 | + | |
295 | + | matVecMul3(HmatInv, thePos, scaled); |
296 | + | |
297 | + | for(i=0; i<3; i++) |
298 | + | scaled[i] -= roundMe(scaled[i]); |
299 | + | |
300 | + | // calc the wrapped real coordinates from the wrapped scaled coordinates |
301 | + | |
302 | + | matVecMul3(Hmat, scaled, thePos); |
303 | + | |
304 | + | } |
305 | + | else{ |
306 | + | // calc the scaled coordinates. |
307 | + | |
308 | + | for(i=0; i<3; i++) |
309 | + | scaled[i] = thePos[i]*HmatInv[i][i]; |
310 | + | |
311 | + | // wrap the scaled coordinates |
312 | + | |
313 | + | for(i=0; i<3; i++) |
314 | + | scaled[i] -= roundMe(scaled[i]); |
315 | + | |
316 | + | // calc the wrapped real coordinates from the wrapped scaled coordinates |
317 | + | |
318 | + | for(i=0; i<3; i++) |
319 | + | thePos[i] = scaled[i]*Hmat[i][i]; |
320 | + | } |
321 | + | |
322 | + | } |
323 | + | |
324 | + | |
325 | + | int SimInfo::getNDF(){ |
326 | + | int ndf_local; |
327 | + | |
328 | + | ndf_local = 0; |
329 | + | |
330 | + | for(int i = 0; i < integrableObjects.size(); i++){ |
331 | + | ndf_local += 3; |
332 | + | if (integrableObjects[i]->isDirectional()) { |
333 | + | if (integrableObjects[i]->isLinear()) |
334 | + | ndf_local += 2; |
335 | + | else |
336 | + | ndf_local += 3; |
337 | + | } |
338 | + | } |
339 | + | |
340 | + | // n_constraints is local, so subtract them on each processor: |
341 | + | |
342 | + | ndf_local -= n_constraints; |
343 | + | |
344 | + | #ifdef IS_MPI |
345 | + | MPI_Allreduce(&ndf_local,&ndf,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD); |
346 | + | #else |
347 | + | ndf = ndf_local; |
348 | + | #endif |
349 | + | |
350 | + | // nZconstraints is global, as are the 3 COM translations for the |
351 | + | // entire system: |
352 | + | |
353 | + | ndf = ndf - 3 - nZconstraints; |
354 | + | |
355 | + | return ndf; |
356 | + | } |
357 | + | |
358 | + | int SimInfo::getNDFraw() { |
359 | + | int ndfRaw_local; |
360 | + | |
361 | + | // Raw degrees of freedom that we have to set |
362 | + | ndfRaw_local = 0; |
363 | + | |
364 | + | for(int i = 0; i < integrableObjects.size(); i++){ |
365 | + | ndfRaw_local += 3; |
366 | + | if (integrableObjects[i]->isDirectional()) { |
367 | + | if (integrableObjects[i]->isLinear()) |
368 | + | ndfRaw_local += 2; |
369 | + | else |
370 | + | ndfRaw_local += 3; |
371 | + | } |
372 | + | } |
373 | + | |
374 | + | #ifdef IS_MPI |
375 | + | MPI_Allreduce(&ndfRaw_local,&ndfRaw,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD); |
376 | + | #else |
377 | + | ndfRaw = ndfRaw_local; |
378 | + | #endif |
379 | + | |
380 | + | return ndfRaw; |
381 | + | } |
382 | + | |
383 | + | int SimInfo::getNDFtranslational() { |
384 | + | int ndfTrans_local; |
385 | + | |
386 | + | ndfTrans_local = 3 * integrableObjects.size() - n_constraints; |
387 | + | |
388 | + | |
389 | + | #ifdef IS_MPI |
390 | + | MPI_Allreduce(&ndfTrans_local,&ndfTrans,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD); |
391 | + | #else |
392 | + | ndfTrans = ndfTrans_local; |
393 | + | #endif |
394 | + | |
395 | + | ndfTrans = ndfTrans - 3 - nZconstraints; |
396 | + | |
397 | + | return ndfTrans; |
398 | + | } |
399 | + | |
400 | + | int SimInfo::getTotIntegrableObjects() { |
401 | + | int nObjs_local; |
402 | + | int nObjs; |
403 | + | |
404 | + | nObjs_local = integrableObjects.size(); |
405 | + | |
406 | + | |
407 | + | #ifdef IS_MPI |
408 | + | MPI_Allreduce(&nObjs_local,&nObjs,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD); |
409 | + | #else |
410 | + | nObjs = nObjs_local; |
411 | + | #endif |
412 | + | |
413 | + | |
414 | + | return nObjs; |
415 | + | } |
416 | + | |
417 | void SimInfo::refreshSim(){ | |
418 | ||
419 | simtype fInfo; | |
420 | int isError; | |
421 | + | int n_global; |
422 | int* excl; | |
423 | ||
424 | < | fInfo.box[0] = box_x; |
55 | < | fInfo.box[1] = box_y; |
56 | < | fInfo.box[2] = box_z; |
424 | > | fInfo.dielect = 0.0; |
425 | ||
426 | < | fInfo.rlist = rList; |
427 | < | fInfo.rcut = rCut; |
428 | < | fInfo.rrf = ecr; |
61 | < | fInfo.rt = ecr - est; |
62 | < | fInfo.dielect = dielectric; |
426 | > | if( useDipoles ){ |
427 | > | if( useReactionField )fInfo.dielect = dielectric; |
428 | > | } |
429 | ||
430 | fInfo.SIM_uses_PBC = usePBC; | |
431 | //fInfo.SIM_uses_LJ = 0; | |
432 | fInfo.SIM_uses_LJ = useLJ; | |
433 | fInfo.SIM_uses_sticky = useSticky; | |
434 | //fInfo.SIM_uses_sticky = 0; | |
435 | < | fInfo.SIM_uses_dipoles = useDipole; |
435 | > | fInfo.SIM_uses_charges = useCharges; |
436 | > | fInfo.SIM_uses_dipoles = useDipoles; |
437 | //fInfo.SIM_uses_dipoles = 0; | |
438 | < | //fInfo.SIM_uses_RF = useReactionField; |
439 | < | fInfo.SIM_uses_RF = 0; |
438 | > | fInfo.SIM_uses_RF = useReactionField; |
439 | > | //fInfo.SIM_uses_RF = 0; |
440 | fInfo.SIM_uses_GB = useGB; | |
441 | fInfo.SIM_uses_EAM = useEAM; | |
442 | ||
443 | < | excl = Exclude::getArray(); |
444 | < | |
443 | > | n_exclude = excludes->getSize(); |
444 | > | excl = excludes->getFortranArray(); |
445 | > | |
446 | > | #ifdef IS_MPI |
447 | > | n_global = mpiSim->getTotAtoms(); |
448 | > | #else |
449 | > | n_global = n_atoms; |
450 | > | #endif |
451 | > | |
452 | isError = 0; | |
453 | < | |
454 | < | // fInfo; |
455 | < | // n_atoms; |
456 | < | // identArray; |
457 | < | // n_exclude; |
458 | < | // excludes; |
459 | < | // nGlobalExcludes; |
460 | < | // globalExcludes; |
461 | < | // isError; |
88 | < | |
89 | < | setFsimulation( &fInfo, &n_atoms, identArray, &n_exclude, excl, |
90 | < | &nGlobalExcludes, globalExcludes, &isError ); |
91 | < | |
453 | > | |
454 | > | getFortranGroupArray(this, mfact, ngroup, groupList, groupStart); |
455 | > | //it may not be a good idea to pass the address of first element in vector |
456 | > | //since c++ standard does not require vector to be stored continously in meomory |
457 | > | //Most of the compilers will organize the memory of vector continously |
458 | > | setFsimulation( &fInfo, &n_global, &n_atoms, identArray, &n_exclude, excl, |
459 | > | &nGlobalExcludes, globalExcludes, molMembershipArray, |
460 | > | &mfact[0], &ngroup, &groupList[0], &groupStart[0], &isError); |
461 | > | |
462 | if( isError ){ | |
463 | < | |
463 | > | |
464 | sprintf( painCave.errMsg, | |
465 | < | "There was an error setting the simulation information in fortran.\n" ); |
465 | > | "There was an error setting the simulation information in fortran.\n" ); |
466 | painCave.isFatal = 1; | |
467 | simError(); | |
468 | } | |
469 | < | |
469 | > | |
470 | #ifdef IS_MPI | |
471 | sprintf( checkPointMsg, | |
472 | "succesfully sent the simulation information to fortran.\n"); | |
473 | MPIcheckPoint(); | |
474 | #endif // is_mpi | |
475 | + | |
476 | + | this->ndf = this->getNDF(); |
477 | + | this->ndfRaw = this->getNDFraw(); |
478 | + | this->ndfTrans = this->getNDFtranslational(); |
479 | } | |
480 | ||
481 | + | void SimInfo::setDefaultRcut( double theRcut ){ |
482 | + | |
483 | + | haveRcut = 1; |
484 | + | rCut = theRcut; |
485 | + | rList = rCut + 1.0; |
486 | + | |
487 | + | notifyFortranCutOffs( &rCut, &rSw, &rList ); |
488 | + | } |
489 | + | |
490 | + | void SimInfo::setDefaultRcut( double theRcut, double theRsw ){ |
491 | + | |
492 | + | rSw = theRsw; |
493 | + | setDefaultRcut( theRcut ); |
494 | + | } |
495 | + | |
496 | + | |
497 | + | void SimInfo::checkCutOffs( void ){ |
498 | + | |
499 | + | if( boxIsInit ){ |
500 | + | |
501 | + | //we need to check cutOffs against the box |
502 | + | |
503 | + | if( rCut > maxCutoff ){ |
504 | + | sprintf( painCave.errMsg, |
505 | + | "cutoffRadius is too large for the current periodic box.\n" |
506 | + | "\tCurrent Value of cutoffRadius = %G at time %G\n " |
507 | + | "\tThis is larger than half of at least one of the\n" |
508 | + | "\tperiodic box vectors. Right now, the Box matrix is:\n" |
509 | + | "\n" |
510 | + | "\t[ %G %G %G ]\n" |
511 | + | "\t[ %G %G %G ]\n" |
512 | + | "\t[ %G %G %G ]\n", |
513 | + | rCut, currentTime, |
514 | + | Hmat[0][0], Hmat[0][1], Hmat[0][2], |
515 | + | Hmat[1][0], Hmat[1][1], Hmat[1][2], |
516 | + | Hmat[2][0], Hmat[2][1], Hmat[2][2]); |
517 | + | painCave.isFatal = 1; |
518 | + | simError(); |
519 | + | } |
520 | + | } else { |
521 | + | // initialize this stuff before using it, OK? |
522 | + | sprintf( painCave.errMsg, |
523 | + | "Trying to check cutoffs without a box.\n" |
524 | + | "\tOOPSE should have better programmers than that.\n" ); |
525 | + | painCave.isFatal = 1; |
526 | + | simError(); |
527 | + | } |
528 | + | |
529 | + | } |
530 | + | |
531 | + | void SimInfo::addProperty(GenericData* prop){ |
532 | + | |
533 | + | map<string, GenericData*>::iterator result; |
534 | + | result = properties.find(prop->getID()); |
535 | + | |
536 | + | //we can't simply use properties[prop->getID()] = prop, |
537 | + | //it will cause memory leak if we already contain a propery which has the same name of prop |
538 | + | |
539 | + | if(result != properties.end()){ |
540 | + | |
541 | + | delete (*result).second; |
542 | + | (*result).second = prop; |
543 | + | |
544 | + | } |
545 | + | else{ |
546 | + | |
547 | + | properties[prop->getID()] = prop; |
548 | + | |
549 | + | } |
550 | + | |
551 | + | } |
552 | + | |
553 | + | GenericData* SimInfo::getProperty(const string& propName){ |
554 | + | |
555 | + | map<string, GenericData*>::iterator result; |
556 | + | |
557 | + | //string lowerCaseName = (); |
558 | + | |
559 | + | result = properties.find(propName); |
560 | + | |
561 | + | if(result != properties.end()) |
562 | + | return (*result).second; |
563 | + | else |
564 | + | return NULL; |
565 | + | } |
566 | + | |
567 | + | |
568 | + | void getFortranGroupArray(SimInfo* info, vector<double>& mfact, int& ngroup, |
569 | + | vector<int>& groupList, vector<int>& groupStart){ |
570 | + | Molecule* myMols; |
571 | + | Atom** myAtoms; |
572 | + | int numAtom; |
573 | + | int curIndex; |
574 | + | double mtot; |
575 | + | int numMol; |
576 | + | int numCutoffGroups; |
577 | + | CutoffGroup* myCutoffGroup; |
578 | + | vector<CutoffGroup*>::iterator iterCutoff; |
579 | + | Atom* cutoffAtom; |
580 | + | vector<Atom*>::iterator iterAtom; |
581 | + | int atomIndex; |
582 | + | double totalMass; |
583 | + | |
584 | + | mfact.clear(); |
585 | + | groupList.clear(); |
586 | + | groupStart.clear(); |
587 | + | |
588 | + | //Be careful, fortran array begin at 1 |
589 | + | curIndex = 1; |
590 | + | |
591 | + | myMols = info->molecules; |
592 | + | numMol = info->n_mol; |
593 | + | for(int i = 0; i < numMol; i++){ |
594 | + | numAtom = myMols[i].getNAtoms(); |
595 | + | myAtoms = myMols[i].getMyAtoms(); |
596 | + | |
597 | + | |
598 | + | for(int j = 0; j < numAtom; j++){ |
599 | + | |
600 | + | |
601 | + | #ifdef IS_MPI |
602 | + | atomIndex = myAtoms[j]->getGlobalIndex(); |
603 | + | #else |
604 | + | atomIndex = myAtoms[j]->getIndex(); |
605 | + | #endif |
606 | + | |
607 | + | if(myMols[i].belongToCutoffGroup(atomIndex)) |
608 | + | continue; |
609 | + | else{ |
610 | + | // this is a fraction of the cutoff group's mass, not the mass itself! |
611 | + | mfact.push_back(1.0); |
612 | + | groupList.push_back(myAtoms[j]->getIndex() + 1); |
613 | + | groupStart.push_back(curIndex++); |
614 | + | } |
615 | + | } |
616 | + | |
617 | + | numCutoffGroups = myMols[i].getNCutoffGroups(); |
618 | + | for(myCutoffGroup =myMols[i].beginCutoffGroup(iterCutoff); myCutoffGroup != NULL; |
619 | + | myCutoffGroup =myMols[i].nextCutoffGroup(iterCutoff)){ |
620 | + | |
621 | + | totalMass = myCutoffGroup->getMass(); |
622 | + | |
623 | + | for(cutoffAtom = myCutoffGroup->beginAtom(iterAtom); cutoffAtom != NULL; |
624 | + | cutoffAtom = myCutoffGroup->nextAtom(iterAtom)){ |
625 | + | mfact.push_back(cutoffAtom->getMass()/totalMass); |
626 | + | groupList.push_back(cutoffAtom->getIndex() + 1); |
627 | + | } |
628 | + | |
629 | + | groupStart.push_back(curIndex); |
630 | + | curIndex += myCutoffGroup->getNumAtom(); |
631 | + | |
632 | + | }//end for(myCutoffGroup =myMols[i].beginCutoffGroup(iterCutoff)) |
633 | + | |
634 | + | }//end for(int i = 0; i < numMol; i++) |
635 | + | |
636 | + | ngroup = groupStart.size(); |
637 | + | } |
– | Removed lines |
+ | Added lines |
< | Changed lines |
> | Changed lines |