# | Line 47 | Line 47 | void SimInfo::setBox(double newBox[3]) { | |
---|---|---|
47 | } | |
48 | ||
49 | void SimInfo::setBox(double newBox[3]) { | |
50 | + | |
51 | + | int i, j; |
52 | + | double tempMat[3][3]; |
53 | ||
54 | < | double smallestBoxL, maxCutoff; |
55 | < | int status; |
53 | < | int i; |
54 | > | for(i=0; i<3; i++) |
55 | > | for (j=0; j<3; j++) tempMat[i][j] = 0.0;; |
56 | ||
57 | < | for(i=0; i<9; i++) Hmat[i] = 0.0;; |
57 | > | tempMat[0][0] = newBox[0]; |
58 | > | tempMat[1][1] = newBox[1]; |
59 | > | tempMat[2][2] = newBox[2]; |
60 | ||
61 | < | Hmat[0] = newBox[0]; |
58 | < | Hmat[4] = newBox[1]; |
59 | < | Hmat[8] = newBox[2]; |
61 | > | setBoxM( tempMat ); |
62 | ||
63 | < | calcHmatI(); |
62 | < | calcBoxL(); |
63 | > | } |
64 | ||
65 | < | setFortranBoxSize(Hmat, HmatI, &orthoRhombic); |
65 | > | void SimInfo::setBoxM( double theBox[3][3] ){ |
66 | > | |
67 | > | int i, j, status; |
68 | > | double smallestBoxL, maxCutoff; |
69 | > | double FortranHmat[9]; // to preserve compatibility with Fortran the |
70 | > | // ordering in the array is as follows: |
71 | > | // [ 0 3 6 ] |
72 | > | // [ 1 4 7 ] |
73 | > | // [ 2 5 8 ] |
74 | > | double FortranHmatInv[9]; // the inverted Hmat (for Fortran); |
75 | ||
66 | – | smallestBoxL = boxLx; |
67 | – | if (boxLy < smallestBoxL) smallestBoxL = boxLy; |
68 | – | if (boxLz < smallestBoxL) smallestBoxL = boxLz; |
76 | ||
77 | < | maxCutoff = smallestBoxL / 2.0; |
77 | > | for(i=0; i < 3; i++) |
78 | > | for (j=0; j < 3; j++) Hmat[i][j] = theBox[i][j]; |
79 | > | |
80 | > | // cerr |
81 | > | // << "setting Hmat ->\n" |
82 | > | // << "[ " << Hmat[0][0] << ", " << Hmat[0][1] << ", " << Hmat[0][2] << " ]\n" |
83 | > | // << "[ " << Hmat[1][0] << ", " << Hmat[1][1] << ", " << Hmat[1][2] << " ]\n" |
84 | > | // << "[ " << Hmat[2][0] << ", " << Hmat[2][1] << ", " << Hmat[2][2] << " ]\n"; |
85 | ||
86 | < | if (rList > maxCutoff) { |
87 | < | sprintf( painCave.errMsg, |
74 | < | "New Box size is forcing neighborlist radius down to %lf\n", |
75 | < | maxCutoff ); |
76 | < | painCave.isFatal = 0; |
77 | < | simError(); |
86 | > | calcBoxL(); |
87 | > | calcHmatInv(); |
88 | ||
89 | < | rList = maxCutoff; |
90 | < | |
91 | < | sprintf( painCave.errMsg, |
92 | < | "New Box size is forcing cutoff radius down to %lf\n", |
83 | < | maxCutoff - 1.0 ); |
84 | < | painCave.isFatal = 0; |
85 | < | simError(); |
86 | < | |
87 | < | rCut = rList - 1.0; |
88 | < | |
89 | < | // list radius changed so we have to refresh the simulation structure. |
90 | < | refreshSim(); |
91 | < | } |
92 | < | |
93 | < | if (rCut > maxCutoff) { |
94 | < | sprintf( painCave.errMsg, |
95 | < | "New Box size is forcing cutoff radius down to %lf\n", |
96 | < | maxCutoff ); |
97 | < | painCave.isFatal = 0; |
98 | < | simError(); |
99 | < | |
100 | < | status = 0; |
101 | < | LJ_new_rcut(&rCut, &status); |
102 | < | if (status != 0) { |
103 | < | sprintf( painCave.errMsg, |
104 | < | "Error in recomputing LJ shifts based on new rcut\n"); |
105 | < | painCave.isFatal = 1; |
106 | < | simError(); |
89 | > | for(i=0; i < 3; i++) { |
90 | > | for (j=0; j < 3; j++) { |
91 | > | FortranHmat[3*j + i] = Hmat[i][j]; |
92 | > | FortranHmatInv[3*j + i] = HmatInv[i][j]; |
93 | } | |
94 | } | |
109 | – | } |
95 | ||
96 | < | void SimInfo::setBoxM( double theBox[9] ){ |
112 | < | |
113 | < | int i, status; |
114 | < | double smallestBoxL, maxCutoff; |
115 | < | |
116 | < | for(i=0; i<9; i++) Hmat[i] = theBox[i]; |
117 | < | calcHmatI(); |
118 | < | calcBoxL(); |
119 | < | |
120 | < | setFortranBoxSize(Hmat, HmatI, &orthoRhombic); |
96 | > | setFortranBoxSize(FortranHmat, FortranHmatInv, &orthoRhombic); |
97 | ||
98 | smallestBoxL = boxLx; | |
99 | if (boxLy < smallestBoxL) smallestBoxL = boxLy; | |
# | Line 165 | Line 141 | void SimInfo::setBoxM( double theBox[9] ){ | |
141 | } | |
142 | ||
143 | ||
144 | < | void SimInfo::getBoxM (double theBox[9]) { |
144 | > | void SimInfo::getBoxM (double theBox[3][3]) { |
145 | ||
146 | < | int i; |
147 | < | for(i=0; i<9; i++) theBox[i] = Hmat[i]; |
146 | > | int i, j; |
147 | > | for(i=0; i<3; i++) |
148 | > | for (j=0; j<3; j++) theBox[i][j] = Hmat[i][j]; |
149 | } | |
150 | ||
151 | ||
152 | void SimInfo::scaleBox(double scale) { | |
153 | < | double theBox[9]; |
154 | < | int i; |
153 | > | double theBox[3][3]; |
154 | > | int i, j; |
155 | ||
156 | < | for(i=0; i<9; i++) theBox[i] = Hmat[i]*scale; |
156 | > | // cerr << "Scaling box by " << scale << "\n"; |
157 | ||
158 | + | for(i=0; i<3; i++) |
159 | + | for (j=0; j<3; j++) theBox[i][j] = Hmat[i][j]*scale; |
160 | + | |
161 | setBoxM(theBox); | |
162 | ||
163 | } | |
164 | ||
165 | < | void SimInfo::calcHmatI( void ) { |
166 | < | |
167 | < | double C[3][3]; |
188 | < | double detHmat; |
189 | < | int i, j, k; |
165 | > | void SimInfo::calcHmatInv( void ) { |
166 | > | |
167 | > | int i,j; |
168 | double smallDiag; | |
169 | double tol; | |
170 | double sanity[3][3]; | |
171 | ||
172 | < | // calculate the adjunct of Hmat; |
172 | > | invertMat3( Hmat, HmatInv ); |
173 | ||
174 | < | C[0][0] = ( Hmat[4]*Hmat[8]) - (Hmat[7]*Hmat[5]); |
197 | < | C[1][0] = -( Hmat[1]*Hmat[8]) + (Hmat[7]*Hmat[2]); |
198 | < | C[2][0] = ( Hmat[1]*Hmat[5]) - (Hmat[4]*Hmat[2]); |
174 | > | // Check the inverse to make sure it is sane: |
175 | ||
176 | < | C[0][1] = -( Hmat[3]*Hmat[8]) + (Hmat[6]*Hmat[5]); |
177 | < | C[1][1] = ( Hmat[0]*Hmat[8]) - (Hmat[6]*Hmat[2]); |
178 | < | C[2][1] = -( Hmat[0]*Hmat[5]) + (Hmat[3]*Hmat[2]); |
203 | < | |
204 | < | C[0][2] = ( Hmat[3]*Hmat[7]) - (Hmat[6]*Hmat[4]); |
205 | < | C[1][2] = -( Hmat[0]*Hmat[7]) + (Hmat[6]*Hmat[1]); |
206 | < | C[2][2] = ( Hmat[0]*Hmat[4]) - (Hmat[3]*Hmat[1]); |
207 | < | |
208 | < | // calcutlate the determinant of Hmat |
176 | > | matMul3( Hmat, HmatInv, sanity ); |
177 | > | |
178 | > | // check to see if Hmat is orthorhombic |
179 | ||
180 | < | detHmat = 0.0; |
181 | < | for(i=0; i<3; i++) detHmat += Hmat[i] * C[i][0]; |
180 | > | smallDiag = Hmat[0][0]; |
181 | > | if(smallDiag > Hmat[1][1]) smallDiag = Hmat[1][1]; |
182 | > | if(smallDiag > Hmat[2][2]) smallDiag = Hmat[2][2]; |
183 | > | tol = smallDiag * 1E-6; |
184 | ||
185 | + | orthoRhombic = 1; |
186 | ||
187 | < | // H^-1 = C^T / det(H) |
188 | < | |
189 | < | i=0; |
190 | < | for(j=0; j<3; j++){ |
191 | < | for(k=0; k<3; k++){ |
192 | < | |
193 | < | HmatI[i] = C[j][k] / detHmat; |
221 | < | i++; |
187 | > | for (i = 0; i < 3; i++ ) { |
188 | > | for (j = 0 ; j < 3; j++) { |
189 | > | if (i != j) { |
190 | > | if (orthoRhombic) { |
191 | > | if (Hmat[i][j] >= tol) orthoRhombic = 0; |
192 | > | } |
193 | > | } |
194 | } | |
195 | } | |
196 | + | } |
197 | ||
198 | < | // sanity check |
198 | > | double SimInfo::matDet3(double a[3][3]) { |
199 | > | int i, j, k; |
200 | > | double determinant; |
201 | ||
202 | < | for(i=0; i<3; i++){ |
203 | < | for(j=0; j<3; j++){ |
202 | > | determinant = 0.0; |
203 | > | |
204 | > | for(i = 0; i < 3; i++) { |
205 | > | j = (i+1)%3; |
206 | > | k = (i+2)%3; |
207 | > | |
208 | > | determinant += a[0][i] * (a[1][j]*a[2][k] - a[1][k]*a[2][j]); |
209 | > | } |
210 | > | |
211 | > | return determinant; |
212 | > | } |
213 | > | |
214 | > | void SimInfo::invertMat3(double a[3][3], double b[3][3]) { |
215 | > | |
216 | > | int i, j, k, l, m, n; |
217 | > | double determinant; |
218 | > | |
219 | > | determinant = matDet3( a ); |
220 | > | |
221 | > | if (determinant == 0.0) { |
222 | > | sprintf( painCave.errMsg, |
223 | > | "Can't invert a matrix with a zero determinant!\n"); |
224 | > | painCave.isFatal = 1; |
225 | > | simError(); |
226 | > | } |
227 | > | |
228 | > | for (i=0; i < 3; i++) { |
229 | > | j = (i+1)%3; |
230 | > | k = (i+2)%3; |
231 | > | for(l = 0; l < 3; l++) { |
232 | > | m = (l+1)%3; |
233 | > | n = (l+2)%3; |
234 | ||
235 | < | sanity[i][j] = 0.0; |
231 | < | for(k=0; k<3; k++){ |
232 | < | sanity[i][j] += Hmat[3*k+i] * HmatI[3*j+k]; |
233 | < | } |
235 | > | b[l][i] = (a[j][m]*a[k][n] - a[j][n]*a[k][m]) / determinant; |
236 | } | |
237 | } | |
238 | + | } |
239 | ||
240 | < | cerr << "sanity => \n" |
241 | < | << sanity[0][0] << "\t" << sanity[0][1] << "\t" << sanity [0][2] << "\n" |
239 | < | << sanity[1][0] << "\t" << sanity[1][1] << "\t" << sanity [1][2] << "\n" |
240 | < | << sanity[2][0] << "\t" << sanity[2][1] << "\t" << sanity [2][2] |
241 | < | << "\n"; |
242 | < | |
240 | > | void SimInfo::matMul3(double a[3][3], double b[3][3], double c[3][3]) { |
241 | > | double r00, r01, r02, r10, r11, r12, r20, r21, r22; |
242 | ||
243 | < | // check to see if Hmat is orthorhombic |
243 | > | r00 = a[0][0]*b[0][0] + a[0][1]*b[1][0] + a[0][2]*b[2][0]; |
244 | > | r01 = a[0][0]*b[0][1] + a[0][1]*b[1][1] + a[0][2]*b[2][1]; |
245 | > | r02 = a[0][0]*b[0][2] + a[0][1]*b[1][2] + a[0][2]*b[2][2]; |
246 | ||
247 | < | smallDiag = Hmat[0]; |
248 | < | if(smallDiag > Hmat[4]) smallDiag = Hmat[4]; |
249 | < | if(smallDiag > Hmat[8]) smallDiag = Hmat[8]; |
250 | < | tol = smallDiag * 1E-6; |
247 | > | r10 = a[1][0]*b[0][0] + a[1][1]*b[1][0] + a[1][2]*b[2][0]; |
248 | > | r11 = a[1][0]*b[0][1] + a[1][1]*b[1][1] + a[1][2]*b[2][1]; |
249 | > | r12 = a[1][0]*b[0][2] + a[1][1]*b[1][2] + a[1][2]*b[2][2]; |
250 | > | |
251 | > | r20 = a[2][0]*b[0][0] + a[2][1]*b[1][0] + a[2][2]*b[2][0]; |
252 | > | r21 = a[2][0]*b[0][1] + a[2][1]*b[1][1] + a[2][2]*b[2][1]; |
253 | > | r22 = a[2][0]*b[0][2] + a[2][1]*b[1][2] + a[2][2]*b[2][2]; |
254 | > | |
255 | > | c[0][0] = r00; c[0][1] = r01; c[0][2] = r02; |
256 | > | c[1][0] = r10; c[1][1] = r11; c[1][2] = r12; |
257 | > | c[2][0] = r20; c[2][1] = r21; c[2][2] = r22; |
258 | > | } |
259 | ||
260 | < | orthoRhombic = 1; |
261 | < | for(i=0; (i<9) && orthoRhombic; i++){ |
262 | < | |
263 | < | if( (i%4) ){ // ignore the diagonals (0, 4, and 8) |
264 | < | orthoRhombic = (Hmat[i] <= tol); |
260 | > | void SimInfo::matVecMul3(double m[3][3], double inVec[3], double outVec[3]) { |
261 | > | double a0, a1, a2; |
262 | > | |
263 | > | a0 = inVec[0]; a1 = inVec[1]; a2 = inVec[2]; |
264 | > | |
265 | > | outVec[0] = m[0][0]*a0 + m[0][1]*a1 + m[0][2]*a2; |
266 | > | outVec[1] = m[1][0]*a0 + m[1][1]*a1 + m[1][2]*a2; |
267 | > | outVec[2] = m[2][0]*a0 + m[2][1]*a1 + m[2][2]*a2; |
268 | > | } |
269 | > | |
270 | > | void SimInfo::transposeMat3(double in[3][3], double out[3][3]) { |
271 | > | double temp[3][3]; |
272 | > | int i, j; |
273 | > | |
274 | > | for (i = 0; i < 3; i++) { |
275 | > | for (j = 0; j < 3; j++) { |
276 | > | temp[j][i] = in[i][j]; |
277 | } | |
278 | } | |
279 | < | |
279 | > | for (i = 0; i < 3; i++) { |
280 | > | for (j = 0; j < 3; j++) { |
281 | > | out[i][j] = temp[i][j]; |
282 | > | } |
283 | > | } |
284 | } | |
285 | + | |
286 | + | void SimInfo::printMat3(double A[3][3] ){ |
287 | ||
288 | + | std::cerr |
289 | + | << "[ " << A[0][0] << ", " << A[0][1] << ", " << A[0][2] << " ]\n" |
290 | + | << "[ " << A[1][0] << ", " << A[1][1] << ", " << A[1][2] << " ]\n" |
291 | + | << "[ " << A[2][0] << ", " << A[2][1] << ", " << A[2][2] << " ]\n"; |
292 | + | } |
293 | + | |
294 | + | void SimInfo::printMat9(double A[9] ){ |
295 | + | |
296 | + | std::cerr |
297 | + | << "[ " << A[0] << ", " << A[1] << ", " << A[2] << " ]\n" |
298 | + | << "[ " << A[3] << ", " << A[4] << ", " << A[5] << " ]\n" |
299 | + | << "[ " << A[6] << ", " << A[7] << ", " << A[8] << " ]\n"; |
300 | + | } |
301 | + | |
302 | void SimInfo::calcBoxL( void ){ | |
303 | ||
304 | double dx, dy, dz, dsq; | |
305 | int i; | |
306 | ||
307 | < | // boxVol = h1 (dot) h2 (cross) h3 |
307 | > | // boxVol = Determinant of Hmat |
308 | ||
309 | < | boxVol = Hmat[0] * ( (Hmat[4]*Hmat[8]) - (Hmat[7]*Hmat[5]) ) |
269 | < | + Hmat[1] * ( (Hmat[5]*Hmat[6]) - (Hmat[8]*Hmat[3]) ) |
270 | < | + Hmat[2] * ( (Hmat[3]*Hmat[7]) - (Hmat[6]*Hmat[4]) ); |
309 | > | boxVol = matDet3( Hmat ); |
310 | ||
272 | – | |
311 | // boxLx | |
312 | ||
313 | < | dx = Hmat[0]; dy = Hmat[1]; dz = Hmat[2]; |
313 | > | dx = Hmat[0][0]; dy = Hmat[1][0]; dz = Hmat[2][0]; |
314 | dsq = dx*dx + dy*dy + dz*dz; | |
315 | boxLx = sqrt( dsq ); | |
316 | ||
317 | // boxLy | |
318 | ||
319 | < | dx = Hmat[3]; dy = Hmat[4]; dz = Hmat[5]; |
319 | > | dx = Hmat[0][1]; dy = Hmat[1][1]; dz = Hmat[2][1]; |
320 | dsq = dx*dx + dy*dy + dz*dz; | |
321 | boxLy = sqrt( dsq ); | |
322 | ||
323 | // boxLz | |
324 | ||
325 | < | dx = Hmat[6]; dy = Hmat[7]; dz = Hmat[8]; |
325 | > | dx = Hmat[0][2]; dy = Hmat[1][2]; dz = Hmat[2][2]; |
326 | dsq = dx*dx + dy*dy + dz*dz; | |
327 | boxLz = sqrt( dsq ); | |
328 | ||
# | Line 298 | Line 336 | void SimInfo::wrapVector( double thePos[3] ){ | |
336 | ||
337 | if( !orthoRhombic ){ | |
338 | // calc the scaled coordinates. | |
339 | + | |
340 | + | |
341 | + | matVecMul3(HmatInv, thePos, scaled); |
342 | ||
343 | for(i=0; i<3; i++) | |
303 | – | scaled[i] = |
304 | – | thePos[0]*HmatI[i] + thePos[1]*HmatI[i+3] + thePos[3]*HmatI[i+6]; |
305 | – | |
306 | – | // wrap the scaled coordinates |
307 | – | |
308 | – | for(i=0; i<3; i++) |
344 | scaled[i] -= roundMe(scaled[i]); | |
345 | ||
346 | // calc the wrapped real coordinates from the wrapped scaled coordinates | |
347 | ||
348 | < | for(i=0; i<3; i++) |
349 | < | thePos[i] = |
315 | < | scaled[0]*Hmat[i] + scaled[1]*Hmat[i+3] + scaled[2]*Hmat[i+6]; |
348 | > | matVecMul3(Hmat, scaled, thePos); |
349 | > | |
350 | } | |
351 | else{ | |
352 | // calc the scaled coordinates. | |
353 | ||
354 | for(i=0; i<3; i++) | |
355 | < | scaled[i] = thePos[i]*HmatI[i*4]; |
355 | > | scaled[i] = thePos[i]*HmatInv[i][i]; |
356 | ||
357 | // wrap the scaled coordinates | |
358 | ||
# | Line 328 | Line 362 | void SimInfo::wrapVector( double thePos[3] ){ | |
362 | // calc the wrapped real coordinates from the wrapped scaled coordinates | |
363 | ||
364 | for(i=0; i<3; i++) | |
365 | < | thePos[i] = scaled[i]*Hmat[i*4]; |
365 | > | thePos[i] = scaled[i]*Hmat[i][i]; |
366 | } | |
367 | ||
334 | – | |
368 | } | |
369 | ||
370 |
– | Removed lines |
+ | Added lines |
< | Changed lines |
> | Changed lines |