# | Line 1 | Line 1 | |
---|---|---|
1 | < | #include <cstdlib> |
2 | < | #include <cstring> |
3 | < | #include <cmath> |
1 | > | #include <stdlib.h> |
2 | > | #include <string.h> |
3 | > | #include <math.h> |
4 | ||
5 | #include <iostream> | |
6 | using namespace std; | |
# | Line 12 | Line 12 | using namespace std; | |
12 | ||
13 | #include "fortranWrappers.hpp" | |
14 | ||
15 | + | #include "MatVec3.h" |
16 | + | |
17 | #ifdef IS_MPI | |
18 | #include "mpiSimulation.hpp" | |
19 | #endif | |
# | Line 20 | Line 22 | inline double roundMe( double x ){ | |
22 | return ( x >= 0 ) ? floor( x + 0.5 ) : ceil( x - 0.5 ); | |
23 | } | |
24 | ||
25 | + | inline double min( double a, double b ){ |
26 | + | return (a < b ) ? a : b; |
27 | + | } |
28 | ||
29 | SimInfo* currentInfo; | |
30 | ||
31 | SimInfo::SimInfo(){ | |
32 | < | excludes = NULL; |
32 | > | |
33 | n_constraints = 0; | |
34 | + | nZconstraints = 0; |
35 | n_oriented = 0; | |
36 | n_dipoles = 0; | |
37 | ndf = 0; | |
38 | ndfRaw = 0; | |
39 | + | nZconstraints = 0; |
40 | the_integrator = NULL; | |
41 | setTemp = 0; | |
42 | thermalTime = 0.0; | |
43 | + | currentTime = 0.0; |
44 | rCut = 0.0; | |
45 | + | ecr = 0.0; |
46 | + | est = 0.0; |
47 | ||
48 | + | haveRcut = 0; |
49 | + | haveEcr = 0; |
50 | + | boxIsInit = 0; |
51 | + | |
52 | + | resetTime = 1e99; |
53 | + | |
54 | + | orthoRhombic = 0; |
55 | + | orthoTolerance = 1E-6; |
56 | + | useInitXSstate = true; |
57 | + | |
58 | usePBC = 0; | |
59 | useLJ = 0; | |
60 | useSticky = 0; | |
61 | < | useDipole = 0; |
61 | > | useCharges = 0; |
62 | > | useDipoles = 0; |
63 | useReactionField = 0; | |
64 | useGB = 0; | |
65 | useEAM = 0; | |
66 | + | useMolecularCutoffs = 0; |
67 | ||
68 | + | excludes = Exclude::Instance(); |
69 | + | |
70 | + | myConfiguration = new SimState(); |
71 | + | |
72 | + | has_minimizer = false; |
73 | + | the_minimizer =NULL; |
74 | + | |
75 | wrapMeSimInfo( this ); | |
76 | } | |
77 | ||
78 | + | |
79 | + | SimInfo::~SimInfo(){ |
80 | + | |
81 | + | delete myConfiguration; |
82 | + | |
83 | + | map<string, GenericData*>::iterator i; |
84 | + | |
85 | + | for(i = properties.begin(); i != properties.end(); i++) |
86 | + | delete (*i).second; |
87 | + | |
88 | + | } |
89 | + | |
90 | void SimInfo::setBox(double newBox[3]) { | |
91 | ||
92 | int i, j; | |
# | Line 64 | Line 105 | void SimInfo::setBoxM( double theBox[3][3] ){ | |
105 | ||
106 | void SimInfo::setBoxM( double theBox[3][3] ){ | |
107 | ||
108 | < | int i, j, status; |
68 | < | double smallestBoxL, maxCutoff; |
108 | > | int i, j; |
109 | double FortranHmat[9]; // to preserve compatibility with Fortran the | |
110 | // ordering in the array is as follows: | |
111 | // [ 0 3 6 ] | |
# | Line 73 | Line 113 | void SimInfo::setBoxM( double theBox[3][3] ){ | |
113 | // [ 2 5 8 ] | |
114 | double FortranHmatInv[9]; // the inverted Hmat (for Fortran); | |
115 | ||
116 | + | if( !boxIsInit ) boxIsInit = 1; |
117 | ||
118 | for(i=0; i < 3; i++) | |
119 | for (j=0; j < 3; j++) Hmat[i][j] = theBox[i][j]; | |
120 | ||
80 | – | // cerr |
81 | – | // << "setting Hmat ->\n" |
82 | – | // << "[ " << Hmat[0][0] << ", " << Hmat[0][1] << ", " << Hmat[0][2] << " ]\n" |
83 | – | // << "[ " << Hmat[1][0] << ", " << Hmat[1][1] << ", " << Hmat[1][2] << " ]\n" |
84 | – | // << "[ " << Hmat[2][0] << ", " << Hmat[2][1] << ", " << Hmat[2][2] << " ]\n"; |
85 | – | |
121 | calcBoxL(); | |
122 | calcHmatInv(); | |
123 | ||
# | Line 95 | Line 130 | void SimInfo::setBoxM( double theBox[3][3] ){ | |
130 | ||
131 | setFortranBoxSize(FortranHmat, FortranHmatInv, &orthoRhombic); | |
132 | ||
98 | – | smallestBoxL = boxLx; |
99 | – | if (boxLy < smallestBoxL) smallestBoxL = boxLy; |
100 | – | if (boxLz < smallestBoxL) smallestBoxL = boxLz; |
101 | – | |
102 | – | maxCutoff = smallestBoxL / 2.0; |
103 | – | |
104 | – | if (rList > maxCutoff) { |
105 | – | sprintf( painCave.errMsg, |
106 | – | "New Box size is forcing neighborlist radius down to %lf\n", |
107 | – | maxCutoff ); |
108 | – | painCave.isFatal = 0; |
109 | – | simError(); |
110 | – | |
111 | – | rList = maxCutoff; |
112 | – | |
113 | – | sprintf( painCave.errMsg, |
114 | – | "New Box size is forcing cutoff radius down to %lf\n", |
115 | – | maxCutoff - 1.0 ); |
116 | – | painCave.isFatal = 0; |
117 | – | simError(); |
118 | – | |
119 | – | rCut = rList - 1.0; |
120 | – | |
121 | – | // list radius changed so we have to refresh the simulation structure. |
122 | – | refreshSim(); |
123 | – | } |
124 | – | |
125 | – | if (rCut > maxCutoff) { |
126 | – | sprintf( painCave.errMsg, |
127 | – | "New Box size is forcing cutoff radius down to %lf\n", |
128 | – | maxCutoff ); |
129 | – | painCave.isFatal = 0; |
130 | – | simError(); |
131 | – | |
132 | – | status = 0; |
133 | – | LJ_new_rcut(&rCut, &status); |
134 | – | if (status != 0) { |
135 | – | sprintf( painCave.errMsg, |
136 | – | "Error in recomputing LJ shifts based on new rcut\n"); |
137 | – | painCave.isFatal = 1; |
138 | – | simError(); |
139 | – | } |
140 | – | } |
133 | } | |
134 | ||
135 | ||
# | Line 164 | Line 156 | void SimInfo::calcHmatInv( void ) { | |
156 | ||
157 | void SimInfo::calcHmatInv( void ) { | |
158 | ||
159 | + | int oldOrtho; |
160 | int i,j; | |
161 | double smallDiag; | |
162 | double tol; | |
# | Line 171 | Line 164 | void SimInfo::calcHmatInv( void ) { | |
164 | ||
165 | invertMat3( Hmat, HmatInv ); | |
166 | ||
174 | – | // Check the inverse to make sure it is sane: |
175 | – | |
176 | – | matMul3( Hmat, HmatInv, sanity ); |
177 | – | |
167 | // check to see if Hmat is orthorhombic | |
168 | ||
169 | < | smallDiag = Hmat[0][0]; |
181 | < | if(smallDiag > Hmat[1][1]) smallDiag = Hmat[1][1]; |
182 | < | if(smallDiag > Hmat[2][2]) smallDiag = Hmat[2][2]; |
183 | < | tol = smallDiag * 1E-6; |
169 | > | oldOrtho = orthoRhombic; |
170 | ||
171 | + | smallDiag = fabs(Hmat[0][0]); |
172 | + | if(smallDiag > fabs(Hmat[1][1])) smallDiag = fabs(Hmat[1][1]); |
173 | + | if(smallDiag > fabs(Hmat[2][2])) smallDiag = fabs(Hmat[2][2]); |
174 | + | tol = smallDiag * orthoTolerance; |
175 | + | |
176 | orthoRhombic = 1; | |
177 | ||
178 | for (i = 0; i < 3; i++ ) { | |
179 | for (j = 0 ; j < 3; j++) { | |
180 | if (i != j) { | |
181 | if (orthoRhombic) { | |
182 | < | if (Hmat[i][j] >= tol) orthoRhombic = 0; |
182 | > | if ( fabs(Hmat[i][j]) >= tol) orthoRhombic = 0; |
183 | } | |
184 | } | |
185 | } | |
195 | – | } |
196 | – | } |
197 | – | |
198 | – | double SimInfo::matDet3(double a[3][3]) { |
199 | – | int i, j, k; |
200 | – | double determinant; |
201 | – | |
202 | – | determinant = 0.0; |
203 | – | |
204 | – | for(i = 0; i < 3; i++) { |
205 | – | j = (i+1)%3; |
206 | – | k = (i+2)%3; |
207 | – | |
208 | – | determinant += a[0][i] * (a[1][j]*a[2][k] - a[1][k]*a[2][j]); |
186 | } | |
187 | ||
188 | < | return determinant; |
189 | < | } |
190 | < | |
191 | < | void SimInfo::invertMat3(double a[3][3], double b[3][3]) { |
192 | < | |
193 | < | int i, j, k, l, m, n; |
194 | < | double determinant; |
195 | < | |
196 | < | determinant = matDet3( a ); |
197 | < | |
198 | < | if (determinant == 0.0) { |
222 | < | sprintf( painCave.errMsg, |
223 | < | "Can't invert a matrix with a zero determinant!\n"); |
224 | < | painCave.isFatal = 1; |
225 | < | simError(); |
226 | < | } |
227 | < | |
228 | < | for (i=0; i < 3; i++) { |
229 | < | j = (i+1)%3; |
230 | < | k = (i+2)%3; |
231 | < | for(l = 0; l < 3; l++) { |
232 | < | m = (l+1)%3; |
233 | < | n = (l+2)%3; |
234 | < | |
235 | < | b[l][i] = (a[j][m]*a[k][n] - a[j][n]*a[k][m]) / determinant; |
188 | > | if( oldOrtho != orthoRhombic ){ |
189 | > | |
190 | > | if( orthoRhombic ){ |
191 | > | sprintf( painCave.errMsg, |
192 | > | "OOPSE is switching from the default Non-Orthorhombic\n" |
193 | > | "\tto the faster Orthorhombic periodic boundary computations.\n" |
194 | > | "\tThis is usually a good thing, but if you wan't the\n" |
195 | > | "\tNon-Orthorhombic computations, make the orthoBoxTolerance\n" |
196 | > | "\tvariable ( currently set to %G ) smaller.\n", |
197 | > | orthoTolerance); |
198 | > | simError(); |
199 | } | |
200 | < | } |
201 | < | } |
202 | < | |
203 | < | void SimInfo::matMul3(double a[3][3], double b[3][3], double c[3][3]) { |
204 | < | double r00, r01, r02, r10, r11, r12, r20, r21, r22; |
205 | < | |
206 | < | r00 = a[0][0]*b[0][0] + a[0][1]*b[1][0] + a[0][2]*b[2][0]; |
207 | < | r01 = a[0][0]*b[0][1] + a[0][1]*b[1][1] + a[0][2]*b[2][1]; |
208 | < | r02 = a[0][0]*b[0][2] + a[0][1]*b[1][2] + a[0][2]*b[2][2]; |
209 | < | |
247 | < | r10 = a[1][0]*b[0][0] + a[1][1]*b[1][0] + a[1][2]*b[2][0]; |
248 | < | r11 = a[1][0]*b[0][1] + a[1][1]*b[1][1] + a[1][2]*b[2][1]; |
249 | < | r12 = a[1][0]*b[0][2] + a[1][1]*b[1][2] + a[1][2]*b[2][2]; |
250 | < | |
251 | < | r20 = a[2][0]*b[0][0] + a[2][1]*b[1][0] + a[2][2]*b[2][0]; |
252 | < | r21 = a[2][0]*b[0][1] + a[2][1]*b[1][1] + a[2][2]*b[2][1]; |
253 | < | r22 = a[2][0]*b[0][2] + a[2][1]*b[1][2] + a[2][2]*b[2][2]; |
254 | < | |
255 | < | c[0][0] = r00; c[0][1] = r01; c[0][2] = r02; |
256 | < | c[1][0] = r10; c[1][1] = r11; c[1][2] = r12; |
257 | < | c[2][0] = r20; c[2][1] = r21; c[2][2] = r22; |
258 | < | } |
259 | < | |
260 | < | void SimInfo::matVecMul3(double m[3][3], double inVec[3], double outVec[3]) { |
261 | < | double a0, a1, a2; |
262 | < | |
263 | < | a0 = inVec[0]; a1 = inVec[1]; a2 = inVec[2]; |
264 | < | |
265 | < | outVec[0] = m[0][0]*a0 + m[0][1]*a1 + m[0][2]*a2; |
266 | < | outVec[1] = m[1][0]*a0 + m[1][1]*a1 + m[1][2]*a2; |
267 | < | outVec[2] = m[2][0]*a0 + m[2][1]*a1 + m[2][2]*a2; |
268 | < | } |
269 | < | |
270 | < | void SimInfo::transposeMat3(double in[3][3], double out[3][3]) { |
271 | < | double temp[3][3]; |
272 | < | int i, j; |
273 | < | |
274 | < | for (i = 0; i < 3; i++) { |
275 | < | for (j = 0; j < 3; j++) { |
276 | < | temp[j][i] = in[i][j]; |
200 | > | else { |
201 | > | sprintf( painCave.errMsg, |
202 | > | "OOPSE is switching from the faster Orthorhombic to the more\n" |
203 | > | "\tflexible Non-Orthorhombic periodic boundary computations.\n" |
204 | > | "\tThis is usually because the box has deformed under\n" |
205 | > | "\tNPTf integration. If you wan't to live on the edge with\n" |
206 | > | "\tthe Orthorhombic computations, make the orthoBoxTolerance\n" |
207 | > | "\tvariable ( currently set to %G ) larger.\n", |
208 | > | orthoTolerance); |
209 | > | simError(); |
210 | } | |
211 | } | |
279 | – | for (i = 0; i < 3; i++) { |
280 | – | for (j = 0; j < 3; j++) { |
281 | – | out[i][j] = temp[i][j]; |
282 | – | } |
283 | – | } |
212 | } | |
285 | – | |
286 | – | void SimInfo::printMat3(double A[3][3] ){ |
213 | ||
288 | – | std::cerr |
289 | – | << "[ " << A[0][0] << ", " << A[0][1] << ", " << A[0][2] << " ]\n" |
290 | – | << "[ " << A[1][0] << ", " << A[1][1] << ", " << A[1][2] << " ]\n" |
291 | – | << "[ " << A[2][0] << ", " << A[2][1] << ", " << A[2][2] << " ]\n"; |
292 | – | } |
293 | – | |
294 | – | void SimInfo::printMat9(double A[9] ){ |
295 | – | |
296 | – | std::cerr |
297 | – | << "[ " << A[0] << ", " << A[1] << ", " << A[2] << " ]\n" |
298 | – | << "[ " << A[3] << ", " << A[4] << ", " << A[5] << " ]\n" |
299 | – | << "[ " << A[6] << ", " << A[7] << ", " << A[8] << " ]\n"; |
300 | – | } |
301 | – | |
214 | void SimInfo::calcBoxL( void ){ | |
215 | ||
216 | double dx, dy, dz, dsq; | |
305 | – | int i; |
217 | ||
218 | // boxVol = Determinant of Hmat | |
219 | ||
# | Line 312 | Line 223 | void SimInfo::calcBoxL( void ){ | |
223 | ||
224 | dx = Hmat[0][0]; dy = Hmat[1][0]; dz = Hmat[2][0]; | |
225 | dsq = dx*dx + dy*dy + dz*dz; | |
226 | < | boxLx = sqrt( dsq ); |
226 | > | boxL[0] = sqrt( dsq ); |
227 | > | //maxCutoff = 0.5 * boxL[0]; |
228 | ||
229 | // boxLy | |
230 | ||
231 | dx = Hmat[0][1]; dy = Hmat[1][1]; dz = Hmat[2][1]; | |
232 | dsq = dx*dx + dy*dy + dz*dz; | |
233 | < | boxLy = sqrt( dsq ); |
233 | > | boxL[1] = sqrt( dsq ); |
234 | > | //if( (0.5 * boxL[1]) < maxCutoff ) maxCutoff = 0.5 * boxL[1]; |
235 | ||
236 | + | |
237 | // boxLz | |
238 | ||
239 | dx = Hmat[0][2]; dy = Hmat[1][2]; dz = Hmat[2][2]; | |
240 | dsq = dx*dx + dy*dy + dz*dz; | |
241 | < | boxLz = sqrt( dsq ); |
241 | > | boxL[2] = sqrt( dsq ); |
242 | > | //if( (0.5 * boxL[2]) < maxCutoff ) maxCutoff = 0.5 * boxL[2]; |
243 | > | |
244 | > | //calculate the max cutoff |
245 | > | maxCutoff = calcMaxCutOff(); |
246 | ||
247 | + | checkCutOffs(); |
248 | + | |
249 | } | |
250 | ||
251 | ||
252 | + | double SimInfo::calcMaxCutOff(){ |
253 | + | |
254 | + | double ri[3], rj[3], rk[3]; |
255 | + | double rij[3], rjk[3], rki[3]; |
256 | + | double minDist; |
257 | + | |
258 | + | ri[0] = Hmat[0][0]; |
259 | + | ri[1] = Hmat[1][0]; |
260 | + | ri[2] = Hmat[2][0]; |
261 | + | |
262 | + | rj[0] = Hmat[0][1]; |
263 | + | rj[1] = Hmat[1][1]; |
264 | + | rj[2] = Hmat[2][1]; |
265 | + | |
266 | + | rk[0] = Hmat[0][2]; |
267 | + | rk[1] = Hmat[1][2]; |
268 | + | rk[2] = Hmat[2][2]; |
269 | + | |
270 | + | crossProduct3(ri, rj, rij); |
271 | + | distXY = dotProduct3(rk,rij) / norm3(rij); |
272 | + | |
273 | + | crossProduct3(rj,rk, rjk); |
274 | + | distYZ = dotProduct3(ri,rjk) / norm3(rjk); |
275 | + | |
276 | + | crossProduct3(rk,ri, rki); |
277 | + | distZX = dotProduct3(rj,rki) / norm3(rki); |
278 | + | |
279 | + | minDist = min(min(distXY, distYZ), distZX); |
280 | + | return minDist/2; |
281 | + | |
282 | + | } |
283 | + | |
284 | void SimInfo::wrapVector( double thePos[3] ){ | |
285 | ||
286 | < | int i, j, k; |
286 | > | int i; |
287 | double scaled[3]; | |
288 | ||
289 | if( !orthoRhombic ){ | |
# | Line 369 | Line 321 | int SimInfo::getNDF(){ | |
321 | ||
322 | ||
323 | int SimInfo::getNDF(){ | |
324 | < | int ndf_local, ndf; |
324 | > | int ndf_local; |
325 | > | |
326 | > | ndf_local = 0; |
327 | ||
328 | < | ndf_local = 3 * n_atoms + 3 * n_oriented - n_constraints; |
328 | > | for(int i = 0; i < integrableObjects.size(); i++){ |
329 | > | ndf_local += 3; |
330 | > | if (integrableObjects[i]->isDirectional()) { |
331 | > | if (integrableObjects[i]->isLinear()) |
332 | > | ndf_local += 2; |
333 | > | else |
334 | > | ndf_local += 3; |
335 | > | } |
336 | > | } |
337 | ||
338 | + | // n_constraints is local, so subtract them on each processor: |
339 | + | |
340 | + | ndf_local -= n_constraints; |
341 | + | |
342 | #ifdef IS_MPI | |
343 | MPI_Allreduce(&ndf_local,&ndf,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD); | |
344 | #else | |
345 | ndf = ndf_local; | |
346 | #endif | |
347 | ||
348 | < | ndf = ndf - 3; |
348 | > | // nZconstraints is global, as are the 3 COM translations for the |
349 | > | // entire system: |
350 | ||
351 | + | ndf = ndf - 3 - nZconstraints; |
352 | + | |
353 | return ndf; | |
354 | } | |
355 | ||
356 | int SimInfo::getNDFraw() { | |
357 | < | int ndfRaw_local, ndfRaw; |
357 | > | int ndfRaw_local; |
358 | ||
359 | // Raw degrees of freedom that we have to set | |
360 | < | ndfRaw_local = 3 * n_atoms + 3 * n_oriented; |
361 | < | |
360 | > | ndfRaw_local = 0; |
361 | > | |
362 | > | for(int i = 0; i < integrableObjects.size(); i++){ |
363 | > | ndfRaw_local += 3; |
364 | > | if (integrableObjects[i]->isDirectional()) { |
365 | > | if (integrableObjects[i]->isLinear()) |
366 | > | ndfRaw_local += 2; |
367 | > | else |
368 | > | ndfRaw_local += 3; |
369 | > | } |
370 | > | } |
371 | > | |
372 | #ifdef IS_MPI | |
373 | MPI_Allreduce(&ndfRaw_local,&ndfRaw,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD); | |
374 | #else | |
# | Line 398 | Line 377 | int SimInfo::getNDFraw() { | |
377 | ||
378 | return ndfRaw; | |
379 | } | |
380 | < | |
380 | > | |
381 | > | int SimInfo::getNDFtranslational() { |
382 | > | int ndfTrans_local; |
383 | > | |
384 | > | ndfTrans_local = 3 * integrableObjects.size() - n_constraints; |
385 | > | |
386 | > | |
387 | > | #ifdef IS_MPI |
388 | > | MPI_Allreduce(&ndfTrans_local,&ndfTrans,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD); |
389 | > | #else |
390 | > | ndfTrans = ndfTrans_local; |
391 | > | #endif |
392 | > | |
393 | > | ndfTrans = ndfTrans - 3 - nZconstraints; |
394 | > | |
395 | > | return ndfTrans; |
396 | > | } |
397 | > | |
398 | > | int SimInfo::getTotIntegrableObjects() { |
399 | > | int nObjs_local; |
400 | > | int nObjs; |
401 | > | |
402 | > | nObjs_local = integrableObjects.size(); |
403 | > | |
404 | > | |
405 | > | #ifdef IS_MPI |
406 | > | MPI_Allreduce(&nObjs_local,&nObjs,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD); |
407 | > | #else |
408 | > | nObjs = nObjs_local; |
409 | > | #endif |
410 | > | |
411 | > | |
412 | > | return nObjs; |
413 | > | } |
414 | > | |
415 | void SimInfo::refreshSim(){ | |
416 | ||
417 | simtype fInfo; | |
418 | int isError; | |
419 | int n_global; | |
420 | int* excl; | |
421 | < | |
409 | < | fInfo.rrf = 0.0; |
410 | < | fInfo.rt = 0.0; |
421 | > | |
422 | fInfo.dielect = 0.0; | |
423 | ||
424 | < | fInfo.rlist = rList; |
414 | < | fInfo.rcut = rCut; |
415 | < | |
416 | < | if( useDipole ){ |
417 | < | fInfo.rrf = ecr; |
418 | < | fInfo.rt = ecr - est; |
424 | > | if( useDipoles ){ |
425 | if( useReactionField )fInfo.dielect = dielectric; | |
426 | } | |
427 | ||
# | Line 424 | Line 430 | void SimInfo::refreshSim(){ | |
430 | fInfo.SIM_uses_LJ = useLJ; | |
431 | fInfo.SIM_uses_sticky = useSticky; | |
432 | //fInfo.SIM_uses_sticky = 0; | |
433 | < | fInfo.SIM_uses_dipoles = useDipole; |
433 | > | fInfo.SIM_uses_charges = useCharges; |
434 | > | fInfo.SIM_uses_dipoles = useDipoles; |
435 | //fInfo.SIM_uses_dipoles = 0; | |
436 | < | //fInfo.SIM_uses_RF = useReactionField; |
437 | < | fInfo.SIM_uses_RF = 0; |
436 | > | fInfo.SIM_uses_RF = useReactionField; |
437 | > | //fInfo.SIM_uses_RF = 0; |
438 | fInfo.SIM_uses_GB = useGB; | |
439 | fInfo.SIM_uses_EAM = useEAM; | |
440 | + | fInfo.SIM_uses_molecular_cutoffs = useMolecularCutoffs; |
441 | ||
442 | < | excl = Exclude::getArray(); |
442 | > | n_exclude = excludes->getSize(); |
443 | > | excl = excludes->getFortranArray(); |
444 | ||
445 | #ifdef IS_MPI | |
446 | n_global = mpiSim->getTotAtoms(); | |
# | Line 461 | Line 470 | void SimInfo::refreshSim(){ | |
470 | ||
471 | this->ndf = this->getNDF(); | |
472 | this->ndfRaw = this->getNDFraw(); | |
473 | + | this->ndfTrans = this->getNDFtranslational(); |
474 | + | } |
475 | ||
476 | + | void SimInfo::setDefaultRcut( double theRcut ){ |
477 | + | |
478 | + | haveRcut = 1; |
479 | + | rCut = theRcut; |
480 | + | |
481 | + | ( rCut > ecr )? rList = rCut + 1.0: rList = ecr + 1.0; |
482 | + | |
483 | + | notifyFortranCutOffs( &rCut, &rList, &ecr, &est ); |
484 | } | |
485 | ||
486 | + | void SimInfo::setDefaultEcr( double theEcr ){ |
487 | + | |
488 | + | haveEcr = 1; |
489 | + | ecr = theEcr; |
490 | + | |
491 | + | ( rCut > ecr )? rList = rCut + 1.0: rList = ecr + 1.0; |
492 | + | |
493 | + | notifyFortranCutOffs( &rCut, &rList, &ecr, &est ); |
494 | + | } |
495 | + | |
496 | + | void SimInfo::setDefaultEcr( double theEcr, double theEst ){ |
497 | + | |
498 | + | est = theEst; |
499 | + | setDefaultEcr( theEcr ); |
500 | + | } |
501 | + | |
502 | + | |
503 | + | void SimInfo::checkCutOffs( void ){ |
504 | + | |
505 | + | if( boxIsInit ){ |
506 | + | |
507 | + | //we need to check cutOffs against the box |
508 | + | |
509 | + | if( rCut > maxCutoff ){ |
510 | + | sprintf( painCave.errMsg, |
511 | + | "LJrcut is too large for the current periodic box.\n" |
512 | + | "\tCurrent Value of LJrcut = %G at time %G\n " |
513 | + | "\tThis is larger than half of at least one of the\n" |
514 | + | "\tperiodic box vectors. Right now, the Box matrix is:\n" |
515 | + | "\n" |
516 | + | "\t[ %G %G %G ]\n" |
517 | + | "\t[ %G %G %G ]\n" |
518 | + | "\t[ %G %G %G ]\n", |
519 | + | rCut, currentTime, |
520 | + | Hmat[0][0], Hmat[0][1], Hmat[0][2], |
521 | + | Hmat[1][0], Hmat[1][1], Hmat[1][2], |
522 | + | Hmat[2][0], Hmat[2][1], Hmat[2][2]); |
523 | + | painCave.isFatal = 1; |
524 | + | simError(); |
525 | + | } |
526 | + | |
527 | + | if( haveEcr ){ |
528 | + | if( ecr > maxCutoff ){ |
529 | + | sprintf( painCave.errMsg, |
530 | + | "electrostaticCutoffRadius is too large for the current\n" |
531 | + | "\tperiodic box.\n\n" |
532 | + | "\tCurrent Value of ECR = %G at time %G\n " |
533 | + | "\tThis is larger than half of at least one of the\n" |
534 | + | "\tperiodic box vectors. Right now, the Box matrix is:\n" |
535 | + | "\n" |
536 | + | "\t[ %G %G %G ]\n" |
537 | + | "\t[ %G %G %G ]\n" |
538 | + | "\t[ %G %G %G ]\n", |
539 | + | ecr, currentTime, |
540 | + | Hmat[0][0], Hmat[0][1], Hmat[0][2], |
541 | + | Hmat[1][0], Hmat[1][1], Hmat[1][2], |
542 | + | Hmat[2][0], Hmat[2][1], Hmat[2][2]); |
543 | + | painCave.isFatal = 1; |
544 | + | simError(); |
545 | + | } |
546 | + | } |
547 | + | } else { |
548 | + | // initialize this stuff before using it, OK? |
549 | + | sprintf( painCave.errMsg, |
550 | + | "Trying to check cutoffs without a box.\n" |
551 | + | "\tOOPSE should have better programmers than that.\n" ); |
552 | + | painCave.isFatal = 1; |
553 | + | simError(); |
554 | + | } |
555 | + | |
556 | + | } |
557 | + | |
558 | + | void SimInfo::addProperty(GenericData* prop){ |
559 | + | |
560 | + | map<string, GenericData*>::iterator result; |
561 | + | result = properties.find(prop->getID()); |
562 | + | |
563 | + | //we can't simply use properties[prop->getID()] = prop, |
564 | + | //it will cause memory leak if we already contain a propery which has the same name of prop |
565 | + | |
566 | + | if(result != properties.end()){ |
567 | + | |
568 | + | delete (*result).second; |
569 | + | (*result).second = prop; |
570 | + | |
571 | + | } |
572 | + | else{ |
573 | + | |
574 | + | properties[prop->getID()] = prop; |
575 | + | |
576 | + | } |
577 | + | |
578 | + | } |
579 | + | |
580 | + | GenericData* SimInfo::getProperty(const string& propName){ |
581 | + | |
582 | + | map<string, GenericData*>::iterator result; |
583 | + | |
584 | + | //string lowerCaseName = (); |
585 | + | |
586 | + | result = properties.find(propName); |
587 | + | |
588 | + | if(result != properties.end()) |
589 | + | return (*result).second; |
590 | + | else |
591 | + | return NULL; |
592 | + | } |
593 | + |
– | Removed lines |
+ | Added lines |
< | Changed lines |
> | Changed lines |